镁基复合材料制备专业技术、性能及应用发展概况(1)

合集下载

镁基复合材料

镁基复合材料

展望
镁基复合材料拥有优异的力学性能和物理性能,已 经显示出广阔的应用前景。 制备工艺、回收技术以及材料内部结构性能的各个 领域进行更多的原理研究及应用探索。 空间应用及交通领域 人类社会的老龄化问题日益突出,发展各种超轻结 构材料对于老年人独立工作及日常生活十分必要。
参考文献
[1] 杜文博,严振杰,吴玉锋等. 镁基复合材料的制备方法与新工艺.稀有 金属材料与工程. 2009, 38(3) [2] T W 克莱因. 金属基复合材料导论 . 余永宁,房志刚译. 北京:冶金工业 出版社. 1996. [3] 董 群, 陈 礼,清赵明久等. 镁基复合材料制备技术、性能及应用发展概 况. 材料导报. 2004, 18(4) [4] 张修庆, 滕新营.镁基复合材料的制备工艺. 热加工工艺 2004, (3) [5]方信贤, 王 莹.原位合成颗粒增强镁基复合材料研究进展.南京工程学 院学报( 自然科学版). 2008, 6(2) [6 ]南宏强 ,袁 森 ,王武孝等. 颗粒增强镁基复合材料的制备工艺研究进 展. 2006, 27(4) [7] 孙志强,张 荻,丁 剑等。原位增强镁基复合材料研究进展与原位反 应体系热力学. 材料科学与工程. 2002, 20(4) [8]胡连喜,李小强.挤压变形对SiCw/ZK51A镁基复合材料组织和性能的 影响.中国有色金属学报,2000,10 (5)
应用
应用
镁基复合材料的研究及其展望
研究方向
研究中的问题
展望
研究方向
组成及界面反应
增强相选择要求与铝基复合材料大致相同,都要求物 理、化学相容性好,润湿性良好,载荷承受能力强,尽量 避免增强相与基体合金之间的界面反应等。
制备及合成工艺
反应物的选择和反应工艺的控制。

MXene基复合材料的制备及镁电池性能研究

MXene基复合材料的制备及镁电池性能研究

MXene基复合材料的制备及镁电池性能研究摘要:MXene基复合材料是一种新型的材料,在材料领域具有广阔的应用前景。

本文以Ti3C2Tx为核心,分别采用球磨法和溶胶-凝胶法制备了两种MXene基复合材料,并通过扫描电镜、X射线衍射仪等测试手段对其形貌和结构进行了表征。

同时,对所制备的MXene基复合材料进行了电化学性能测试,并与纯MXene和TiO2基复合材料进行了对比研究。

实验结果表明,无论是球磨法还是溶胶-凝胶法制备的MXene基复合材料都可以显著提高镁电池的放电容量和循环寿命,其中溶胶-凝胶法制备的复合材料效果更佳。

本研究为MXene基复合材料在镁电池领域的应用提供了一些理论依据和实验参考。

关键词:MXene基复合材料;球磨法;溶胶-凝胶法;镁电池性能;放电容量;循环寿命1.引言MXene是一类新型的二维材料,其化学式为Mn+1XnTx(M为过渡金属,X为碳、氮或氢,T为-O、-F或-OH等官能团),具有高表面积、导电性好和可控的化学性质等优良特性。

近年来,MXene材料在能源领域的应用得到了广泛关注,如锂离子电池、超级电容器、电解电容器等领域。

但在镁电池领域,MXene的应用还没有深入研究。

镁电池因具有安全性高、续航能力强等优势,被认为是替代锂电池的优秀选择。

因此,探究MXene在镁电池领域内的应用具有重要的研究意义。

在MXene材料的基础上,通过制备MXene基复合材料,可以进一步提高材料的性能。

球磨法和溶胶-凝胶法则是两种常见的复合材料制备方法。

球磨法通过高能球和材料的摩擦和碰撞,将MXene材料与其他材料或反应物混合并形成PXene基复合材料;溶胶-凝胶法则是将MXene材料与溶胶相混合形成凝胶,在高温下处理形成PXene基复合材料。

