八年级上学期数学期末模拟试题及答案审批稿

合集下载

2022年重庆市八年级上学期期末数学模拟试卷(解析版)

2022年重庆市八年级上学期期末数学模拟试卷(解析版)

重庆市八年级上学期期末数学模拟试卷一、选择题(每小题4分,共48分)1.在平面直角坐标系中,点P(3,1)所在象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.下列各数中,即大于2又小于3的数是()A.B.C.D.3.如图所示的滑雪人经过旋转或平移不能得到的是()A.B.C.D.4.在趣味运动会“定点投篮”项目中,我校七年级八个班的投篮成绩(单位:个)分别为:24,20,19,20,22,23,20,22.则这组数据中的众数和中位数分别是()A.22个、20个B.22个、21个C.20个、21个D.20个、22个5.某洗衣机在洗涤衣服时经历了注水、清洗、排水三个连续过程(工作前洗衣机内无水),在这三个过程中洗衣机内水量y(升)与时间x(分)之间的函数关系对应的图象大致为()A.B.C.D.6.已知一次函数y=ax+|a﹣1|的图象经过点(0,3),且函数y的值随x的增大而减小,则a的值为()A.﹣2 B.2 C.4 D.﹣2或47.已知a,b,c均为实数,若a>b,c≠0.下列结论不一定正确的是()A.a+c>b+c B.c﹣a<c﹣b C.D.a2>ab>b28.关于x的不等式(a+1)x<a+3和2x<4的解集相同,则a的值为()A.﹣1 B.0 C.1 D.29.已知和是二元一次方程ax+by+3=0的两个解,则一次函数y=ax+b(a≠0)的解析式为()A.y=﹣2x﹣3 B.C.y=﹣9x+3 D.10.如图,把Rt△ABC放在平面直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0),(4,0),将△ABC沿x轴向右平移,当点C落在直线y=2x﹣4上时,线段AC扫过的面积为()A.B.12 C.16 D.1811.设min{x,y}表示x,y两个数中的最小值,例如min{1,2}=1,min{7,5}=5,则关于x的一次函数y=min{2x,x+1}可以表示为()A.y=2x B.y=x+1C.D.12.如图,一个质点在第一象限及x轴、y轴上运动,在第一秒钟,它从原点(0,0)运动到(0,1),然后接着按图中箭头所示方向运动,即(0,0)→(0,1)→(1,1)→(1,0)→…,且每秒移动一个单位,那么第80秒时质点所在位置的坐标是()A.(0,9)B.(9,0)C.(0,8)D.(8,0)二、填空题:(本大题6个小题,每小题4分,共24分)在每个小题中,请将每小题的正确答案填在下列方框内.13.8的立方根是.14.在平面直角坐标系中,已知点A(3,2),AC⊥x轴,垂足为C,则C点坐标为.15.若1、2、x、5、7五个数的平均数为4,则x的值是.16.当实数x的取值范围使得有意义时,在函数y=2x﹣1中y的取值范围是.17.如图,已知直线y=kx+b(k≠0)交坐标轴分别于点A(﹣3,0),B(0,4)两点,则关于x的一元一次不等式﹣kx﹣b<0(k≠0)的解集为.18.如图,O是等边△ABC中一点,OA=2,OB=3,∠AOB=150°,∠BOC=115°,将△AOB绕点B顺时针旋转60°至△CO′B,下列说法中:①OC的长度是;②;③;④以线段OA、OB、OC为边构成的三角形的各内角大小分别为90°,55°,35°;⑤△AOB旋转到△CO'B的过程中,边AO所扫过区域的面积是.说法正确的序号有.三、解答题:(本大题3个小题,其中19题12分、20题6分、21题8分、共26分)解答时每小题必须给出必要的演算过程或推理步骤.19.(12分)(202X秋•沙坪坝区校级期末)计算:(1)(2)解方程组(3)解不等式组:,并把解集在数轴上表示出来.20.若x,y为实数,且满足.求的值.21.作图题:(不要求写作法)如图,在平面直角坐标系中,△ABC的三个顶点的坐标别为A(﹣2,4),B(﹣4,2),C(﹣1,0).(1)将△ABC先向右平移3个单位,再向下平移4个单位,则得到△A1B1C1,请直接写点B1的坐标;若把△A1B1C1看成是由△ABC经过一次平移得到的(即从A到A1方向平移),请直接写出这一次平移的距离.