高中数学一轮复习 函数与方程
高考数学(文)一轮复习课件:1-9函数与方程(人教A版)

高考考点预览
■ ·考点梳理· ■ 1. 函数的零点 (1)函数零点的定义 对于函数y=f(x),我们把使f(x)=0的实数x叫做函数 y=f(x)的零点. (2)几个等价关系 方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交 点⇔函数y=f(x)有零点.
思考:上述等价关系在研究函数零点、方程的根及 图象交点问题时有什么作用?
思考:若函数y=f(x)在区间(a,b)内有零点,则y= f(x)在区间[a,b]上的图象是否一定是连续不断的一条曲 线,且有f(a)·f(b)<0呢?
提示:不一定.由图(1)、(2)可知.
3.二分法 (1)二分法的定义 对于在区间[a,b]上连续不断且ff((aa))··ff((bb)<0 的函数y= f(x),通过不断地把函数f(x)的零点所在的区间一分为二 , 使区间的两端点逐步逼近零点,进而得到零点的近似值 的方法叫做二分法. (2)用二分法求函数零点近似解的步骤 第一步:确定区间[a,b],验证f(a)·f(b)<0 ,给定精 确度ε;
观察图象可以发现它们有4个交点,即函数y=f(x)- log3|x|有4个零点.
3. [2012·徐州模拟]根据下面表格中的数据,可以判
定方程ex-x-2=0的一个根所在的区间为________.
x
-1 0 1 2
3
ex 0.37 1 2.72 7.39 20.09
x+2 1 2 3 4
5
答案:(1,2)
3. 二分法是求方程的根的近似值的一种计算方法.其 实质是通过不断地“取中点”来逐步缩小零点所在的范 围,当达到一定的精确度要求时,所得区间的任一点就是 这个函数零点的近似值.
4. 要熟练掌握二分法的解题步骤,尤其是初始区间的 选取和最后精确度的判断.
高考数学一轮复习 基本初等函数、函数与方程及函数的应用专题训练(1)

基本初等函数、函数与方程及函数的应用一、基础知识要记牢指数函数y =a x(a >0,a ≠1)与对数函数y =log a x (a >0,a ≠1)的图像和性质,分0<a <1,a >1两种情况,当a >1时,两函数在定义域内都为增函数,当0<a <1时,两函数在定义域内都为减函数.二、经典例题领悟好[例1] (1)(2012·四川高考)函数y =a x-1a(a >0,且a ≠1)的图像可能是( )(2)(2013·全国卷Ⅱ)设a =log 36,b =log 510,c =log 714,则( ) A .c >b >a B .b >c >a C .a >c >b D .a >b >c[解析] (1)当x =-1时,y =1a -1a =0,所以函数y =a x-1a的图像必过定点(-1,0),结合选项可知选D.(2)a =log 36=log 33+log 32=1+log 32, b =log 510=log 55+log 52=1+log 52, c =log 714=log 77+log 72=1+log 72, ∵log 32>log 52>log 72,∴a >b >c . [答案] (1)D (2)D比较指数函数值、对数函数值、幂函数值大小有三种方法:一是根据同类函数的单调性进行比较;二是采用中间值0或1等进行比较;三是将对数式转化为指数式,或将指数式转化为对数式,通过转化进行比较. 三、预测押题不能少1.(1)函数y =x -x 13的图像大致为( )解析:选A 函数y =x -x 13为奇函数.当x >0时,由x -x 13>0,即x 3>x ,可得x 2>1,故x >1,结合选项,选A. (2)若x ∈(e-1,1),a =ln x ,b =⎝ ⎛⎭⎪⎫12ln x ,c =e ln x,则a ,b ,c 的大小关系为( )A .c >b >aB .b >c >aC .a >b >cD .b >a >c解析:选B 依题意得a =ln x ∈(-1,0),b =⎝ ⎛⎭⎪⎫12ln x ∈(1,2),c =x ∈(e -1,1),因此b >c >a .一、基础知识要记牢确定函数零点的常用方法:(1)解方程判定法,方程易解时用此法; (2)利用零点存在的判定定理;(3)利用数形结合,尤其是那些方程两端对应的函数类型不同时多以数形结合法求解. 二、经典例题领悟好[例2] (1)函数f (x )=2x+3x 的零点所在的一个区间是( ) A .(-2,-1) B .(-1,0) C .(0,1) D .(1,2)(2)已知函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,log 2x ,x >0,则函数y =f [f (x )+1]的零点个数是( )A .2B .3C .4D .5[解析] (1)由f (-1)=12-3<0,f (0)=1>0及零点定理,知f (x )的零点在区间(-1,0)上.(2)当f (x )=0时,x =-1或x =1,故f [f (x )+1]=0时,f (x )+1=-1或1.当f (x )+1=-1,即f (x )=-2时,解得x =-3或x =14;当f (x )+1=1,即f (x )=0时,解得x =-1或x =1.故函数y =f [f (x )+1]有四个不同的零点. [答案] (1)B (2)C函数的零点、方程的根,都可以转化为函数图像与x 轴的交点,数形结合法是解决函数零点、方程根的分布、零点个数、方程根的个数的一个有效方法.在解决函数零点问题时,既要注意利用函数的图像,也要注意根据函数的零点存在性定理、函数的性质等进行相关的计算,把数与形紧密结合起来. 三、预测押题不能少2.若函数f (x )=⎩⎪⎨⎪⎧2x-a ,x ≤0ln x ,x >0有两个不同的零点,则实数a 的取值范围是________.解析:当x >0时,由f (x )=ln x =0,得x =1.因为函数f (x )有两个不同的零点,则当x ≤0时,函数f (x )=2x -a 有一个零点,令f (x )=0得a =2x ,因为0<2x ≤20=1,所以0<a ≤1,所以实数a 的取值范围是0<a ≤1. 答案:(0,1]一、经典例题领悟好[例3] 某企业为打入国际市场,决定从A ,B 两种产品中只选择一种进行投资生产.已知投资生产这两种产品的有关数据如表:(单位:万美元)其中年固定成本与年生产的件数无关,为待定常数,其值由生产产品的原材料价格决定,预计m ∈[6,8].另外,年销售x 件B 产品时需上交0.05x 2万美元的特别关税.假设生产出来的产品都能在当年销售出去.(1)写出该厂分别投资生产A ,B 两种产品的年利润y 1,y 2与生产相应产品的件数x 之间的函数关系并指明其定义域;(2)如何投资最合理(可获得最大年利润)?请你做出规划.[解] (1)由年销售量为x 件,按利润的计算公式,有生产A ,B 两产品的年利润y 1,y 2分别为y 1=10x -(20+mx )=(10-m )x -20(x ∈N,0≤x ≤200),y 2=18x -(8x +40)-0.05x 2=-0.05x 2+10x -40(x ∈N,0≤x ≤120).(2)因为6≤m ≤8,所以10-m >0,函数y 1=(10-m )x -20在[0,200]上是增函数,所以当x =200时,生产A 产品有最大利润,且y 1max =(10-m )×200-20=1 980-200m (万美元).又y 2=-0.05(x -100)2+460(x ∈N,0≤x ≤120),所以当x =100时,生产B 产品有最大利润,且y 2max =460(万美元). 因为y 1max -y 2max =1 980-200m -460 =1 520-200m ⎩⎪⎨⎪⎧>0,6≤m <7.6,=0,m =7.6,<0,7.6<m ≤8.所以当6≤m <7.6时,可投资生产A 产品200件;当m =7.6时,生产A 产品或生产B 产品均可(投资生产A 产品200件或生产B 产品100件);当7.6<m ≤8时,可投资生产B 产品100件.解决函数实际应用题的关键有两点:一是认真读题,缜密审题,确切理解题意,明确问题的实际背景,然后进行科学地抽象概括,将实际问题归纳为相应的数学问题;二是要合理选取参变量,设定变量之后,就要寻找它们之间的内在联系,选用恰当的代数式表示问题中的关系,建立相应的函数模型,最终求解数学模型使实际问题获解. 二、预测押题不能少3.某集团为了获得更大的利润,每年要投入一定的资金用于广告促销.经调查,每年投入广告费t (百万元)可增加销售额约为-t 2+5t (百万元)(0≤t ≤3).(1)若该集团将当年的广告费控制在三百万元以内,则应投入多少广告费,才能使集团由广告费而产生的收益最大?(2)现在该集团准备投入三百万元,分别用于广告促销和技术改造.经预算,每投入技术改造费x (百万元),可增加的销售额约为-13x 3+x 2+3x (百万元).请设计一个资金分配方案,使该集团由这两项共同产生的收益最大.解:(1)设投入广告费t (百万元)后由此增加的收益为f (t )(百万元), 则 f (t )=(-t 2+5t )-t =-t 2+4t =-(t -2)2+4(0≤t ≤3). 