目前,基于TiO2、CoO 等材料的MXene基复合材料已经在电化学储能领域中得到了广泛应用。

本研究以Ti3C2Tx为核心,采用球磨法和溶胶-凝胶法分别合成了两种MXene基复合材料,通过电化学性能测试以及表征手段对这两种材料的性能进行评估,并与纯MXene和TiO2基复合材料进行对比研究。

镁及其合金材料的优化制备及应用

镁及其合金材料的优化制备及应用

镁及其合金材料的优化制备及应用镁是一种轻金属,密度较小但强度较高,有很大的应用前景。

但是,在制备镁及其合金材料的过程中,存在一些技术难题,如高温氧化、析氢等,因此,优化镁及其合金材料的制备方法,成为了现在的研究方向。

一、镁及其合金材料的制备方法目前,镁及其合金材料的主要制备方法包括:熔融法、粉末冶金法和气相沉积法。

熔融法是指将金属或合金的原材料加热到熔点,然后进行浇铸、铸造等工艺实现制备的方法。

这种方法简单易行,制备周期短,能够制备出大量的产品,但是,由于制备过程中需要高温,产生的热量会导致材料极易氧化,同时也会对环境造成影响。

粉末冶金法是指将金属或合金的原材料制成细小的粉末状,通过压制和烧结等过程实现快速制备的方法。

这种方法不需要高温,避免了材料氧化的问题,并且能够制备出尺寸精度高、性能稳定的产品。

但是,由于制备过程中需要经过多个步骤,且设备成本高,因此制备周期长且成本较高。

气相沉积法是指在高温下使金属气体原子或离子在基底上沉积成膜的方法,该方法可以实现高精度、高纯度的镁及其合金材料的制备。

但是,这种方法对设备技术要求较高,制备条件也较为苛刻。

二、镁及其合金材料的应用镁及其合金材料是一种绿色环保的材料,具有优良的机械性能、良好的导电、导热性能和减震性能等特点,因此被广泛应用于航空航天、汽车制造、电子器件、医学器械等领域。

在航空航天领域,镁及其合金材料可以制作轻质、高强度零部件,为飞机减少重量、提高载荷能力提供了很大的空间。

同时,镁及其合金材料还可以用于制造宇航器、卫星等。

在汽车制造领域,镁及其合金材料是一种理想的轻量化材料。

与普通钢材相比,镁及其合金材料的密度小,但是强度高,可以在保证安全的前提下减少汽车的燃油消耗,降低环境污染。

在电子器件领域,镁及其合金材料因其良好的导电、导热性能而被广泛应用于电脑主板、手机等器件的散热元件制造。

在医学器械领域,镁及其合金材料因其生物相容性好、无毒害等特点而被广泛应用于人体器械的制造,如钢板、钉子、矫形器等。

(完整word版)镁基复合材料制备技术、性能及应用发展概况

(完整word版)镁基复合材料制备技术、性能及应用发展概况

镁基复合材料制备技术、性能及应用发展概况摘要:镁基复合材料因其轻量化和高性能而成为当今高新技术领域中最富竞争力和最有希望采用的复合材料之一。

大致笔述了常用镁基复合材料研究概况、制备技术、性能及应用前景。

关键词:镁基复合材料制备技术性能应用Fabrication,Properties and Application of M agnesium—matrix CompositesDONG Qun CHEN Liqing ZHAO Mingjiu BI Jing(Institute of Metal Research,Chinese Academy of Sciences,Shenyang 110016,China)Abstract Magnesium—matrix composites with lightweight and high performance are becoming one of themost competitive and promising candidates in the applications of high—tech fields.An overview is made on the fabri—ating techniques,mechanical properties and applications for the typical magnesium—matrix composites,and theresearch trend is proposedKey words magnesium matrix composite,fabrication,properties,application. 0引言:镁基复合材料是继铝基复合材料之后又一具有竞争力的轻金属基复合材料【E1】,主要特点是密度低、比强度和比刚度高,同时还具有良好的耐磨性、耐高温性、耐冲击性、优良的减震性能及良好的尺寸稳定性和铸造性能等;此外,还具有电磁屏蔽和储氢特性等,是一类优秀的结构与功能材料,也是当今高新技术领域中最有希望采用的复合材料之一;在航空航天、军工产品制造、汽车以及电子封装等领域中具有巨大的应用前景。