(2)在正方形网格中作出△ABC绕点O顺时针旋转90°后得到的△A2B2C2.四、解答题:(本大题5个小题,其中22题8分、23题10分、24题10分、25题12分、26题12分,共52分)解答时每小题必须给出必要的演算过程或推理步骤.22.为参加重庆一中教师元旦晚会演出,初二年级老师欲租用男、女演出服装若干套以供跳舞用.已知5套男装和8套女装租用一天共需租金510元,6套男装和10套女装租用一天共需630元.(1)租用男装、女装一天的价格分别是多少?(2)该节目原计划由6名男教师和17名女教师完成,后因节目需要,将其中3名女教师由扮演舞者角色转向歌手角色,歌手服装每套租用一天的价格比已选定女装价格贵20%,求在演出当天租用服装实际需支付租金多少?23.(10分)(202X秋•沙坪坝区校级期末)如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连结AD、AG.求证:(1)AD=AG;(2)AD⊥AG.24.(10分)(202X秋•沙坪坝区校级期末)古巴国家芭蕾舞团作为世界芭蕾舞团之一,将于202X年携亚洲巡演版特别纪念版《天鹅湖》首次到访山城,届时,重庆市民将领略“世界第一黑天鹅”的迷人风采.某票务网站抢得商机拿到了亲子套票和VIP专享票的销售权.但由于票价较高,该票务网站准备用不超过105000元购进这两种票共150张票,其中亲子套票每张订购价550元,VIP专享票每张订购价800元,亲子套票每张票价600元,VIP专享票每张票价880元,预计销售额不低于114640元.设亲子套票购进x张,票务网站的总利润为y(元).(1)请你设计出该票务网站的订购方案有哪几种?(2)求出总利润为y(元)与订购亲子套票x(张)的函数关系式,并利用函数关系式说明哪种方案的利润最大,最大利润是多少元?25.(12分)(202X秋•沙坪坝区校级期末)如图,直线y=2x+m(m>0)与x轴交于点A(﹣2,0),直线y=﹣x+n(n>0)与x轴、y轴分别交于B、C两点,并与直线y=2x+m(m>0)相交于点D,若AB=4.(1)求点D的坐标;(2)求出四边形AOCD的面积;(3)若E为x轴上一点,且△ACE为等腰三角形,求点E的坐标.26.(12分)(202X秋•沙坪坝区校级期末)阅读以下材料:在平面直角坐标系中,x=1表示一条直线;以二元一次方程2x﹣y+2=0的所有解为坐标的点组成的图形就是一次函数y=2x+2的图象,它也是一条直线.不仅如此,在平面直角坐标系中,不等式x≤1表示一个平面区域,即直线x=1以及它左侧的部分,如图①;不等式y≤2x+2也表示一个平面区域,即直线y=2x+2以及它下方的部分,如图②.而y=|x|既不表示一条直线,也不表示一个区域,它表示一条折线,如图③.根据以上材料,回答下列问题:(1)请直接写出图④表示的是的平面区域;(2)如果x,y满足不等式组,请在图⑤中用阴影表示出点(x,y)所在的平面区域,并求出阴影部分的面积S1;(3)在平面直角坐标系中,若函数y=2|x﹣2|与y=x﹣m的图象围成一个平面区域,请直接用含m的式子表示该平面区域的面积S2,并写出实数m的取值范围.参考答案与试题解析一、选择题(每小题4分,共48分)1.在平面直角坐标系中,点P(3,1)所在象限是()A.第一象限B.第二象限C.第三象限D.第四象限考点:点的坐标.专题:数形结合.分析:根据第一象限点的坐标特征进行判断.解答:解:点P(3,1)在第一象限.故选A.点评:本题考查了点的坐标:坐标平面内的点与有序实数对是一一对应的关系;记住各象限和坐标轴上点的坐标特征.2.下列各数中,即大于2又小于3的数是()A.B.C.D.考点:实数大小比较.分析:先根据算术平方根求出2=,3=,再进行判断即可.解答:解:∵2=,3=,∴只有在和之间,故选D.点评:本题考查了算术平方根和实数的大小比较的应用,用了把根号外的因式移入根号内的方法.3.如图所示的滑雪人经过旋转或平移不能得到的是()A.B.C.D.考点:生活中的旋转现象;生活中的平移现象.分析:根据平移是一物体沿某一直线方向移动一定的距离,旋转是物体绕一定点旋转一定的角度,可得答案.解答:解:A、平移一定的距离得到,故A正确;B、旋转90°得到,故B正确;C、旋转180°得到,故C正确;D、不能经过旋转、平移得到,故D错误;故选:D.