所以当t =2时,f (t )max =4,即当集团投入两百万元广告费时,才能使集团由广告费而产生的收益最大.(2)设用于技术改造的资金为x (百万元),则用于广告的费用为(3-x )(百万元),则由此两项所增加的收益为g (x )=⎝ ⎛⎭⎪⎫-13x 3+x 2+3x +[-(3-x )2+5(3-x )]-3=-13x 3+4x +3(0≤x ≤3). 对g (x )求导,得g ′(x )=-x 2+4,令g ′(x )=-x 2+4=0, 得x =2或x =-2(舍去).当0≤x <2时,g ′(x )>0,即g (x )在[0,2)上单调递增; 当2<x ≤3时,g ′(x )<0,即g (x )在(2,3]上单调递减. ∴当x =2时,g (x )max =g (2)=253.故在三百万元资金中,两百万元用于技术改造,一百万元用于广告促销,这样集团由此所增加的收益最大,最大收益为253百万元.函数的性质与零点的交汇函数零点(方程的根)的问题,常见的类型有: (1)零点或零点存在区间的确定; (2)零点个数的确定;(3)利用零点求参数范围问题.函数的性质与零点的交汇问题成为新的命题点. 一、经典例题领悟好[例] (2012·湖南高考)设定义在R 上的函数f (x )是最小正周期为2π的偶函数,f ′(x )是f (x )的导函数,当x ∈[0,π]时,0<f (x )<1;当x ∈(0,π)且x ≠π2时,(x -π2)f ′(x )>0.则函数y =f (x )-sin x 在[-2π,2π]上的零点个数为( )A .2B .4C .5D .8学审题——审结论之逆向分析函数y =f (x )-sin x 的零点――→转化 y =f (x )与y =sin x 图像交点――→作用 f (x )的范围――――→函数f x的性质确定f ′(x )的正负――――→分类讨论 ⎝ ⎛⎭⎪⎫x -π2·f ′(x )>0. 用“思想”——尝试用“转化与化归思想”解题∵⎝⎛⎭⎪⎫x -π2f ′(x )>0,x ∈(0,π)且x ≠π2,∴当0<x <π2时,f ′(x )<0,f (x )在⎝ ⎛⎭⎪⎫0,π2上单调递减.当π2<x <π时,f ′(x )>0,f (x )在⎝ ⎛⎭⎪⎫π2,π上单调递增.∵当x ∈[0,π]时,0<f (x )<1.∴当x ∈[π,2π],则0≤2π-x ≤π. 又f (x )是以2π为最小正周期的偶函数, 知f (2π-x )=f (x ).∴x ∈[π,2π]时,仍有0<f (x )<1.依题意及y =f (x )与y =sin x 的性质,在同一坐标系内作y =f (x )与y =sin x 的简图.则y =f (x )与y =sin x 在x ∈[-2π,2π]有4个交点. 故函数y =f (x )-sin x 在[-2π,2π]上有4个零点. [答案] B1本题在求解时,用了转化与化归、数形结合、分类讨论思想.个别学生不会利用题设条件判定y =f x 的值域以及函数y =f x 图像的变化趋势,导致求解受阻. 2函数与方程应用转化与化归的常见类型①判断函数零点个数常转化为两函数的图像交点.②由函数的零点情况确定参数范围,常转化为利用函数图像求解. ③方程根的讨论转化为函数零点的问题. 二、预测押题不能少函数y =f (x )满足f ⎝ ⎛⎭⎪⎫x +54=-f ⎝ ⎛⎭⎪⎫x -54,当x ∈[-1,4]时,f (x )=x 2-2x ,则f (x )在区间[0,2012]上零点的个数为( )A .2 011B .2 012C .1 026D .1 027解析:选D 根据f ⎝ ⎛⎭⎪⎫x +54=-f ⎝ ⎛⎭⎪⎫x -54,可得f ⎝⎛⎭⎪⎫x +52=-f (x ),进而得f (x +5)=f (x ),即函数y =f (x )是以5为周期的周期函数.当x ∈[-1,4]时,f (x )=x 2-2x,在[-1,0]内有一个零点,在(0,4]内有x 1=2,x 2=4两个零点,故在一个周期内函数有三个零点.又因为2 012=402×5+2,故函数在区间[0,2 010]内有402×3=1 206个零点,在区间(2 010,2 012]内的零点个数与在区间(0,2]内零点的个数相同,即只有一个零点,所以函数f (x )在[0,2 012]上零点的个数为1 207.1.(2013·广州惠州调研)已知幂函数y =f (x )的图像过点⎝ ⎛⎭⎪⎫12,22,则log 4f (2)的值为( )A.14 B .-14 C .2 D .-2解析:选A 设f (x )=x a,由其图像过点⎝ ⎛⎭⎪⎫12,22得⎝ ⎛⎭⎪⎫12a =22=⎝ ⎛⎭⎪⎫1212⇒a =12,故log 4f (2)=log 4212=14.2.(2013·陕西高考)设a ,b ,c 均为不等于1的正实数, 则下列等式中恒成立的是( ) A .log a b ·log c b =log c a B .log a b ·log c a =log c b C .log a (bc )=log a b ·log a c D .log a (b +c )=log a b +log a c解析:选B 利用对数的换底公式进行验证,log a b ·log c a =log c blog c a ·log c a =log c b ,则B 对.3.(2013·河北质检)若f (x )是奇函数,且x 0是y =f (x )+e x的一个零点,则-x 0一定是下列哪个函数的零点( )A .y =f (-x )e x -1B .y =f (x )e -x+1C .y =e x f (x )-1D .y =e xf (x )+1解析:选C 由已知可得f (x 0)=-e x 0,则e -x 0f (x 0)=-1,e -x 0f (-x 0)=1,故-x 0一定是y =e xf (x )-1的零点.4.(2013·天津一中模拟)设a =⎝ ⎛⎭⎪⎫340.5,b =⎝ ⎛⎭⎪⎫430.4,c =log 34(log 34),则( )A .c <b <aB .a <b <cC .c <a <bD .a <c <b解析:选C 由题意得0<a <1,b >1,而log 34>1,c =log 34(log 34),得c <0,故c <a <b .5.下列区间中,函数f (x )=|ln(2-x )|在其上为增函数的是( ) A .(-∞,1] B.⎣⎢⎡⎦⎥⎤-1,43 C.⎣⎢⎡⎭⎪⎫0,32D .[1,2)解析:选D 法一:当2-x >1,即x <1时,f (x )=|ln(2-x )|=ln(2-x ),此时函数f (x )在(-∞,1]上单调递减.当0<2-x ≤1,即1≤x <2时,f (x )=|ln(2-x )|=-ln(2-x ),此时函数f (x )在[1,2)上单调递增,故选D. 法二:f (x )=|ln(2-x )|的图像如图所示.由图像可得,函数f (x )在区间[1,2)上为增函数,故选D.6.(2013·东北三校联合模拟)已知函数f (x )=⎩⎪⎨⎪⎧a ·2x,x ≤0,log 12x ,x >0.若关于x 的方程f (f (x ))=0有且仅有一个实数解,则实数a 的取值范围是( )A .(-∞,0)B .(-∞,0)∪(0,1)C .(0,1)D .(0,1)∪(1,+∞)解析:选B 若a =0,当x ≤0时,f (x )=0,故f (f (x ))=f (0)=0有无数解,不符合题意,故a ≠0.显然当x ≤0时,a ·2x≠0,故f (x )=0的根为1,从而f (f (x ))=0有唯一根,即为f (x )=1有唯一根.而x >0时,f (x )=1有唯一根12,故a ·2x=1在(-∞,0]上无根,当a ·2x =1在(-∞,0]上有根可得a =12x ≥1,故由a ·2x =1在(-∞,0]上无根可知a <0或0<a <1. 7.已知a =5-22,函数f (x )=a x,若实数m ,n 满足f (m )>f (n ),则m ,n 的大小关系为________. 解析:由题意知,a =5-22∈(0,1),故函数f (x )=a x是减函数,由f (m )>f (n )得m <n . 答案:m <n 8.(2013·陕西高考)在如图所示的锐角三角形空地中, 欲建一个面积最大的内接矩形花园(阴影部分), 则其边长x 为________(m).解析:如图,过A 作AH ⊥BC 于H ,交DE 于F ,易知DE BC =x 40=AD AB =AF AH ⇒AF =x ⇒FH =40-x .则S =x (40-x )≤x +40-x 22=⎝ ⎛⎭⎪⎫4022,当且仅当40-x =x ,即x =20时取等号.所以满足题意的边长x 为20(m).答案:209.(2013·江苏扬州中学期中)已知函数f (x )=⎩⎪⎨⎪⎧ -x 2+ax ,x ≤1,ax -1,x >1,若∃x 1,x 2∈R ,x 1≠x 2,使得f (x 1)=f (x 2)成立,则实数a 的取值范围是________.解析:由已知∃x 1,x 2∈R ,x 1≠x 2,使得f (x 1)=f (x 2)成立,则需x ≤1时,f (x )不单调即可,即对称轴a 2<1,解得a <2. 答案:a <210.