数学建模运筹学模型

合集下载

第二章——运筹学建模方法

第二章——运筹学建模方法

1第二章、运筹学建模方法综述2定义问题和收集数据 数学建模模型求解 检验模型 准备应用模型 实施3运筹学研究小组首先要做的是研究相关系统,并使被研究的问题得到明确的说明。

包括确定合适的目标、实际的限制条件、研究领域和组织的其他领域间的相互关系、可选择的行动路线、制定决策的时间限制等。

2.1定义问题和收集数据4针对美国企业的大量调查发现,管理层趋向于采取满意利润目标和其他目标相结合的方式代替长期收益最大化。

典型地,其他目标包括维持稳定收益、增加市场份额、实现产品多样化、维持稳定价格、提高员工士气、维持企业的家族控制以及提高企业声望。

另外,存在包含与盈利动机不相吻合的社会责任的其他考虑。

2.1定义问题和收集数据5商业企业一般涉及以下五个方面所用者(股东等),追求盈利员工,期望合理工资水平上的稳定雇佣 客户,期望以合理的价格获得可靠的产品 供应商,期望声誉以及产品的合理出售价格政府以及国家,期望公正的税收和考虑国家利益6例:在为旧金山警察局所开展的运筹学研究中,建立了一个优化调度和配置巡警的计算机系统。

这个新系统每年为警察局节约1100万美元,同时增加了300万美元的交通管理收入,并且将反映时间减少了20%。

在评估该项研究的合适目标时,确定了三个基本目标:(1). 维持高水平的居民安全(2). 维持高水平的警员士气(3). 最小化运作成本7收集数据通常,研究小组会花费大量的时间收集问题的数据。

大部分数据既用于获得对问题的充分理解,又为下一阶段研究建立的数学模型提供所需的输入。

82.2 数学建模商业问题的数学模型,是描述问题实质的方程和相关数学表达式的系统。

n 个相关的可量化的决策,称为决策变量(decision variables)(x 1, x 2, …x n )绩效(如收益)的合理度量被表示成这些决策变量的数学函数(例如,P =3x 1+2x 2+…+5x n ),这个函数称为目标函数(objective function)9 任何对决策变量值的约束也能够被数学表示,通常是通过等式或不等式(例如:x 1+3x 1x 2+2x 2≤10),这些用于限制的数学表达式称为约束(constraints)。

运筹学模型的类型

运筹学模型的类型

运筹学模型的类型运筹学模型是指通过数学方法来描述和解决复杂问题的一种工具。

根据问题的性质和要求,运筹学模型可以分为以下几种类型:1. 线性规划模型(Linear Programming Model,简称LP):线性规划是一种优化问题,它的目标是在满足一些约束条件下,使某个线性函数取得最大或最小值。

线性规划模型广泛应用于生产调度、资源分配、物流运输等领域。

2. 整数规划模型(Integer Programming Model,简称IP):整数规划是线性规划的扩展,它要求决策变量只能取整数值。

整数规划模型常用于生产调度、排产计划、网络设计等问题。

3. 非线性规划模型(Nonlinear Programming Model,简称NLP):非线性规划是一种优化问题,它的目标函数和约束条件都可以是非线性的。

非线性规划模型广泛应用于经济学、金融学、工程学等领域。

4. 动态规划模型(Dynamic Programming Model,简称DP):动态规划是一种优化方法,它将一个复杂问题分解为若干个子问题,并逐步求解这些子问题。

动态规划模型常用于生产调度、资源分配、投资决策等问题。

5. 排队论模型(Queuing Theory Model,简称QT):排队论是一种研究等待线性的数学理论,它可以用来描述和分析顾客到达、服务时间、系统容量等因素对系统性能的影响。