点评:本题考查了生活中的旋转现象,利用了平移是一物体沿某一直线方向移动一定的距离,旋转是物体绕一定点旋转一定的角度.4.在趣味运动会“定点投篮”项目中,我校七年级八个班的投篮成绩(单位:个)分别为:24,20,19,20,22,23,20,22.则这组数据中的众数和中位数分别是()A.22个、20个B.22个、21个C.20个、21个D.20个、22个考点:众数;中位数.分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.解答:解:在这一组数据中20出现了3次,次数最多,故众数是20;把数据按从小到大的顺序排列:19,20,20,20,22,22,23,24,处于这组数据中间位置的数20和22,那么由中位数的定义可知,这组数据的中位数是21.故选C.点评:本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.5.某洗衣机在洗涤衣服时经历了注水、清洗、排水三个连续过程(工作前洗衣机内无水),在这三个过程中洗衣机内水量y(升)与时间x(分)之间的函数关系对应的图象大致为()A.B.C.D.考点:函数的图象.专题:压轴题;数形结合.分析:根据洗衣机内水量开始为0,清洗时水量不变,排水时水量变小,直到水量0,即可得到答案.解答:解:∵洗衣机工作前洗衣机内无水,∴A,B两选项不正确,被淘汰;又∵洗衣机最后排完水,∴C选项不正确,被淘汰,所以选项D正确.故选:D.点评:本题考查了对函数图象的理解能力.看函数图象要理解两个变量的变化情况.6.已知一次函数y=ax+|a﹣1|的图象经过点(0,3),且函数y的值随x的增大而减小,则a的值为()A.﹣2 B.2 C.4 D.﹣2或4考点:一次函数图象上点的坐标特征.分析:先根据一次函数y=ax+|a﹣1|的图象过点(0,3)得出a的值,再由y随x的增大而减小判断出a的符号,进而可得出结论.解答:解:∵一次函数y=ax+|a﹣1|的图象过点(0,3),∴|a﹣1|=3,解得a=4或a=﹣2.∵y随x的增大而减小,∴a<0,∴a=﹣2.故选A.点评:本题考查的是一次函数的性质,熟知一次函数的图象与系数的关系是解答此题的关键.7.已知a,b,c均为实数,若a>b,c≠0.下列结论不一定正确的是()A.a+c>b+c B.c﹣a<c﹣b C.D.a2>ab>b2考点:不等式的性质.专题:计算题.分析:根据不等式的性质1,不等式两边同时加上或减去同一个数,不等号的方向不变;根据不等式的性质2,不等式两边同时乘以或除以同一个正数,不等号的方向不变;根据不等式的性质3,不等式两边同时乘以或除以同一个负数,不等号的方向改变;利用不等式的3个性质进行分析.解答:解:A,根据不等式的性质一,不等式两边同时加上c,不等号的方向不变,故此选项正确;B,∵a>b,∴﹣a<﹣b,∴﹣a+c<﹣b+c,故此选项正确;C,∵c≠0,∴c2>0,∵a>b.∴,故此选项正确;D,∵a>b,a不知正数还是负数,∴a2,与ab,的大小不能确定,故此选项错误;故选:D点评:此题主要考查了不等式的性质,熟练掌握不等式的性质是做题的关键,此题比较基础.8.关于x的不等式(a+1)x<a+3和2x<4的解集相同,则a的值为()A.﹣1 B.0 C.1 D.2考点:不等式的解集.分析:根据不等式的解集相同,可得关于a的方程,根据解方程,可得答案.解答:解:解2x<4,得x<2.由关于x的不等式(a+1)x<a+3和2x<4的解集相同,x <=2.解得a=1,故选:C.点评:本题考查了不等式的解集,利用同解不等式得出关于a的方程是解题关键.9.已知和是二元一次方程ax+by+3=0的两个解,则一次函数y=ax+b(a≠0)的解析式为()A.y=﹣2x﹣3 B.C.y=﹣9x+3 D.考点:一次函数与二元一次方程(组).分析:由已知方程的解,可以把这对数值代入方程,得到两个含有未知数a,b的二元一次方程,联立方程组求解,从而可以求出a,b的值,进一步得出解析式即可.解答:解:∵和是二元一次方程ax+by+3=0的两个解,∴,解得:,∴一次函数y=ax+b(a≠0)的解析式为y=﹣x ﹣.故选:D.点评:此题考查了方程的解的意义和二元一次方程组的解法.解题关键是把方程的解代入原方程,使原方程转化为以系数a和b为未知数的方程,再求解.10.