已知函数f (x )=-x 2+2e x +m -1,g (x )=x +e 2x(x >0). (1)若g (x )=m 有零点,求m 的取值范围;(2)确定m 的取值范围,使得g (x )-f (x )=0有两个相异实根.解:(1)∵g (x )=x +e 2x ≥2e 2=2e(x >0), 当且仅当x =e 2x时取等号. ∴当x =e 时,g (x )有最小值2e.因此g (x )=m 有零点,只需m ≥2e.∴m ∈[2e ,+∞).(2)若g (x )-f (x )=0有两个相异实根,则函数g (x )与f (x )的图像有两个不同的交点.如图所示,作出函数g (x )=x +e 2x(x >0)的大致图像. ∵f (x )=-x 2+2e x +m -1=-(x -e)2+m -1+e 2,∴其对称轴为x =e ,f (x )max =m -1+e 2.若函数f (x )与g (x )的图像有两个交点,必须有m -1+e 2>2e ,即m >-e 2+2e +1.即g (x )-f (x )=0有两个相异实根,则m 的取值范围是(-e 2+2e +1,+∞).11.某服装厂生产一种服装,每件服装的成本为40元,出厂单价定为60元,该厂为鼓励销售商订购,决定当一次订购量超过100件时,每多订购一件,订购的全部服装的出场单价就降低0.02元,根据市场调查,销售商一次订购量不会超过600件.(1)设一次订购x 件,服装的实际出厂单价为p 元,写出函数p =f (x )的表达式;(2)当销售商一次订购多少件服装时,该厂获得的利润最大?其最大利润是多少? 解:(1)当0<x ≤100时,p =60;当100<x ≤600时,p =60-(x -100)×0.02=62-0.02x .所以p =⎩⎪⎨⎪⎧ 60, 0<x ≤100,62-0.02x , 100<x ≤600.(2)设利润为y 元,则当0<x ≤100时,y =60x -40x =20x ;当100<x ≤600时,y =(62-0.02x )x -40x =22x -0.02x 2.所以y =⎩⎪⎨⎪⎧ 20x , 0<x ≤100,22x -0.02x 2, 100<x ≤600.当0<x ≤100时,y =20x 是单调增函数,当x =100时,y 最大,此时y =20×100=2 000; 当100<x ≤600时,y =22x -0.02x 2=-0.02(x -550)2+6 050,所以当x =550时,y 最大,此时y =6 050.显然6 050>2 000.所以当一次订购550件时,利润最大,最大利润为6 050元.12.(2013·江西七校联考)已知函数f (x )=log 4(4x +1)+kx (k ∈R )为偶函数.(1)求k 的值;(2)若方程f (x )=log 4(a ·2x -a )有且只有一个根,求实数a 的取值范围.解:(1)∵f (x )为偶函数,∴f (-x )=f (x ),即log 4(4-x +1)-kx =log 4(4x +1)+kx ,即(2k +1)x =0,∴k =-12. (2)依题意令log 4(4x +1)-12x =log 4(a ·2x -a ), 即⎩⎪⎨⎪⎧ 4x +1=a ·2x -a ·2x ,a ·2x -a >0.令t =2x ,则(1-a )t 2+at +1=0,只需其有一正根即可满足题意.①当a =1时,t =-1,不合题意,舍去.②上式有一正一负根t 1,t 2,即⎩⎪⎨⎪⎧ Δ=a 2-41-a >0,t 1t 2=11-a <0,经验证满足a ·2x-a >0,∴a >1. ③上式有两根相等,即Δ=0⇒a =±22-2,此时t =a 2a -1,若a =2(2-1),则有t =a 2a -1<0,此时方程(1-a )t 2+at +1=0无正根,故a =2(2-1)舍去; 若a =-2(2+1),则有t =a 2a -1>0,且a · 2x -a =a (t -1)=a ⎣⎢⎡⎦⎥⎤a 2a -1-1=a 2-a 2a -1>0, 因此a =-2(2+1).综上所述,a 的取值范围为{a |a >1或a =-2-22}.。
“函数与方程”一轮复习教学及反思

才 能提取方法. 在学生头脑里有东西 的前 提下 , 可
以放 手 让 学 生 体 验 “ 选 择 方 法——尝 试——失 败—— 再 选 择 …… ” 这一过程 , 从 而在 此 过 程 中逐
步提 高 能力 .
2 . 4 注意 解题 思路 的讲解
因为题 目是千变万化 的 , 永远做不 完 , 不能盲 目地追 求做 多少 题 , 或 只是 机 械地 做 了讲 , 讲 了
题 目.
1 教学 目标要求
( 1 ) 理解函数 ) 的零点即方程 ) = 0的实 数根, 也即 ) 的图像与 轴交点的横坐标 ;
( 2 ) 掌握 求 函数 零 点 、 方程 实 根 的 常用 方 法 , 体 会 数形 结合 、 转化 等数 学思 想 ; ( 3 ) 提高 学生 审题 、 运算 及 分 析 问题 、 解 决 问题 的能力.
《 数学之友》
2 0 1 5年第 1 6期
“ 函数与方程" 一轮复习教学及反思
吴 ; ^ ; 峤 琼 、
( 南京市第 十二 中学 , 2 1 0 0 1 1 )
函数与方程是一种重要的数学思想 , 也是高考 重要考查 内容. 在学生已掌握二次函数性质、 零点存 在性定理及导数等知识 的前提下 , 如何通过一轮复 习使学生进一步强化对函数与方程相互转化的认识
做, 不思 考 不 总结 提高. 我 们要 借 助 题 目这个 载 体, 回到定 义性 质 上来 , 加 深 对知 识 点定 义 的理 解, 同时渗透数学的思想方法 , 很好地去解决新题 目. 一轮复习 中要注重讲思 路 , 寻找 思路 的过 程 , 逐步加深对概念 的理解 , 从而提高学生分析问题 、 解决 问题 的 能力 .
一
第一轮复习11----函数与方程

k , k 1k N , 求k的值。 在的区间为
3
零点位置 若a b c, 则函数f x x a x b x b x c x c x a 的两个零点分
别位于区间( C.b, c 和c, 内 A.a, b 和b, c 内 B.- , a 和a, b 内 ) D.- , a 和c, 内
x
个数为( ) A.1 B.2
C.3
D.4
B
若定义在R上的偶函数f x 满足 f x 2 f x , 且当x 0,1时, ) D.2个 f x x, 则函数y f x log3 | x | 的零点个数是( A.多于4个 B.4个 C.3个
零点个数
3
若函数g x f x loga | x | 至少有5个零 点,则a的取值范围是( A.1,5 1 C. 0, 5, 5 ) 1 B. 0, 5, 5 1 D. ,1 1,5 5
f x 2 f x , 当 - 1 x 1时,f x x ,
5 1 a 4
零点问题的取值范围
1 若存在负实数使得方程 2 a x 1 成立,则实数a的取值范围是( ) A.2, B.0, C.0,2 D.0,1
x
C
零点问题的取值范围
若函数f x a x aa 0且a 1
x
有2个零点,则实数 a的取值范围是__
第一轮复习-函数与方程
上饶中学数学组 俞振
函数的零点:函数 y f x 的图像与x轴的 交点的横坐标。
方程f x 0有实数根 函数y f x 的图像
函数的零点存在性定理 若函数y f x 在区间a, b上的图像是连续曲线, 并且在区间端点的函数 值符号相反即 f a f b 0, 则在区间a, b 内,函数y f x 至少有一个零点,即 相应方程f x 0在区间a, b 内至少有一个实数解。
2025届高中数学一轮复习课件:第三章 第8讲函数与方程(共84张PPT)

高考一轮总复习•数学
第25页
对点练 1(1)(2024·山西临汾模拟)函数 f(x)=log8x-31x的零点所在的区间是(
)
A.(0,1) B.(1,2) C.(2,3) D.(3,4)
(2)已知函数 f(x)=logax+x-b(a>0,且 a≠1).当 2<a<3<b<4 时,函数 f(x)的零点 x0
A.(0,1)
B.(1,2)
C.(2,3)(2)设函数 f(x)=13x-ln x,则函数 y=f(x)( ) A.在区间1e,1,(1,e)内均有零点 B.在区间1e,1(1,e)内均无零点 C.在区间1e,1内有零点,在区间(1,e)内无零点 D.在区间1e,1内无零点,在区间(1,e)内有零点
Δ<0
__无__交__点____ ____无______
第10页
高考一轮总复习•数学
第11页
常/用/结/论 1.有关函数零点的结论 (1)若连续不断的函数 f(x)在定义域上是单调函数,则 f(x)至多有一个零点; (2)连续不断的函数,其相邻两个零点之间的所有函数值保持同号; (3)连续不断的函数图象通过零点时,函数值可能变号,也可能不变号.对于函数来说, 零点有与 x 轴相切的零点. 2.f(a)f(b)<0 是 y=f(x)在闭区间[a,b]上有零点的充分不必要条件.
01 理清教材 强基固本 02 重难题型 全线突破 03 限时跟踪检测
高考一轮总复习•数学
第4页
理清教材 强基固本
高考一轮总复习•数学
第5页
一 函数零点 1.定义:对于函数 y=f(x)(x∈D),把满足___f(_x_)=__0___的实数 x 叫做函数 y=f(x)(x∈D) 的零点.