排队论模型广泛应用于交通运输、通信网络、医疗卫生等领域。

6. 决策树模型(Decision Tree Model,简称DT):决策树是一种分类和回归的方法,它可以将一个问题分解为若干个子问题,并逐步求解这些子问题。

决策树模型常用于金融风险评估、医学诊断、市场营销等领域。

总之,不同类型的运筹学模型适用于不同的问题领域和求解目标,选择合适的模型可以帮助我们更好地解决实际问题。

运筹学模型

运筹学模型

运筹学模型
运筹学模型,又称作“模型解决方案”,是一种将抽象的或复杂
的问题转化成客观的数字模型的方法。

它的研究内容包括对数学模型、解答技术和应用技术的研究。

运筹学模型可以解决许多复杂的解答问题,如飞机起降时间安排、体育竞赛规则、战略规划等,这些问题比较复杂,无法通过决策树或经验分析来解决。

运筹学模型,最早由英国经济学家威廉赫尔贝克(William R. Hertz)提出。

他在1898年发表了著名的《运筹学模型》,认为模型
通过统计分析和多元解释的方式来描述经济行为和社会发展趋势。

他在这篇文章中提出了“多元线性回归模型”,这是当时关于经济运筹
学模型领域第一次重大突破。

赫尔贝克的模型可以分为两类:定性模型和定量模型。

定性模型,例如允许研究者进行排除法分析,以此发现模式的多样性。

此外,它还可以运用其他定性分析工具,如思维网络、分类树、社会格局等,来解决复杂的运筹学问题。

而定量模型,则可以利用多元线性回归,对复杂的数据进行建模,探寻其规律性和行为规律。

运筹学模型在许多领域都有重要作用,如工程、管理、决策分析、运输等领域,它们能够更有效地帮助解决复杂的实际问题,节约时间和资源,从而提高生产效率。

例如,对于运输问题,可以使用运筹学模型来分析最佳路线;如果是生产问题,则可以使用运筹学模型来计算最优的生产策略。

另外,运筹学模型还可以用来评估决策的风险和收益,从而指导企业决策。

总之,运筹学模型是一种有效的解决复杂问题的方法,它不但能够有效地解决实际问题,而且还可以提供给企业更有成效的决策和策略框架,为企业提供有效的发展指引。

运筹学分配问题建模

运筹学分配问题建模

运筹学分配问题建模
运筹学分配问题是指在特定的条件下,如何合理地分配资源以达到最优化的解决方案的问题。

这类问题可以用数学模型来描述和解决。

在运筹学中,分配问题通常涉及到有限的资源和不同的需求或约束条件。

在建模时,可以使用线性规划、整数规划、动态规划或网络流等方法来求解。

以一个简单的分配问题为例,假设有三个项目(A、B、C)需要分配有限的资源(如人力、时间或资金)。

每个项目会产生不同的效益(如收益或效率),同时存在一些约束条件(如人力资源的限制或时间的限制)。

我们的目标是在满足约束条件下,最大化总体效益。

为了建模这个问题,我们可以定义以下变量和参数:
令x1、x2、x3分别表示项目A、B、C的分配比例;
令c1、c2、c3分别表示项目A、B、C的效益;
令r表示可用资源的数量;
令a1、a2、a3分别表示项目A、B、C所需资源的数量。

然后,我们可以建立以下数学模型:
目标函数:maximize Z = c1*x1 + c2*x2 + c3*x3
约束条件:a1*x1 + a2*x2 + a3*x3 <= r
x1 + x2 + x3 = 1
x1, x2, x3 >= 0
这个数学模型可以被解释为:我们要最大化总体效益(Z),
但同时要满足资源约束条件(第一个约束条件),并且项目的分配比例之和为1(第二个约束条件)。

当我们求解这个数学模型时,可以得到最优的分配比例,从而实现最大化总体效益。

这只是一个简单的示例,实际的运筹学分配问题可能更加复杂,可以根据具体情况进行进一步的建模和求解。

数学建模:第五章 运筹与优化模型

数学建模:第五章 运筹与优化模型

max c j x j
n
s.t aij x j bi
j 1
n
j 1
i 1.2 m
xj 0
j 1.2 n
8
二、整数规划模型
n min f c j x j j 1 n aij x j bi j 1 x j 0
对于线性规划:
22
二、货机装运
问题 某架货机有三个货舱:前仓、中仓、后仓。三个 货舱所能装载的货物的最大重量和体积都有限制,如表 3所示。并且,为了保持飞机的平衡,三个货舱中实际 装载货物的重量必须与其最大容许重量成比例。
重量限制 (吨)
前仓 中仓 后仓 10 16 8 6800 8700 5300
体积限制 (米3)
5
解:设x ij 表示 Ai (i=1.2)煤厂提供给 B j (j=1.2.3)居民区的煤量; f表示总运输费 此问题归结为:
min f 10 x11 5 x12 6 x13
s.t
x11 x12 x13 60 x21 x22 x23 100 x11 x21 50
s.t gi ( X ) 0
hi ( X ) 0
(1)
(2)
(3)
i 1,2,, m .
j 1,2,, l .
X D
其中X ( x1 , x2 ,, xn )T , D R n为可行集
f(X)为目标函数,(2)、(3)为约束条件, (2)为不等式约束,(3)为等式约束; 若只有(1)称为无约束问题。
max f x1 x2 15 x1 12 x2 85 如 5 x1 11 x , x 0 1 2 x1 , x2 为整数