镁合金材料的制备与应用

镁合金材料的制备与应用

镁合金材料的制备与应用随着科技和工业的不断发展,材料科学也在不断地发展和进步。

其中,镁合金材料是一种备受瞩目的高强度、轻质、环保的材料,被广泛应用于航空、汽车、电子、医疗等领域。

本文将介绍镁合金材料的制备与应用。

一、镁合金材料的制备镁合金是由镁和其他金属元素合成的合金,具有低密度、高比强度、耐腐蚀性好等特点,常用于制造航空、汽车、电子、医疗等领域的零部件和器件。

镁合金的制备方法多种多样,常见的有以下几种。

1. 真空熔炼法真空熔炼法是一种制备高纯镁合金的方法,主要通过高温真空熔炼将镁和其他金属元素的混合物合成镁合金。

该方法制备的镁合金纯度高、含氧量低、杂质少,但制备过程复杂、成本高。

2. 粉末冶金法粉末冶金法是一种材料制备方法,主要通过高能球磨或化学还原等技术将镁和其他金属元素粉末混合后,在高温高压条件下压制成型。

该方法制备成本低、工艺简单、能够制备出各种形状的材料,但制备周期长、工艺参数难控制。

3. 氮化物反应法氮化物反应法是一种制备高性能镁合金的方法,主要通过将金属镁和氮化物在高温下反应制备成镁氮化物,之后通过还原反应获得镁合金。

该方法制备出的镁合金密度高、强度高、延展性好,但制备过程复杂、成本高,需要使用高温等特殊条件。

二、镁合金材料的应用随着人们对环保和能源消耗的重视,镁合金材料在各个领域中的应用逐步增加。

以下是镁合金材料常见的应用场景。

1. 航空领域航空领域对材料的高强度、轻质、抗疲劳等要求很高,镁合金正是符合这些要求的材料之一。

在飞机、直升机等飞行器的制造过程中,将镁合金用作机身结构材料、发动机外罩、支撑件等,能够大幅度降低整个飞行器的重量,提升飞行器的效率和性能。

2. 汽车领域镁合金也被广泛应用于汽车领域。

在汽车制造过程中,将镁合金用作车身结构材料、发动机散热器、变速器壳体、制动器等部位,能够降低整车重量、提高车辆的燃油效率和动力性能,同时还能减少对环境的污染。

3. 电子领域随着电子设备的不断更新换代,对电子材料的性能要求也在不断提高。

镁基复合材料的应用及发展

镁基复合材料的应用及发展

镁基复合材料的应用及发展镁基复合材料是一种由镁合金基体和其他增强材料组成的复合材料。

镁合金具有低密度、高比强度和良好的机械性能等优点,但其在高温和腐蚀环境下的性能较差。

通过将其他增强材料与镁合金基体结合,可以改善镁合金的性能,并拓展其应用领域。

以下将详细介绍镁基复合材料的应用及发展。

一、航空航天领域镁基复合材料在航空航天领域有着广泛的应用。

由于镁合金具有低密度和高比强度,可以减轻飞机和航天器的重量,提高其燃油效率和载荷能力。

同时,镁基复合材料还具有良好的耐腐蚀性能,可以在恶劣的环境下使用。

目前,镁基复合材料已经成功应用于飞机结构、发动机零部件、导弹和航天器等领域。

二、汽车工业镁基复合材料在汽车工业中也有着广泛的应用前景。

由于镁合金具有低密度和良好的机械性能,可以减轻汽车的重量,提高燃油效率和行驶性能。

此外,镁基复合材料还具有良好的吸能性能,可以提高汽车的碰撞安全性。

目前,一些汽车制造商已经开始使用镁基复合材料制造车身和零部件,以实现轻量化和节能减排的目标。

三、电子领域镁基复合材料在电子领域也有着广泛的应用。

由于镁合金具有良好的导电性能和热传导性能,可以用于制造电子器件和散热器等。