高考数学一轮复习:函数与方程(Word版,含解析)

函数与方程基础练一、选择题1.[2021·河南濮阳模拟]函数f (x )=ln2x -1的零点所在区间为( )A .(2,3)B .(3,4)C .(0,1)D .(1,2)2.函数f (x )=x 2+ln x -2021的零点个数是( )A .3B .2C .1D .03.根据表中的数据,可以判定方程e x -x -2=0的一个根所在的区间为( )A.(-1,0) B .C .(1,2) D .(2,3)4.[2021·四川绵阳模拟]函数f (x )=2x -2x-a 的一个零点在区间(1,2)内,则实数a 的取值范围是( )A .(1,3)B .(1,2)C .(0,3)D .(0,2)5.[2021·大同调研]已知函数f (x )=⎩⎪⎨⎪⎧ log 2x ,x >03x ,x ≤0,且函数h (x )=f (x )+x -a 有且只有一个零点,则实数a 的取值范围是( )A .[1,+∞)B .(1,+∞)C .(-∞,1)D .(-∞,1]二、填空题6.已知函数f (x )=23x +1+a 的零点为1,则实数a 的值为________. 7.[2021·新疆适应性检测]设a ∈Z ,函数f (x )=e x +x -a ,若x ∈(-1,1)时,函数有零点,则a 的取值个数为________.8.若函数f (x )=⎩⎪⎨⎪⎧2x -a ,x ≤0,ln x ,x >0有两个不同的零点,则实数a 的取值范围是________. 三、解答题9.设函数f (x )=ax 2+bx +b -1(a ≠0).(1)当a =1,b =-2时,求函数f (x )的零点;(2)若对任意b ∈R ,函数f (x )恒有两个不同的零点,求实数a 的取值范围.10.已知函数f (x )=ax 2+bx +c (a ≠0),满足f (0)=2,f (x +1)-f (x )=2x -1.(1)求函数f (x )的解析式;(2)若函数g (x )=f (x )-mx 的两个零点分别在区间(-1,2)和(2,4)内,求m 的取值范围.能力练11.[2021·天津部分区质量调查]已知函数f (x )=若关于x 的方程f (x )=m (m ∈R )恰有三个不同的实数根a ,b ,c ,则a +b +c 的取值范围是( )A.⎝⎛⎭⎫12,1B.⎝⎛⎭⎫34,1C.⎝⎛⎭⎫34,2D.⎝⎛⎭⎫32,212.[2021·长沙市四校高三年级模拟考试]已知函数f (x )=⎩⎪⎨⎪⎧|x 2+2x |,x ≤01x ,x >0,若方程f (x )=a (x +3)有四个不同的实数根,则实数a 的取值范围是( )A .(-∞,4-23)B .(4-23,4+23)C .(0,4-23]D .(0,4-23)13.[2021·山西省六校高三阶段性测试]函数y =5sin ⎝⎛⎭⎫π5x +π5(-15≤x ≤10)的图象与函数y=5(x +1)x 2+2x +2图象的所有交点的横坐标之和为______.参考答案:1.解析:由f (x )=ln2x -1,得函数是增函数,并且是连续函数,f (1)=ln2-1<0,f (2)=ln4-1>0,根据函数零点存在性定理可得,函数f (x )的零点位于区间(1,2)上,故选D.答案:D2.解析:由题意知x >0,由f (x )=0得ln x =2021-x 2,画出函数y =ln x 与函数y =2021-x 2的图象(图略),即可知它们只有一个交点.故选C.答案:C3.解析:设f (x )=e x -(x +2),则f (1)=-0.28<0,f (2)=3.39>0,故方程e x -x -2=0的一个根在区间(1,2)内.故选C.答案:C4.解析:由题意,知函数f (x )在(1,2)上单调递增,又函数的一个零点在区间(1,2)内,所以⎩⎪⎨⎪⎧ f (1)<0,f (2)>0,即⎩⎪⎨⎪⎧-a <0,4-1-a >0,解得0<a <3,故选C 项. 答案:C5.解析:h (x )=f (x )+x -a 有且只有一个零点,即方程f (x )+x -a =0有且只有一个实根,即f (x )=-x +a 有且只有一个实根,即函数y =f (x )的图象与直线y =-x +a 有且只有一个交点.在同一坐标系中作出函数f (x )的图象和直线y =-x +a ,如图所示,若函数y =f (x )的图象与直线y =-x +a 有且只有一个交点,则有a >1,故选B.答案:B 6.解析:由已知得f (1)=0,即231+1+a =0,解得a =-12. 答案:-127.解析:根据函数解析式得到函数f (x )是单调递增的.由零点存在性定理知若x ∈(-1,1)时,函数有零点,需要满足⎩⎪⎨⎪⎧f (-1)<0,f (1)>0⇒1e -1<a <e +1,因为a 是整数,故可得a 的可能取值为0,1,2,3.答案:48.解析:当x >0时,由f (x )=ln x =0,得x =1.因为函数f (x )有两个不同的零点,则当x ≤0时,函数f (x )=2x -a 有一个零点.令f (x )=0,得a =2x .因为0<2x ≤20=1,所以0<a ≤1,所以实数a 的取值范围是(0,1].答案:(0,1]9.解析:(1)当a =1,b =-2时,f (x )=x 2-2x -3,令f (x )=0,得x =3或x =-1. 所以函数f (x )的零点为3和-1.(2)依题意,f (x )=ax 2+bx +b -1=0有两个不同的实根,所以b 2-4a (b -1)>0恒成立,即对于任意b ∈R ,b 2-4ab +4a >0恒成立,所以有(-4a )2-4×(4a )<0⇒a 2-a <0,解得0<a <1,因此实数a 的取值范围是(0,1).10.解析:(1)由f (0)=2得c =2,又f (x +1)-f (x )=2x -1,得2ax +a +b =2x -1,故⎩⎪⎨⎪⎧2a =2,a +b =-1,解得a =1,b =-2,所以f (x )=x 2-2x +2. (2)g (x )=x 2-(2+m )x +2,若g (x )的两个零点分别在区间(-1,2)和(2,4)内,则满足⎩⎪⎨⎪⎧ g (-1)>0,g (2)<0,g (4)>0⇒⎩⎪⎨⎪⎧ 5+m >0,2-2m <0,10-4m >0,解得1<m <52.所以m 的取值范围为⎝⎛⎭⎫1,52. 11.解析:假设a <b <c ,通过作图可得a ∈⎝⎛⎭⎫-12,0,b +c =2,所以a +b +c ∈⎝⎛⎭⎫32,2,故选D 项.答案:D12.解析:方程f (x )=a (x +3)有四个不同的实数根可化为函数y =f (x )与y =a (x +3)的图象有四个不同的交点,易知直线y =a (x +3)恒过点(-3,0),作出函数y =f (x )的大致图象如图所示,结合函数图象,可知a >0且直线y =a (x +3)与曲线y =-x 2-2x ,x ∈[-2,0]有两个不同的公共点,所以方程x 2+(2+a )x +3a =0在[-2,0]上有两个不等的实数根,令g (x )=x 2+(2+a )x +3a ,则实数a 满足⎩⎪⎨⎪⎧ Δ=(2+a )2-12a >0-2<-2+a 2<0g (0)=3a ≥0g (-2)=a ≥0,解得0≤a <4-23,又a >0,所以实数a 的取值范围是(0,4-23),故选D.答案:D 13.解析:函数y =5sin ⎝⎛⎭⎫π5x +π5(x ∈R )的图象关于点(-1,0)对称.对于函数y =5(x +1)x 2+2x +2,当x =-1时,y =0,当x ≠-1时,易知函数y =5(x +1)x 2+2x +2=5x +1+1x +1在(-1,0)上单调递增,在(0,+∞)上单调递减,且当x ∈(-1,+∞)时,y =5(x +1)x 2+2x +2的最大值为52,函数图象关于点(-1,0)对称.对于函数y =5sin ⎝⎛⎭⎫π5x +π5,当x =0时,y =5sin π5>5sin π6=52,所以在(-1,0)内两函数图象有一个交点.根据两函数图象均关于点(-1,0)对称.可知两函数图象的交点关于点(-1,0)对称,画出两函数在[-15,10]上的大致图象,如图,得到所有交点的横坐标之和为-1+(-2)×3=-7.答案:-7。
高考数学一轮复习讲义: 第二章 函数 2.5 幂函数、函数与方程讲义

§2.5幂函数、函数与方程考纲解读考点内容解读要求五年高考统计常考题型预测热度2013 2014 2015 2016 20171.二次函数与幂函数1.二次函数的图象与性质2.幂函数的概念B13题5分填空题解答题★★★2.函数的零点与方程的根1.求函数零点2.由函数零点求参数B13题5分填空题解答题★★★分析解读二次函数的图象与性质和函数零点问题是江苏高考的热点内容,试题一般难度较大,综合性较强.五年高考考点一二次函数与幂函数1.(2016课标全国Ⅲ理改编,6,5分)已知a=,b=,c=2,则a,b,c的大小关系是(用<连接).答案b<a<c2.(2015四川改编,9,5分)如果函数f(x)=(m-2)x2+(n-8)x+1(m≥0,n≥0)在区间上单调递减,那么mn的最大值为.答案183.(2014辽宁,16,5分)对于c>0,当非零实数a,b满足4a2-2ab+4b2-c=0且使|2a+b|最大时,-+的最小值为.答案-24.(2013辽宁理改编,11,5分)已知函数f(x)=x2-2(a+2)x+a2,g(x)=-x2+2(a-2)x-a2+8.设H1(x)=max{f(x),g(x)},H2(x)=min{f(x),g(x)}(max{p,q}表示p,q中的较大值,min{p,q}表示p,q中的较小值).记H1(x)的最小值为A,H2(x)的最大值为B,则A-B=.答案-165.(2013江苏,13,5分)在平面直角坐标系xOy中,设定点A(a,a),P是函数y=(x>0)图象上一动点.