运筹学 运输问题例题数学建模

运筹学 运输问题例题数学建模

运筹学运输问题例题数学建模运筹学是一门研究如何在有限的资源和多种约束条件下,寻求最优或近似最优解的科学。

运输问题是运筹学中的一个重要分支,它主要研究如何把某种商品从若干个产地运至若干个销地,使总的运费或总的运输时间最小。

本文将介绍运输问题的数学建模方法,以及用表上作业法求解运输问题的步骤和技巧。

同时,本文还将给出几个典型的运输问题的例题,帮助读者理解和掌握运输问题的求解过程。

运输问题的数学建模运输问题可以用以下的数学模型来描述:设有m 个产地(或供应地),分别记为A 1,A 2,…,A m ,每个产地i 的产量(或供应量)为a i ;有n 个销地(或需求地),分别记为B 1,B 2,…,B n ,每个销地j 的需求量为b j ;从产地i 到销地j 的单位运费(或单位运输时间)为c ij ;用x ij 表示从产地i 到销地j 的运量,则运输问题可以归结为以下的线性规划问题:其中,目标函数表示总的运费或总的运输时间,约束条件表示每个产地的供应量必须等于其产量,每个销地的需求量必须等于其销量,以及每条运输路线的运量不能为负数。

在实际问题中,可能出现以下几种情况:产销平衡:即∑m i =1a i =∑n j =1b j ,也就是说总的供应量等于总的需求量。

这种情况下,上述数学模型可以直接应用。

产大于销:即∑m i =1a i >∑n j =1b j ,也就是说总的供应量大于总的需求量。

这种情况下,可以增加一个虚拟的销地,其需求量等于供需差额,且其与各个产地的单位运费为零。

这样就可以把问题转化为一个产销平衡的问题。

产小于销:即∑m i =1a i <∑n j =1b j ,也就是说总的供应量小于总的需求量。

这种情况下,可以增加一个虚拟的产地,其产量等于供需差额,且其与各个销地的单位运费为零。

这样也可以把问题转化为一个产销平衡的问题。

弹性需求:即某些销地对商品的需求量不是固定不变的,而是随着商品价格或其他因素而变化。

运筹学模型的分类和类型

运筹学模型的分类和类型

运筹学模型的分类和类型运筹学是一门应用于决策制定和问题解决的学科,它通过数学模型和分析方法来优化资源的利用。

运筹学模型是在特定情境中描述问题和优化目标的数学表示。

根据问题的性质和优化目标的类型,运筹学模型可以被分类为多种类型。

在本文中,我将介绍一些常见的运筹学模型分类。

一、线性规划模型:线性规划模型是最基本的运筹学模型之一。

它的特点是目标函数和约束条件均为线性的。

线性规划模型常用于求解资源分配、生产计划、物流运输等问题。

通过线性规划模型,我们可以找到使资源利用最优化的决策方案。

某公司需要确定每种产品的生产数量,以最大化总利润,且需满足各种资源约束条件,这时可以使用线性规划模型进行求解。

二、整数规划模型:整数规划模型是在线性规划模型的基础上引入整数变量的扩展。

在某些情况下,问题的决策变量只能取整数值,这时就需要使用整数规划模型进行求解。

某物流公司需要确定车辆的调度方案,每辆车的装载量可以是整数,这时可以使用整数规划模型来求解最佳调度方案。

三、动态规划模型:动态规划模型是一种考虑时间因素的决策模型。

它通常用于求解多阶段决策问题。

动态规划模型通过将问题划分为多个阶段,并建立各阶段之间的转移方程,来寻找最优决策序列。

在项目管理中,我们需要确定每个阶段的最佳决策,以最小化总工期和成本,这时可以使用动态规划模型进行求解。

四、网络流模型:网络流模型是一种描述网络中资源分配和流量传输的模型。

它通常用于求解网络优化问题,如最小费用流问题、最大流问题等。

网络流模型中,节点表示资源或流量的源点、汇点和中间节点,边表示资源或流量的传输通道。

通过建立网络流模型,我们可以确定资源的最优分配方案,以及网络中的最大流量或最小成本。

在供应链管理中,我们需要确定货物从生产商到消费者的最佳流向,以最小化总运输成本,这时可以使用网络流模型进行求解。

五、排队论模型:排队论模型是一种描述排队系统的模型。

它通常用于评估系统性能指标,如平均等待时间、平均逗留时间等。

数学建模运筹模型

数学建模运筹模型

X={1,2,4}
w1=0
w2=2
2
6
1
2
3
1
10
w4=1
5
9
3
4
7
5
6
5
2
3
4
6
7
4
w6=3
8 8
min {c16,c23,c25,c47}=min {0+3,2+6,2+5,1+2}=min {3,8,7,3}=3
X={1,2,4,6}, w6=3
X={1,2,4,6}
w1=0
例 有一份说明书,需要译成英、日、德、俄四种文字,现有甲
乙丙丁四个人,他们将说明书译成不同文字所需要的时间如
下表所示,问应指派哪个人完成哪项工作,耗用的总时间最
少?
英语 日语 德语 俄语

2
15 13
4

10
4
14 15

9
14 16 13

7
8
11
9
指派问题
一般地,有n项任务、n个完成人,第i人完成第j项任务的代
运输问题
闭回路:
ai
3
113
1
9
2
8
4
3
1
7
4
10
5
9
6
3
bj
3
6
5
6
20
运输问题
迭代及新基本可行解的检验数计算:
-2
4
-2
5
ai
3
11
3
10
5
7
[0]
[2]
5
2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