此外,镁基复合材料还具有良好的抗电磁干扰性能,可以提高电子设备的稳定性和可靠性。

目前,一些电子产品中已经开始使用镁基复合材料,如手机、平板电脑和电视等。

四、医疗领域镁基复合材料在医疗领域也有着潜在的应用价值。

由于镁合金具有良好的生物相容性和生物降解性,可以用于制造骨科植入物和修复器械等。

此外,镁基复合材料还具有良好的抗菌性能,可以预防感染和促进伤口愈合。

目前,一些医疗器械制造商已经开始研发和应用镁基复合材料,以提高医疗器械的性能和安全性。

随着科学技术的不断进步,镁基复合材料的应用领域还将不断拓展。

未来,随着材料制备技术的改进和材料性能的提高,镁基复合材料有望在更多领域发挥重要作用。

同时,还需要进一步研究镁基复合材料的制备工艺、性能测试和应用评价等方面的问题,以推动其在实际应用中的发展。

镁基复合材料

镁基复合材料

低温反应自熔 ( RSM)
混合盐反应法 ( LSM ) 放热反应法( XD) 气泡法 (Gas-bubbling Method) 反复塑性变形法(Repeated Plastic Working)
镁基复合材料分类
按基体材料分类 铸镁、镁合金、镁化合物 连续纤维增强、 非连续纤维增强 、自生增强、层 板 外加增强镁基复合材料
SiC颗粒
SiC的硬度高,耐磨性好,并具有抗热冲击、抗氧化等性能。镁没有稳定的碳 化物,SiC在镁中热力学上是稳定的,因此,SiC常用作镁基复合材料的增强相,并
且来源广泛价格便宜,用其作为增强颗粒制备镁基复合材料具有工业化生产前景。
B4C颗粒
B4C为菱面体结构,高熔点、高硬度,硬度仅次于金刚石与立方氮化硼,是密 度最低的陶瓷材料,热膨胀系数相当低,价格也较便宜。
一种快速凝固法,包括喷射沉积法、熔融旋压法等。
熔体浸渗法 (M e lt In filtra tio n P ro c e s s )
将增强相预制成形,再通过压力,将熔融的基体金属渗入到预 制体间隙中,达到复合化的目的。熔体浸渗法包括压力浸渗、无压 浸渗与负压浸渗。
铸造法 (Casting tin g R o u te ) 铸造法 (C a s Route) 挤压铸造法(Squeeze Cast)是通过压机将液态金属强行压入增 挤压铸造法(Squeeze Cast)是通过压机将液态金属强行压入增 强材料的预制件中以制备复合材料的一种方法; 强材料的预制件中以制备复合材料的一种方法; 搅拌铸造法 (Compo-Casting)是靠机械、电磁或超声波等搅拌方 搅拌铸造法 (Compo-Casting)是靠机械、电磁或超声波等搅拌 方法,使增强颗粒充分弥散到镁基体合金熔体,最终浇注或挤压 法,使增强颗粒充分弥散到镁基体合金熔体,最终浇注或挤压成 成型的工艺方法。 原位生成技术(In-situ formation) 型的工艺方法。 原位反应自生增强法( In-situ Reaction Synthesis) 通过基体合金与反应物发生一定化学反应,在基体中原位生成 原位反应自生增强法( In-situ Reaction Synthesis) 所需的增强体来制备复合材料。 通过基体合金与反应物发生一定化学反应,在基体中原位生成 原位反应复合(In situ Reactive Process) 所需的增强体来制备复合材料。 通过放热反应,在基体内部生成相对均匀分散的增强体,增强 体与基体近似处于平衡状态,形成的低能界面使原位复合材料在 本质上处于稳定状态