如图,把Rt△ABC放在平面直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0),(4,0),将△ABC沿x轴向右平移,当点C落在直线y=2x﹣4上时,线段AC扫过的面积为()A.B.12 C.16 D.18考点:一次函数图象上点的坐标特征;坐标与图形变化-平移.专题:计算题.分析:先计算出AB=3,再利用勾股定理计算出AC=4,从而得到C(1,4),由于△ABC沿x轴向右平移,C点的纵坐标不变,则可把y=4代入y=2x﹣4,解得x=4,于是得到当点C落在直线y=2x﹣4上时,线段AC 向右平移了4﹣1=3个单位,然后根据矩形的面积公式求解.解答:解:∵点A、B的坐标分别为(1,0),(4,0),∴AB=3,∵∠CAB=90°,BC=5,∴AC==4,∴C(1,4)当y=4时,2x﹣4=4,解得x=4,∴当点C落在直线y=2x﹣4上时,线段AC向右平移了4﹣1=3个单位,∴线段AC扫过的面积=4×3=12.故选B.点评:本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x 轴的交点坐标是(﹣,0);与y轴的交点坐标是(0,b).直线上任意一点的坐标都满足函数关系式y=kx+b.也考查了平移的性质.11.设min{x,y}表示x,y两个数中的最小值,例如min{1,2}=1,min{7,5}=5,则关于x的一次函数y=min{2x,x+1}可以表示为()A.y=2x B.y=x+1C.D.考点:一次函数的性质.专题:新定义.分析:先求出两个函数y=2x和y=x+1的交点坐标(1,2),然后根据一次函数的性质得到当x<1时,2x<x+1;当x≥1时,2x≥x+1,于是利用新定义表示一次函数y=min{2x,x+1}.解答:解:解方程组得,所以当x<1时,2x<x+1;当x≥1时,2x≥x+1,所以关于x的一次函数y=min{2x,x+1}可以表示为y=.故选C.点评:本题考查了一次函数的性质:k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.由于y=kx+b与y轴交于(0,b),当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.12.如图,一个质点在第一象限及x轴、y轴上运动,在第一秒钟,它从原点(0,0)运动到(0,1),然后接着按图中箭头所示方向运动,即(0,0)→(0,1)→(1,1)→(1,0)→…,且每秒移动一个单位,那么第80秒时质点所在位置的坐标是()A.(0,9)B.(9,0)C.(0,8)D.(8,0)考点:规律型:点的坐标.分析:应先判断出走到坐标轴上的点所用的时间以及相对应的坐标,可发现走完一个正方形所用的时间分别为3,5,7,9…,此时点在坐标轴上,进而得到规律.解答:解:3秒时到了(1,0);8秒时到了(0,2);15秒时到了(3,0);24秒到了(0,4);35秒到了(5,0);48秒到了(0,6);63秒到了(7,0);80秒到了(0,8).∴第80秒时质点所在位置的坐标是(0,8).故选C.点评:本题是一个阅读理解,猜想规律的题目,解决问题的关键找到各点相对应的规律.二、填空题:(本大题6个小题,每小题4分,共24分)在每个小题中,请将每小题的正确答案填在下列方框内.13.8的立方根是2.考点:立方根.专题:计算题.分析:利用立方根的定义计算即可得到结果.解答:解:8的立方根为2,故答案为:2.点评:此题考查了立方根,熟练掌握立方根的定义是解本题的关键.14.在平面直角坐标系中,已知点A(3,2),AC⊥x轴,垂足为C,则C点坐标为(3,0).考点:点的坐标.分析:根据平面直角坐标系中点的确定方法求出OC,再写出点C的坐标即可.解答:解:∵点A(3,2),AC⊥x轴,垂足为C,∴OC=3,∴点C的坐标为(3,0).故答案为:(3,0).点评:本题考查了点的坐标,是基础题,熟练掌握平面直角坐标系中点的坐标的确定方法是解题的关键.15.若1、2、x、5、7五个数的平均数为4,则x的值是5.考点:算术平均数.分析:根据平均数=数据总和÷数据的个数,即可求解.解答:解:由题意得,=5,解得:x=5.故答案为:5.