运筹学模型(一)
本章重点:
线性规划基础模型、目标规划模型、运输模型及其应用、图论模型、最小树问题、最短路问题
复习要求:
1.进一步理解基本建模过程,掌握类比法、图示法以及问题分析、合理假设的内涵.
2.进一步理解数学模型的作用与特点.
本章复习重点是线性规划基础模型、运输问题模型和目标规划模型.具体说来,要求大家会建立简单的线性规划模型,把实际问题转化为线性规划模型的方法要掌握,当然比较简单.运输问题模型主要要求善于将非线性规划模型转化为运输规化模型,这种转化后求解相当简单.你至少把一个很实际的问题转化为用表格形式写出的模型,至于求解是另外一回事,一般不要求.目标模型一般是比较简单的线性规模模型在提出新的要求之后转化为目标规划模型.另外,关于图论模型的问题涉及到最短路问题,具体说来用双标号法来求解一个最短路模型.这之前恐怕要善于将一个实际问题转化为图论模型.还有一个最小数的问题,该如何把一个网络中的最小数找到.另外在个别场合可能会涉及一笔划问题.
1.营养配餐问题的数学模型
或更简洁地表为
其中的常数C j 表示第j 种食品的市场价格,a ij 表示第j 种食品含第i 种营养的数量,b i 表示人或动物对第i 种营养的最低需求量.
2.合理配料问题的数学模型
有m 种资源B 1,B 2,…,B m ,可用于生产n 种代号为A 1,A 2,…,A n 的产品.单位产品A j 需用资源B i 的数量为a ij ,获利为C j 单位,第i 种资源可供给总量为b i 个单位.问如何安排生产,使总利润达到最大?
设生产第j 种产品x j 个单位(j =1,2,…,n ),则有
或更简单地写为
3.运输问题模型
运输问题也是一种线性规划问题,只是决策变量设置为双下标变量.假如问题具有m 个产地和n 个销地,第i 个产地用A i 表示,其产量为a i (i =1,2,…,m ),第j 个销地用B j 表示,其销量为b j (j =1,2,…,n ),从A i 运往B j 的运价为c ij , 而∑∑===m i n j j i b a
11表示产销平衡.那么产销平衡运输问题的一般模型可以写成为
4.目标规划模型
某工厂生产代号为Ⅰ、Ⅱ的两种产品,这两种产品都要经甲、乙两个车间加工,并经检验与销售两部门处理.已知甲、乙两车间每月可用生产工时分别为120小时和150小时,每小时费用分别为80元和20元,其它数据如下表 表4-1
工厂领导希望给出一个可行性生产方案,使生产销售及检验等方面都能达标.
问题分析与模型假设
经与工厂总经理交谈,确定下列几条:
p 1: 检验和销售费每月不超过4600元;
p 2: 每月售出产品I 不少于50件;
p 3: 两车间的生产工时充分利用(重要性权系数按两车间每小时费用比确定);
p 4:甲车间加班不超过20小时;
p 5:每月售出产品Ⅱ不少于80件;
p 6:两车间加班总时数要有控制(对权系数分配参照第三优先级).
模型建立
设x 1,x 2分别为产品Ⅰ和Ⅱ的月产量,先建立一般约束条件组,依题设
4600305021≤+x x 检验销售费用
802≥x 120221≤+x x 设d 1表检验销售费偏差,则希望+1d 达最小,有
,11+d p 相应的目标约束为
+--++1121305d d x x = 4600; 2d 表产品I 售量偏差,则希望-2d 达最小,有,2
2-d p 相应的目标约束 以d 3、d 4表两车间生产工时偏差,则由于充分利用,故希望--43