镁基复合材料的应用

镁基复合材料的应用

镁基复合材料的应用镁基复合材料是一种以镁合金为基体,与其他金属、陶瓷、聚合物等材料进行复合加工而成的新型材料。

它具有密度低、比强度高、耐热性好等优点,因此在航空航天、汽车、电子、医疗等领域有着广泛的应用前景。

镁基复合材料在航空航天领域的应用是其重要领域之一。

随着航空航天技术的发展和需求的提高,要求材料具有较轻的重量、良好的机械性能和热稳定性,镁基复合材料因其优异的特性而备受关注。

它可以用于制造飞机结构件、发动机零部件、燃料箱等,无形中减轻了飞机的自重,提高了航空器的使用效率,降低了燃油消耗,对于航空航天工业的可持续发展具有重要意义。

镁基复合材料在汽车领域也有着广泛的应用前景。

如今,人们对汽车的轻量化要求越来越高,以降低燃油消耗、减少污染、提升汽车性能和安全性。

而镁基复合材料因其轻质、高强度、抗腐蚀等特性,被广泛应用于汽车制造中,可以制造车身结构件、发动机零部件、悬挂系统等。

相对于传统的金属材料,镁基复合材料的使用可以使汽车减重,提高燃油经济性,降低尾气排放,同时提高汽车的安全性。

在电子领域,镁基复合材料也被广泛应用于各种电子产品的制造中。

它可以用来制造手机壳体、电脑外壳、平板电脑等产品的外壳,使得产品更轻便、耐用。

镁基复合材料还具有良好的导电性和热传导性,可以帮助电子产品散热,在保证产品性能的同时提高了产品的使用寿命。

医疗领域也是镁基复合材料广泛应用的领域之一。

由于镁合金具有生物相容性和生物降解性,因此被用于医疗器械的制造。

镁基复合材料可以用来制造骨骼植入物、手术器械等,与人体组织相容性好,不会对人体造成额外的伤害,并且可以在合适的时间内降解吸收,减少了二次手术的风险。

镁基复合材料在航空航天、汽车、电子、医疗等领域有着广泛的应用前景。

随着科技的不断发展和对材料性能要求的提高,相信镁基复合材料在未来会有更广泛更深入的应用,为各行各业带来更多的发展机遇。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
颗粒
4Mg(1)+B20。(1)一MgB2(s)+3MgO(s)
产物利于润湿,有利于界面结合
SiC
Mg和SiC生成金属间化合物
产物降低固液界面能,有利于润湿
4A1+3SiC—A1.C。+3Si
产物易于水解。降低材料耐蚀性
Al203(SiO2)
3Mg+AI20。一2AJ+3MgC
3Mg+4A120 一2A1+3MgA12O
有研究认为【2】,SiC /Mg间存在界面反应可使固液界面能降低;Mg在700℃时表面张力较小,约为 的1/2,这将促使SiC 在Mg基体中均匀分布;也有报道称TiC 在纯Mg中比在纯铝中分布更为均匀【3】。有关B4C与Mg间的物理润湿性和界面化学相容性的研究结果表明 【4,5】,Mg对B4C具有良好的润湿性,是一种较好的增强相。SiC和TiC等碳化物常被用作镁基复合材料的增强体,主要是由于Mg不易形成稳定的碳化物以及这些碳化物具有较高的强度及化学稳定性。如果Mg合金中含有Al元素,与碳化物接触时间长时,则会在这些镁合金中起反应形成A14C3,在界面处进一步形成MgA1204尖晶石,从而改变合金的化学成分,影响复合材料腐蚀性能。此外,界面反应物存在使复合材料在铸造过程中流动性降低【6】。
关键词:镁基复合材料制备技术性能应用
Fabrication,Properties and Application of M agnesium—matrix CompositesDONG Qun CHEN Liqing ZHAO Mingjiu BI Jing(Institute of Metal Research,Chinese Academy of Sciences,Shenyang 110016,China)Abstract Magnesium—matrix composites with lightweight and high performance are becoming one of