若点P,A之间的最短距离为2,则满足条件的实数a的所有值为.答案-1,教师用书专用(6—7)6.(2014浙江改编,7,5分)在同一直角坐标系中,函数f(x)=x a(x>0),g(x)=log a x的图象可能是(填序号).答案④7.(2015浙江,18,15分)已知函数f(x)=x2+ax+b(a,b∈R),记M(a,b)是|f(x)|在区间[-1,1]上的最大值.(1)证明:当|a|≥2时,M(a,b)≥2;(2)当a,b满足M(a,b)≤2时,求|a|+|b|的最大值.解析(1)证明:由f(x)=+b-,得f(x)图象的对称轴为直线x=-.由|a|≥2,得≥1,故f(x)在[-1,1]上单调,所以M(a,b)=max{|f(1)|,|f(-1)|}.当a≥2时,由f(1)-f(-1)=2a≥4,得max{f(1),-f(-1)}≥2,即M(a,b)≥2.当a≤-2时,由f(-1)-f(1)=-2a≥4,得max{f(-1),-f(1)}≥2,即M(a,b)≥2.综上,当|a|≥2时,M(a,b)≥2.(2)由M(a,b)≤2得|1+a+b|=|f(1)|≤2,|1-a+b|=|f(-1)|≤2,故|a+b|≤3,|a-b|≤3,由|a|+|b|=得|a|+|b|≤3.当a=2,b=-1时,|a|+|b|=3,且|x2+2x-1|在[-1,1]上的最大值为2,即M(2,-1)=2.所以|a|+|b|的最大值为3.考点二函数的零点与方程的根1.(2017山东理改编,10,5分)已知当x∈[0,1]时,函数y=(mx-1)2的图象与y=+m的图象有且只有一个交点,则正实数m的取值范围是.答案(0,1]∪[3,+∞)2.(2016山东,15,5分)已知函数f(x)=其中m>0.若存在实数b,使得关于x的方程f(x)=b有三个不同的根,则m的取值范围是.答案(3,+∞)3.(2016天津,14,5分)已知函数f(x)=(a>0,且a≠1)在R上单调递减,且关于x的方程|f(x)|=2-恰有两个不相等的实数解,则a的取值范围是.答案4.(2015北京,14,5分)设函数f(x)=①若a=1,则f(x)的最小值为;②若f(x)恰有2个零点,则实数a的取值范围是.答案①-1 ②∪[2,+∞)5.(2015天津改编,8,5分)已知函数f(x)=函数g(x)=b-f(2-x),其中b∈R.若函数y=f(x)-g(x)恰有4个零点,则b的取值范围是.答案6.(2015湖南,15,5分)已知函数f(x)=若存在实数b,使函数g(x)=f(x)-b有两个零点,则a的取值范围是.答案(-∞,0)∪(1,+∞)7.(2014江苏,13,5分)已知f(x)是定义在R上且周期为3的函数,当x∈[0,3)时, f(x)=.若函数y=f(x)-a在区间[-3,4]上有10个零点(互不相同),则实数a的取值范围是.答案8.(2014天津,14,5分)已知函数f(x)=|x2+3x|,x∈R.若方程f(x)-a|x-1|=0恰有4个互异的实数根,则实数a 的取值范围为.答案(0,1)∪(9,+∞)9.(2013安徽理改编,10,5分)若函数f(x)=x3+ax2+bx+c有极值点x1,x2,且f(x1)=x1,则关于x的方程3(f(x))2+2af(x)+b=0的不同实根个数是.答案 3教师用书专用(10—11)10.(2017课标全国Ⅲ理改编,11,5分)已知函数f(x)=x2-2x+a(e x-1+e-x+1)有唯一零点,则a=.答案11.(2013安徽理,20,13分)设函数f n(x)=-1+x+++…+(x∈R,n∈N*).证明:(1)对每个n∈N*,存在唯一的x n∈,满足f n(x n)=0;(2)对任意p∈N*,由(1)中x n构成的数列{x n}满足0<x n-x n+p<.证明(1)对每个n∈N*,当x>0时, f 'n(x)=1++…+>0,故f n(x)在(0,+∞)内单调递增.由于f1(1)=0,当n≥2时, f n(1)=++…+>0,故f n(1)≥0.又f n=-1++≤-+=-+·=-·<0,所以存在唯一的x n∈,满足f n(x n)=0.(2)当x>0时, f n+1(x)=f n(x)+>f n(x),故f n+1(x n)>f n(x n)=f n+1(x n+1)=0.由f n+1(x)在(0,+∞)内单调递增知,x n+1<x n.故{x n}为单调递减数列.从而对任意n,p∈N*,x n+p<x n.对任意p∈N*,由于f n(x n)=-1+x n++…+=0,①f n+p(x n+p)=-1+x n+p++…+++…+=0,②①式减去②式并移项,利用0<x n+p<x n≤1,得x n-x n+p=+≤≤<=-<.因此,对任意p∈N*,都有0<x n-x n+p<.三年模拟A组2016—2018年模拟·基础题组考点一二次函数与幂函数1.(2018江苏常熟高三期中调研)已知幂函数y=(m∈N*)在(0,+∞)上是增函数,则实数m的值是. 答案 12.(2018江苏东台安丰高级中学月考)已知幂函数y=f(x)的图象过点,则log2f(8)=.答案3.(2018江苏海安中学阶段测试)若幂函数f(x)=xα的图象经过点,则其单调减区间为.答案(0,+∞)4.(苏教必1,三,3,2,变式)设α∈,则使函数y=xα的定义域为R且为奇函数的所有α值为.答案1,35.(2016江苏淮阴中学期中)下列幂函数:①y=;②y=x-2;③y=;④y=,其中既是偶函数,又在区间(0,+∞)上单调递增的函数是.(填相应函数的序号)答案③考点二函数的零点与方程的根6.(2018江苏金陵中学高三月考)记函数y=ln x+2x-6的零点为x0,若k满足k≤x0且k为整数,则k的最大值为.答案 27.(2018江苏姜堰中学高三期中)函数f(x)=log2(3x-1)的零点为.答案8.(2018江苏东台安丰高级中学月考)若函数f(x)=在其定义域上恰有两个零点,则正实数a的值为.答案 e9.(2018江苏扬州中学月考)方程xlg(x+2)=1有个不同的实数根.答案 210.(2018江苏天一中学调研)已知函数f(x)=若函数g(x)=f(x)-k有三个零点,则k的取值范围是.答案11.(苏教必1,三,4,2,变式)函数f(x)=2x|log0.5 x|-1的零点个数为.答案 212.(苏教必1,三,4,8,变式)若函数f(x)=(m-2)x2+mx+(2m+1)的两个零点分别在区间(-1,0)和区间(1,2)内,则m 的取值范围是.答案13.(2017江苏苏州期中,9)已知函数f(x)=若函数g(x)=f(x)-m有三个零点,则实数m的取值范围是.答案14.(2016江苏泰州中学质检,10)关于x的一元二次方程x2+2(m+3)x+2m+14=0有两个不同的实根,且一根大于3,一根小于1,则m的取值范围是.答案B组2016—2018年模拟·提升题组(满分:35分时间:20分钟)一、填空题(每小题5分,共20分)1.(2017江苏苏州学情调研,11)已知函数f(x)=若关于x的方程f(x)=k(x+1)有两个不同的实数根,则实数k的取值范围是.答案2.(2017南京、盐城第二次模拟考试,12)若函数f(x)=x2-mcos x+m2+3m-8有唯一零点,则满足条件的实数m组成的集合为.答案{2}3.(2017江苏苏北四市期末,14)已知函数f(x)=若函数f(x)的图象与直线y=x有三个不同的公共点,则实数a的取值范围为.答案{a|-20<a<-16}4.(2016江苏淮阴中学期中,10)已知关于x的一元二次方程x2-2ax+a+2=0的两个实数根是α,β,且有1<α<2<β<3,则实数a的取值范围是.答案二、解答题(共15分)5.(2017江苏泰州二中期初,20)设函数f(x)=x2+ax+b(a,b∈R).(1)当b=+1时,求函数f(x)在[-1,1]上的最小值g(a)的表达式;(2)已知函数f(x)在[-1,1]上存在零点,0≤b-2a≤1,求b的取值范围.解析(1)当b=+1时,f(x)=+1,图象的对称轴为x=-,当a<-2时,->1,函数f(x)在[-1,1]上递减,则g(a)=f(1)=+a+2;当-2≤a≤2时,-1≤-≤1,g(a)=f=1;当a>2时,-<-1,函数f(x)在[-1,1]上递增,则g(a)=f(-1)=-a+2.综上可得,g(a)=(2)设s,t是方程f(x)=0的解,且-1≤t≤1,则由于0≤b-2a≤1,故≤s≤(-1≤t≤1),当0≤t≤1时,≤st≤.易知-≤≤0,-≤≤9-4,所以-≤b≤9-4;当-1≤t<0时,≤st≤,由于-2≤<0,-3≤<0,所以-3≤b<0,故b的取值范围是[-3,9-4].C组2016—2018年模拟·方法题组方法1 判断函数零点个数的常用方法1.(2016江苏扬州中学月考)偶函数f(x)满足f(x-1)=f(x+1),且当x∈[0,1]时,f(x)=-x+1,则关于x的方程f(x)=lg(x+1)在x∈[0,9]上解的个数是.答案9方法2 利用函数零点求参数的值或取值范围2.(2018江苏无锡高三期中)关于x的方程2|x+a|=e x有3个不同的实数解,则实数a的取值范围为.答案(1-ln 2,+∞)3.(2016上海闸北区调研)已知函数f(x)=若函数g(x)=f(x)-m有3个零点,则实数m的取值范围是.答案(0,1)D组2016—2018年模拟·突破题组(2016江苏南京调研,14)已知函数f(x)=x3+ax+,g(x)=-ln x,设函数h(x)=min{f(x),g(x)}(x>0),若h(x)有3个零点,则实数a的取值范围是.答案。
2024届高考一轮复习数学教案(新人教B版):函数的概念及其表示