,d d 达最小,考虑到费用比例为80:20=4:1,有)4(433--+d d p .相应的目标约束应为
12023321=-+++-d d x x 和+--++44213d d x x =150,
以d 5表甲车间加班偏差,则有
,54+d p 相应目标约束为 20553=-++-+d d d ,
以d 6表产品Ⅱ售量偏差,则希望-6d 达最小,有相应约束为
80662=-++-d d x .
最后优先级p 6可利用+++43
d d 表示,考虑到权系数,有),4(436+++d d p 其目标约束由于利用超生产工时,已在工时限制中体现,于是得到该问题的目标规划模型为
5.最小树问题
一个图中若有几个顶点及其边的交替序列形成闭回路,我们就说这个图有圈;若图中所有连顶点间都有边相接,就称该图是连通的;若两个顶点间有不止一条边连接,则称该图具有多重边.
一个图被称为是树.
意味着该图是连通的无圈的简单图. 在具有相同顶点的树中,总赋权数最小的树称为最小树.
最小树的求法有两种,一种称为“避圈法”,一种是“破圈法”,两法各具优缺点,它们具有共同的特征——去掉图中的圈并且每次都是去掉圈中边权较大的边.
6.最短路问题的数学模型
最短路问题一般描述如下:在一个图(或者说网络)中,给定一个始点v s 和一个终点v t ,求v s 到v t 的一条路,使路长最短(即路的各边权数之和最小).
售出量
两车间总工
狄克斯屈()双标号法
该法亦称双标号法,适用于所有权数均为非负(即一切0≥ij w w ij 表示顶点v i 与v j 的边的权数)的网络,能够求出网络的任一点v s 到其它各点的最短路,为目前求这类网络最短路的最好算法.
该法在施行中,对每一个点v j 都要赋予一个标号,并分为固定标号P (v j )和临时标号T (v j )两种,其含义如下: P (v j )——从始点v s 到v j 的最短路长;
T (v j )——从始点v s 到v j 的最短路长上界.
一个点v j 的标号只能是上述两种标号之一.若为T 标号,则需视情况修改,而一旦成为P 标号,就固定不变了. 开始先给始点v s 标上P 标号0,然后检查点v s ,对其一切关联边(v s , v j )的终点v j ,给出v j 的T 标号w ij ;再在网络的已有T 标号中选取最小者,把它改为P 标号.以后每次都检查刚得到P 标号那点,按一定规则修改其一切关联边终点的T 标号,再在网络的所有T 标号中选取最小者并把它改为P 标号.这样,每次都把一个T 标号点改为P 标号点,因为网络中总共有n 个结点,故最多只需n -1次就能把终点v t 改为P 标号.这意味着已求得了v s 到v t 的最短路. 狄克斯屈标号法的计算步骤如下:
1°令S ={v s }为固定标号点集,}{\s v V S =为临时标号点集,再令0)(=i v P ,S v t ∈;
2°检查点v i ,对其一切关联边(v i , v j )的终点S v j
∈,计算并令 3°从一切S v j ∈中选取并令
选取相应的弧(v i , v r ).再令
4°若∅=S ,则停止,)(j v P 即v s 到v j 的最短路长,特别)(t v P 即v s 到v t 的最短路长,而已选出的弧即给
出v s 到各点的最短路;否则令i r
v v ⇒,返2°. 注意:若只要求v s 到某一点v t 的最短路,而没要求v s 到其他各点的最短路,则上述步骤4°可改为
4°若r = t 则结束,)(r v P 即为所求最短路长;否则令i r v v ⇒,返2°.。

相关文档
最新文档