themost competitive and promising candidates in the applications of high—tech fields.An overview is made on the fabri—ating techniques,mechanical properties and applications for the typical magnesium—matrix composites,and theresearch trend is proposedKey words magnesium matrix composite,fabrication,properties,application.
0引言:
镁基复合材料是继铝基复合材料之后又一具有竞争力的轻金属基复合材料【E1】,主要特点是密度低、比强度和比刚度高,同时还具有良好的耐磨性、耐高温性、耐冲击性、优良的减震性能及良好的尺寸稳定性和铸造性能等;此外,还具有电磁屏蔽和储氢特性等,是一类优秀的结构与功能材料,也是当今高新技术领域中最有希望采用的复合材料之一;在航空航天、军工产品制造、汽车以及电子封装等领域中具有巨大的应用前景。构成镁基复合材料的基体合金主要分为铸造、变形和超轻等系列。铸造系包括Mg—AI、Mg—Zn、Mg—AI—Zn、Mg—Zn—Zr、Mg—Zn—Zr—RE等,侧重于制备铸造镁基复合材料;变形系包括Mg—Mn、Mg—AI—Zn、Mg—Zn—Zr、Mg—RE等,偏重于挤压性能的复合材料应用;Mg—Li系是目前最轻质的合金系,具有较强的抗高能粒子穿透能力,以及能显著降低构件重量、节约能量和满足某些高性能的要求。增强体可以分为颗粒、晶须、纤维等几种,增强体的选择要从复合材料应用情况、制备方法以及增强体的成本等诸多方面综合考虑。其中,界面相容性和界面间存在的可能反应类型是镁基复合材料制备过程中首先要考虑的问题。本文将从镁基复合材料中界面反应类型与润湿性、制备技术、组织性能和应用等几个方面对镁基复合材料发展概况进行介绍,并对其今后发展前景进行展望。
表1 镁基复合材料常用增强体及部分界面反应
类型
增强体
存在反应
说明
纤维
Gr
3C+G 4A1(Li))→Al4C3(Li2C2)
特别是合金含有Li,将危害界面
Ti
Ti不溶于镁,无反应
Ti对Mg有良好的润湿性、增强作用
B
Mg+2B—MgB
产物具有良好润湿性
A1203
3Mg+ A120。一2AI+3MgO
界面反应程度成为关键
镁基复合材料制备技术、性能及应用发展概况
———————————————————————————————— 作者:
———————————————————————————————— 日期:
镁基复合材料制备技术、性能及应用发展概况
摘要:镁基复合材料因其轻量化和高性能而成为当今高新技术领域中最富竞争力和最有希望采用的复合材料之一。大致笔述了常用镁基复合材料研究概况、制备技术、性能及应用前景。
生成大量的尖晶石将改变合金成分
石墨纤维增强镁基复合材料(Gr~/Mg)具有低密度、高比强度和比刚度等优良的力学性能,并可按照不同纤维含量设计出热膨胀系数在较宽温度范围内保持为零的材料。早在1972年,就有人采用热压工艺制备了Gr~/Mg复合材料。熔融镁不能直接浸润无涂层的石墨纤维,经采用等离子喷涂或物理气相沉积钛及化学镀镍等预先涂覆石墨纤维,均证明与熔融镁问有良好的润湿性。由于钛的密度较低、熔点较高以及与镁不会形成脆性金属间化合物,故可以采用物理气相沉积。由于Gr~/Mg复合材料存在制备工艺复杂等缺点而使人们更多地倾向于不连续增强镁基复合材料的研究。
1》镁基复合材料中界面反应与润湿性
镁基复合材料中可能存在的界面反应类型主要与基体种类和增强相类型以及所采用的制备方法有关。尤其是在镁中加入Al或镁合金本身含Al元素时,界面间存在的反应情况变得异常复杂。如表1所列,镁基体中Al主要与增强体中的氧化物和碳起化学反应,生成一些不利于材料性能的界面相,但有时这些界面相也能起到改善润湿性的作用。
相关文档
最新文档