§2.1函数的概念及其表示考试要求 1.了解函数的含义.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.了解简单的分段函数,并会简单的应用.知识梳理1.函数的概念给定两个非空实数集A与B,以及对应关系f,如果对于集合A中每一个实数x,在集合B中都有唯一确定的实数y与x对应,则称f为定义在集合A上的一个函数,记作y=f(x),x∈A. 2.函数的三要素(1)函数的三要素:定义域、对应关系、值域.(2)如果两个函数表达式表示的函数定义域相同,对应关系也相同,则称这两个函数表达式表示的就是同一个函数.3.函数的表示法表示函数的常用方法有解析法、图象法和列表法.4.分段函数如果一个函数,在其定义域内,对于自变量的不同取值区间,有不同的对应方式,则称其为分段函数.常用结论1.直线x=a与函数y=f(x)的图象至多有1个交点.2.在函数的定义中,非空数集A,B,A即为函数的定义域,值域为B的子集.3.分段函数虽由几个部分组成,但它表示的是一个函数.分段函数的定义域等于各段函数的定义域的并集,值域等于各段函数的值域的并集.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)若两个函数的定义域和值域相同,则这两个函数是同一个函数.(×)(2)函数y =f (x )的图象可以是一条封闭曲线.(×)(3)y =x 0与y =1是同一个函数.(×)(4)函数f (x )-1,x ≥0,2,x <0的定义域为R .(√)教材改编题1.(多选)下列所给图象是函数图象的是()答案CD 解析A 中,当x >0时,每一个x 的值对应两个不同的y 值,因此不是函数图象;B 中,当x =x 0时,y 的值有两个,因此不是函数图象;CD 中,每一个x 的值对应唯一的y 值,因此是函数图象.2.下列各组函数表示同一个函数的是()A .y =x -1与y =x 2-1x +1B .y =x -1与y =-1xC .y =2x 2与y =2xD .y =2x -1与v =2t -1答案D 解析y =x -1的定义域为R ,y =x 2-1x +1的定义域为{x |x ≠-1},定义域不同,不是同一个函数,故选项A 不正确;y =x -1=1x 与y =-1x的对应关系不同,不是同一个函数,故选项B 不正确;y =2x 2=2|x |与y =2x 的对应关系不同,不是同一个函数,故选项C 不正确;y =2x -1与v =2t -1的定义域都是(-∞,1)∪(1,+∞),对应关系也相同,所以是同一个函数,故选项D 正确.3.已知函数f (x )x ,x >0,x ,x ≤0,则函数f ()A .3B .-3 C.13D .-13答案C解析由题意可知,f ln 13=-ln 3,所以f f (-ln 3)=e -ln 3=13.题型一函数的定义域例1(1)函数y =ln (x +1)-x 2-3x +4的定义域为()A .(-4,-1)B .(-4,1)C .(-1,1)D .(-1,1]答案C解析+1>0,x 2-3x +4>0,解得-1<x <1,故定义域为(-1,1).(2)已知函数f (x )的定义域为(-4,-2),则函数g (x )=f (x -1)+x +2的定义域为________.答案[-2,-1)解析∵f (x )的定义域为(-4,-2),要使g (x )=f (x -1)+x +2有意义,4<x -1<-2,+2≥0,解得-2≤x <-1,∴函数g (x )的定义域为[-2,-1).思维升华(1)无论抽象函数的形式如何,已知定义域还是求定义域,均是指其中的x 的取值集合;(2)若已知函数f (x )的定义域为[a ,b ],则复合函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出;(3)若复合函数f (g (x ))的定义域为[a ,b ],则函数f (x )的定义域为g (x )在[a ,b ]上的值域.跟踪训练1(1)函数f (x )=1ln (x -1)+3-x 的定义域为()A .(1,3]B .(1,2)∪(2,3]C .(1,3)∪(3,+∞)D .(-∞,3)答案B解析-1>0,-1≠1,-x ≥0,所以1<x <2或2<x ≤3,所以函数的定义域为(1,2)∪(2,3].(2)(2023·南阳检测)已知函数f (x )=lg 1-x 1+x ,则函数g (x )=f (x -1)+2x -1的定义域是()A .{x |x >2或x <0}|12≤x <2C .{x |x >2}|x ≥12答案B 解析要使f (x )=lg 1-x 1+x 有意义,则1-x 1+x>0,即(1-x )(1+x )>0,解得-1<x <1,所以函数f (x )的定义域为(-1,1).要使g (x )=f (x -1)+2x -1有意义,1<x -1<1,x -1≥0,解得12≤x <2,所以函数g (x )|12≤x <2题型二函数的解析式例2(1)已知f (1-sin x )=cos 2x ,求f (x )的解析式;(2)已知f x 2+1x2,求f (x )的解析式;(3)已知f (x )是一次函数且3f (x +1)-2f (x -1)=2x +17,求f (x )的解析式.(4)已知f (x )满足2f (x )+f (-x )=3x ,求f (x )的解析式.解(1)(换元法)设1-sin x =t ,t ∈[0,2],则sin x =1-t ,∵f (1-sin x )=cos 2x =1-sin 2x ,∴f (t )=1-(1-t )2=2t -t 2,t ∈[0,2].即f (x )=2x -x 2,x ∈[0,2].(2)(配凑法)∵f x 2+1x2=-2,∴f (x )=x 2-2,x ∈(-∞,-2]∪[2,+∞).(3)(待定系数法)∵f (x )是一次函数,可设f (x )=ax +b (a ≠0),∴3[a (x +1)+b ]-2[a (x -1)+b ]=2x +17.即ax +(5a +b )=2x +17,=2,a +b =17,=2,=7.∴f(x)的解析式是f(x)=2x+7.(4)(解方程组法)∵2f(x)+f(-x)=3x,①∴将x用-x替换,得2f(-x)+f(x)=-3x,②由①②解得f(x)=3x.思维升华函数解析式的求法(1)配凑法;(2)待定系数法;(3)换元法;(4)解方程组法.跟踪训练2(1)已知f(x-1)=x2+4x-5,则f(x)的解析式是() A.f(x)=x2+6x B.f(x)=x2+8x+7C.f(x)=x2+2x-3D.f(x)=x2+6x-10答案A解析f(x-1)=x2+4x-5,设x-1=t,x=t+1,则f(t)=(t+1)2+4(t+1)-5=t2+6t,故f(x)=x2+6x.(2)若f =x1-x,则f(x)=________.答案1x-1(x≠0且x≠1)解析f(x)=1x1-1x=1x-1(x≠0且x≠1).(3)已知函数f(x)满足f(x)+2f3x,则f(2)等于()A.-3B.3C.-1D.1答案A解析f(x)+2f3x,①则f2f(x)=-3x,②联立①②解得f(x)=-2x-x,则f(2)=-22-2=-3.题型三分段函数例3(1)已知函数f(x)x-1),x>0,ln(x+e)+2,x≤0,则f(2024)的值为() A.-1B.0C.1D.2答案C解析因为f (x )x -1),x >0,ln (x +e )+2,x ≤0,所以f (2024)=f (2023)=f (2022)=…=f (1),又f (1)=f (1-1)=f (0)=-ln(0+e)+2=-1+2=1,所以f (2024)=1.(2)已知函数f (x )x 2-3x +2,x <-1,x -3,x ≥-1,若f (a )=4,则实数a 的值是________;若f (a )≥2,则实数a 的取值范围是________.答案-2或5[-3,-1)∪[4,+∞)解析若f (a )=4,<-1,a 2-3a +2=4≥-1,a -3=4,解得a =-2或a =5.若f (a )≥2,<-1,a 2-3a +2≥2≥-1,a -3≥2,解得-3≤a <-1或a ≥4,∴a 的取值范围是[-3,-1)∪[4,+∞).思维升华分段函数求值问题的解题思路(1)求函数值:当出现f (f (a ))的形式时,应从内到外依次求值.(2)求自变量的值:先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验.跟踪训练3(1)已知函数f (x )+2,x ≤0,+1x ,x >0,若f (f (a ))=2,则a 等于()A .0或1B .-1或1C .0或-2D .-2或-1答案D 解析令f (a )=t ,则f (t )=2,可得t =0或t =1,当t =0时,即f (a )=0,显然a ≤0,因此a +2=0⇒a =-2,当t =1时,即f (a )=1,显然a ≤0,因此a +2=1⇒a =-1,综上所述,a =-2或-1.(2)(2023·重庆质检)已知函数f (x )2x ,x >1,2-1,x ≤1,则f (x )<f (x +1)的解集为________.答案-12,+∞解析当x ≤0时,x +1≤1,f (x )<f (x +1)等价于x 2-1<(x +1)2-1,解得-12<x ≤0;当0<x ≤1时,x +1>1,此时f (x )=x 2-1≤0,f (x +1)=log 2(x +1)>0,∴当0<x ≤1时,恒有f (x )<f (x +1);当x >1时,x +1>2,f (x )<f (x +1)等价于log 2x <log 2(x +1),此时也恒成立.综上,不等式f (x )<f (x +1)-12,+课时精练1.函数f (x )=lg(x -2)+1x -3的定义域是()A .(2,+∞)B .(2,3)C .(3,+∞)D .(2,3)∪(3,+∞)答案D 解析∵f (x )=lg(x -2)+1x -3,-2>0,-3≠0,解得x >2,且x ≠3,∴函数f (x )的定义域为(2,3)∪(3,+∞).2.(2023·北京模拟)已知集合A ={x |-2<x ≤1},B ={x |0<x ≤4},则下列对应关系中是从集合A 到集合B 的函数是()A .y =x +1B .y =e xC .y =x 2D .y =|x |答案B 解析对于A ,当x =-1时,由y =x +1得y =0,但0∉B ,故A 错误;对于B ,因为从A ={x |-2<x ≤1}中任取一个元素,通过y =e x 在B ={x |0<x ≤4}中都有唯一的元素与之对应,故B 正确;对于C ,当x =0时,由y =x 2得y =0,但0∉B ,故C 错误;对于D ,当x =0时,由y =|x |得y =0,但0∉B ,故D 错误.3.已知f (x 3)=lg x ,则f (10)的值为()A .1 B.310 C.13 D.1310答案C 解析令x 3=10,则x =1310,∴f (10)=lg 1310=13.4.图中的文物叫做“垂鳞纹圆壶”,是甘肃礼县出土的先秦时期的青铜器皿,其身流线自若、纹理分明,展现了古代中国精湛的制造技术.科研人员为了测量其容积,以恒定的流速向其内注水,恰好用时30秒注满,设注水过程中,壶中水面高度为h ,注水时间为t ,则下面选项中最符合h 关于t 的函数图象的是()答案A 解析水壶的结构:底端与上端细、中间粗,所以在注水恒定的情况下,开始水的高度增加的快,中间增加的慢,最后又变快,由图可知选项A 符合.5.函数y =1+x -1-2x 的值域为()-∞,32D.32,+∞答案B解析设1-2x =t ,则t ≥0,x =1-t 22所以y =1+1-t 22-t =12(-t 2-2t +3)=-12(t +1)2+2,因为t ≥0,所以y ≤32.所以函数y =1+x -1-2x ∞,32.6.已知函数f (x )x 2+2x +3,x ≤2,+log a x ,x >2(a >0且a ≠1),若函数f (x )的值域是(-∞,4],则实数a 的取值范围是()B.22,C .(1,2]D .(1,2)答案B 解析当x ≤2时,f (x )=-x 2+2x +3=-(x -1)2+4,当x =1时,f (x )=-x 2+2x +3取得最大值4,所以当x ≤2时,函数f (x )的值域是(-∞,4],所以当x >2时,函数f (x )=6+log a x 的值域为(-∞,4]的子集,当a >1时,f (x )=6+log a x 在(2,+∞)上单调递增,此时f (x )>f (2)=6+log a 2>6,不符合题意,当0<a <1时,f (x )=6+log a x 在(2,+∞)上单调递减,此时f (x )<f (2)=6+log a 2≤4,即log a 2≤-2,所以a 2≥12,可得22≤a <1,所以实数a 的取值范围是22,7.(多选)下列四个函数,定义域和值域相同的是()A .y =-x +1B .133,0,1,0x x y x x⎧≤⎪=⎨⎪>⎩C .y =ln|x |D .y =2x -1x -2答案ABD 解析对A ,函数的定义域和值域都是R ;对B ,根据分段函数和幂函数的性质,可知函数的定义域和值域都是R ;对C ,函数的定义域为(-∞,0)∪(0,+∞),值域为R ;对D ,因为函数y =2x -1x -2=2+3x -2,所以函数的定义域为(-∞,2)∪(2,+∞),值域为(-∞,2)∪(2,+∞).所以ABD 是定义域和值域相同的函数.8.(多选)函数概念最早是在17世纪由德国数学家莱布尼茨提出的,后又经历了贝努利、欧拉等人的改译.1821年法国数学家柯西给出了这样的定义:在某些变数存在着一定的关系,当一经给定其中某一变数的值,其他变数的值可随着确定时,则称最初的变数叫自变量,其他的变数叫做函数.德国数学家康托尔创立的集合论使得函数的概念更严谨.后人在此基础上构建了高中教材中的函数定义:“一般地,设A ,B 是两个非空的数集,如果按某种对应法则f ,对于集合A 中的每一个元素x ,在集合B 中都有唯一的元素y 和它对应,那么这样的对应叫做从A 到B 的一个函数”,则下列对应法则f 满足函数定义的有()A .f (x 2)=|x |B .f (x 2)=xC .f (cos x )=xD .f (e x )=x 答案AD 解析令t =x 2(t ≥0),f (t )=|±t |=t ,故A 符合函数定义;令t =x 2(t ≥0),f (t )=±t ,设t =4,f (t )=±2,一个自变量对应两个函数值,故B 不符合函数定义;设t =cos x ,当t =12时,x 可以取±π3等无数多个值,故C 不符合函数定义;令t =e x (t >0),f (t )=ln t ,故D 符合函数定义.9.已知函数f (x )x ,x <0,x -π),x >0,则f ________.答案12解析由已知得f f f f f =12.10.已知f (x )=x -1,则f (x )=________.答案x 2-1(x ≥0)解析令t =x ,则t ≥0,x =t 2,所以f (t )=t 2-1(t ≥0),即f (x )=x 2-1(x ≥0).11.已知函数f (x )的定义域为[-2,2],则函数g (x )=f (2x )+1-2x 的定义域为__________.答案[-1,0]解析2≤2x ≤2,-2x ≥0,解得-1≤x ≤0,所以函数g (x )的定义域是[-1,0].12.已知f (x )x +3,x >0,2-4,x ≤0,若f (a )=5,则实数a 的值是__________;若f (f (a ))≤5,则实数a 的取值范围是__________.答案1或-3[-5,-1]解析①当a >0时,2a +3=5,解得a =1;当a ≤0时,a 2-4=5,解得a =-3或a =3(舍).综上,a =1或-3.②设t =f (a ),由f (t )≤5得-3≤t ≤1.由-3≤f (a )≤1,解得-5≤a ≤-1.13.(2022·广州模拟)已知定义在R 上的函数f (x )满足,f (1-x )+2f (x )=x 2+1,则f (1)等于()A .-1B .1C .-13 D.13答案B解析∵定义在R 上的函数f (x )满足,f (1-x )+2f (x )=x 2+1,∴当x =0时,f (1)+2f (0)=1,①当x =1时,f (0)+2f (1)=2,②②×2-①,得3f (1)=3,解得f (1)=1.14.(2023·南昌模拟)已知函数f (x )3,x ≤0,x >0,若f (a -3)=f (a +2),则f (a )等于()A .2 B.2C .1D .0答案B解析作出函数f (x )的图象,如图所示.因为f (a -3)=f (a +2),且a -3<a +2,-3≤0,+2>0,即-2<a ≤3,此时f (a -3)=a -3+3=a ,f (a +2)=a +2,所以a =a +2,即a 2=a +2,解得a =2或a =-1(不满足a =a +2,舍去),则f (a )= 2.15.∀x∈R,用M(x)表示f(x),g(x)中最大者,M(x)={|x|-1,1-x2},若M(n)<1,则实数n 的取值范围是()A.(-2,2)B.(-2,0)∪(0,2)C.[-2,2]D.(-2,2)答案B解析当x≥0时,若x-1≥1-x2,则x≥1,当x<0时,若-x-1≥1-x2,则x≤-1,所以M(x)||-1,x≥1或x≤-1,1-x2,-1<x<1,若M(n)<1,则当-1<n<1时,1-n2<1⇒-n2<0⇒n≠0,即-1<n<0或0<n<1,当n≥1或n≤-1时,|n|-1<1,解得-2<n≤-1或1≤n<2,综上,-2<n<0或0<n<2.16.(多选)德国数学家狄利克雷在数学领域成就显著,以其名字命名的函数F(x)=1,x为有理数,0,x为无理数被称为狄利克雷函数.关于狄利克雷函数,下列说法正确的是() A.F(F(x))=0B.对任意x∈R,恒有F(x)=F(-x)成立C.任取一个不为0的实数T,F(x+T)=F(x)对任意实数x均成立D.存在三个点A(x1,F(x1)),B(x2,F(x2)),C(x3,F(x3)),使得△ABC为等边三角形答案BD解析∵当x为有理数时,F(x)=1,当x为无理数时,F(x)=0,当x为有理数时,F(F(x))=F(1)=1,当x为无理数时,F(F(x))=F(0)=1,所以F(F(x))=1恒成立,故A错误;因为有理数的相反数是有理数,无理数的相反数是无理数,所以对任意x∈R,恒有F(x)=F(-x)成立,故B正确;若x是有理数,T是有理数,则x+T是有理数;若x是有理数,T是无理数,则x+T是无理数;若x是无理数,则x+T是无理数或有理数,所以任取一个不为0的实数T,F(x+T)=F(x)不恒成立,故C错误;取x1=-33,x2=0,x3=33,可得F(x1)=0,F(x2)=1,F(x3)=0,所以A-33,0,B(0,1),C33,0△ABC为等边三角形,故D正确.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时分层训练(十一) 函数与方程
(对应学生用书第178页)
A 组 基础达标 (建议用时:30分钟)
一、选择题
1.若函数f (x )=ax +b 有一个零点是2,那么函数g (x )=bx 2-ax 的零点是( ) A .0,2 B .0,1
2 C .0,-1
2
D .2,-1
2
C [由题意知2a +b =0,即b =-2A . 令g (x )=bx 2-ax =0,得x =0或x =a b =-1
2.] 2.函数f (x )=e x +x -2的零点所在的区间为( ) A .(-2,-1) B .(-1,0) C .(0,1)
D .(1,2)
C [因为f (0)=e 0+0-2=-1<0,f (1)=e 1+1-2=e -1>0,故f (0)·f (1)<0,故选C .]
3.函数f (x )=⎩
⎨⎧
x 2
-2, x ≤0,
2x -6+ln x , x >0的零点个数是( )
【导学号:79170048】
A .1
B .2
C .3
D .4
B [当x ≤0时,f (x )=x 2-2,
令x 2-2=0,得x =2(舍)或x =-2, 即在区间(-∞,0]上,函数只有一个零点. 当x >0时,f (x )=2x -6+ln x ,
令2x -6+ln x =0,得ln x =6-2x .
作出函数y =ln x 与y =6-2x 在区间(0,+∞)上的图象(图略),易得两函数图象只有一个交点,即函数f (x )=2x -6+ln x (x >0)只有一个零点. 综上知,函数f (x )的零点个数是2.]
4.(2018·太原模拟)已知函数f (x )=⎩⎪⎨⎪
⎧
|2x
-1|,x <2,3
x -1
,x ≥2,若方程f (x )-a =0有三个
不同的实数根,则实数a 的取值范围是( ) A .(1,3) B .(0,3) C .(0,2)
D .(0,1)
D [画出函数f (x )的图象如图所示,
观察图象可知,若方程f (x )-a =0有三个不同的实数根,则函数y =f (x )的图象与直线y =a 有3个不同的交点,此时需满足0<a <1.故选D .]
5.(2018·南昌模拟)已知函数y =f (x )是周期为2的周期函数,且当x ∈[-1,1]时,f (x )=2|x |-1,则函数F (x )=f (x )-|lg x |的零点个数是( ) A .9 B .10 C .11
D .18
B [在坐标平面内画出y =f (x )与y =|lg x |的大致图象如图,由图象可知,它们共有10个不同的交点,因此函数F (x )=f (x )-|lg x |的零点个数是10.
]
二、填空题
6.已知关于x 的方程x 2+mx -6=0的一个根比2大,另一个根比2小,则实数
m的取值范围是________.
(-∞,1)[设函数f(x)=x2+mx-6,则根据条件有f(2)<0,即4+2m-6<0,解得m<1.]
7.方程2x+3x=k的解在[1,2)内,则k的取值范围为________.[5,10)[令函数f(x)=2x+3x-k,
则f(x)在R上是增函数.
当方程2x+3x=k的解在(1,2)内时,f(1)·f(2)<0,
即(5-k)(10-k)<0,
解得5<k<10.
当f(1)=0时,k=5.]
8.(2015·湖南高考)若函数f(x)=|2x-2|-b有两个零点,则实数b的取值范围是__________.
(0,2)[由f(x)=|2x-2|-b=0得|2x-2|=b.
在同一平面直角坐标系中画出y=|2x-2|与y=b的图象,如图所示,
则当0<b<2时,两函数图象有两个交点,从而函数f(x)=|2x-2|-b有两个零点.]
三、解答题
9.已知函数f(x)=x3-x2+x
2+1
4.证明:存在x0∈⎝
⎛
⎭
⎪
⎫
0,
1
2,使f(x0)=x0.
[证明]令g(x)=f(x)-x. 2分
∵g(0)=1
4,g⎝
⎛
⎭
⎪
⎫1
2=f⎝
⎛
⎭
⎪
⎫1
2-
1
2=-
1
8,
∴g (0)·g ⎝ ⎛⎭
⎪⎫
12<0.
7分
又函数g (x )在⎣⎢⎡
⎦⎥⎤0,12上连续,
∴存在x 0∈⎝ ⎛
⎭⎪⎫0,12,使g (x 0)=0,
即f (x 0)=x 0.
12分
10.已知二次函数f (x )=x 2+(2a -1)x +1-2a ,
(1)判断命题:“对于任意的a ∈R ,方程f (x )=1必有实数根”的真假,并写出判断过程;
(2)若y =f (x )在区间(-1,0)及⎝ ⎛
⎭
⎪⎫0,12内各有一个零点,求实数a 的取值范围.
【导学号:79170049】
[解] (1)“对于任意的a ∈R ,方程f (x )=1必有实数根”是真命题. 依题意,f (x )=1有实根,即x 2+(2a -1)x -2a =0有实根.
3分
因为Δ=(2a -1)2+8a =(2a +1)2≥0对于任意的a ∈R 恒成立,即x 2+(2a -1)x -2a =0必有实根,从而f (x )=1必有实根.
5分
(2)依题意,要使y =f (x )在区间(-1,0)及⎝ ⎛
⎭
⎪⎫0,12内各有一个零点,
只需⎩⎪⎨
⎪⎧ f (-1)>0,
f (0)<0,
f ⎝ ⎛⎭⎪⎫12>0, 7分
即⎩⎪⎨⎪⎧
3-4a >0,1-2a <0,
34-a >0,
解得12<a <34.
10分
故实数a
的取值范围为⎩⎪⎨⎪⎧⎭
⎪⎬⎪
⎫a ⎪
⎪⎪
12<a <3
4
. 12分
B 组 能力提升 (建议用时:15分钟)
1.(2017·郑州模拟)已知函数f (x )=⎩
⎨⎧
2x
-a ,x ≤0,
2x -1,x >0(a ∈R ),若函数f (x )在R 上
有两个零点,则a 的取值范围是( ) A .(-∞,-1) B .(-∞,-1] C .[-1,0)
D .(0,1]
D [因为当x >0时,f (x )=2x -1, 由f (x )=0得x =1
2.
所以要使f (x )在R 上有两个零点,则必须2x -a =0在(-∞,0]上有唯一实数解.
又当x ∈(-∞,0]时,2x ∈(0,1],且y =2x 在(-∞,0]上单调递增, 故所求a 的取值范围是(0,1].]
2.函数f (x )=⎩⎨⎧
x +1,x ≤0,
log 2x ,x >0,则函数y =f [f (x )]+1的所有零点所构成的集合为
________.
⎩
⎨⎧⎭
⎬⎫
-3,-12,14,
2 [由题意知f [f (x )]=-1,由f (x )=-1得x =-2或x =1
2,
则函数y =f [f (x )]+1的零点就是使f (x )=-2或f (x )=1
2的x 的值. 解f (x )=-2得x =-3或x =1
4, 解f (x )=12得x =-1
2或x =2, 从而函数y =f [f (x )]+1
的零点构成的集合为⎩
⎨⎧⎭
⎬⎫
-3,-12,14,2.]
3.若关于x 的方程22x +2x a +a +1=0有实根,求实数a 的取值范围.
[解] 法一(换元法):设t =2x (t >0),则原方程可变为t 2+at +a +1=0,(*) 原方程有实根,即方程(*)有正根. 令f (t )=t 2+at +a +1.
3分
①若方程(*)有两个正实根t 1,t 2, 则⎩⎪⎨⎪
⎧
Δ=a 2
-4(a +1)≥0,t 1+t 2=-a >0,t 1·
t 2=a +1>0,解得-1<a ≤2-22; 6分
②若方程(*)有一个正实根和一个负实根(负实根不合题意,舍去),则f (0)=a +1<0,解得a <-1;
9分
③若方程(*)有一个正实根和一个零根,则f (0)=0且-a
2>0,解得a =-1. 综上,a 的取值范围是(-∞,2-22].
12分 法二(分离变量法):由方程,解得a =-22x +1
2x +1,
3分
设t =2x (t >0),
则a =-t 2+1t +1=-⎝ ⎛⎭⎪⎫t +2t +1-1 =2-⎣⎢
⎡
⎦⎥⎤(t +1)+2t +1,其中t +1>1, 9分 由基本不等式,得(t +1)+2t +1
≥22,当且仅当t =2-1时取等号,故a ≤2
-2 2. 12分。