点评:本题考查了算术平均数的知识,平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.16.当实数x的取值范围使得有意义时,在函数y=2x﹣1中y的取值范围是y≥5.考点:一次函数的性质;二次根式有意义的条件.分析:首先求出x的取值范围即可,进而代入一次函数解析式得出y的取值范围.解答:解:∵实数x的取值范围使得有意义,∴x﹣3≥0,即x≥3,当x≥3,则y=2x﹣1≥5.故答案为:y≥5.点评:此题主要考查了一次函数的性质,正确得出x的取值范围是解题关键.17.如图,已知直线y=kx+b(k≠0)交坐标轴分别于点A(﹣3,0),B(0,4)两点,则关于x的一元一次不等式﹣kx﹣b<0(k≠0)的解集为x>﹣3.考点:一次函数与一元一次不等式.分析:一元一次不等式﹣kx﹣b<0(k≠0)的解集,就是不等式kx+b>0的解集,也就是就是函数值大于0,即函数的图象在x轴的上方的自变量的取值范围,根据图象即可求解.解答:解:﹣kx﹣b<0(k≠0),即kx+b>0,解集是:x>﹣3.故答案是:x>﹣3.点评:本题要求利用图象求解各问题,先画函数图象,根据图象观察,得出结论.认真体会一次函数与一元一次方程及一元一次不等式之间的内在联系.18.如图,O是等边△ABC中一点,OA=2,OB=3,∠AOB=150°,∠BOC=115°,将△AOB绕点B顺时针旋转60°至△CO′B,下列说法中:①OC的长度是;②;③;④以线段OA、OB、OC为边构成的三角形的各内角大小分别为90°,55°,35°;⑤△AOB旋转到△CO'B的过程中,边AO所扫过区域的面积是.说法正确的序号有①②④.考点:圆的综合题.分析:①连接OO′,由旋转的性质可得△BOO′是等边三角形,易得∠OO′C=150°﹣60°=90°,由勾股定理可得OC的长;②由S△ABO+S BOC=S△BO′C+S△BOC=S△BOO′+S△OO′C,利用三角形的面积公式可得结果;④由∠OO′C=150°﹣60°=90°,∠BOO′=60°,∠BOC=115°,易得∠O′OC和∠OCO′;③过点A作AE⊥BO交BO的延长线于点E,由锐角三角函数可得AE,OE ,易得BE,由勾股定理得AB2,从而得出△ABC 的面积,由S △AOC﹣S△AOB=S△ABC﹣S△ABO﹣S△BOC﹣S△AOB易得结论;⑤首先求得扇形ABC和扇形OBO′的面积,可得边AO所扫过区域的面积.解答:解:①连接OO′,∵△ABC是等边三角形,将△AOB绕点B顺时针旋转60°至△CO′B,∴∠OBO′=60°,OB=O′B=3,∠AOB=∠CO′B=150°,AO=CO′=2,∴△BOO′是等边三角形,∴∠OO′B=60°,OO′=BO=3,∴∠OO ′C=150°﹣60°=90°,由勾股定理得,OC==,故①正确;②S△ABO +S BOC=S△BO′C+S△BOC=S △BOO′+S △OO′C=+×CO′×OO′==,故②正确;④在Rt△OO ′C中,∵∠BOC=115°,∠BOO′=60°,∴∠O′OC=115°﹣60°=55°,∴∠OCO′=180°﹣90°﹣55°=35°,故④正确;③过点A作AE⊥BO交BO的延长线于点E,∵∠AOB=150°,∴∠AOE=30°,∴AE=1,OE=,∴AB2=BE2+AE2==13,∴S△ABC=AB2•sin60°==,S△BOC=﹣=+3,S△AOB===,∴S△AOC﹣S△AOB=S△ABC﹣S△ABO﹣S△BOC﹣S△AOB=﹣﹣﹣3﹣=,故③错误;⑤∵S扇形ABC ==,S△AOB=S△CO′B =,S扇形OBO′==,∴边AO所扫过区域的面积是:S扇形ABC+S△BO′C﹣S△AOB﹣S扇形OBO′=S扇形ABC﹣S扇形OBO′=﹣=,故⑤错误,∴正确的序号有①②④,故答案为:①②④.点评:本题主要考查了扇形的面积公式,三角形的面积,勾股定理及不规则图形的面积的运算,数形结合,将不规则图形的面积化为规则图形的面积是解答此题的关键.三、解答题:(本大题3个小题,其中19题12分、20题6分、21题8分、共26分)解答时每小题必须给出必要的演算过程或推理步骤.19.(12分)(202X秋•沙坪坝区校级期末)计算:(1)(2)解方程组(3)解不等式组:,并把解集在数轴上表示出来.考点:实数的运算;零指数幂;负整数指数幂;解二元一次方程组;在数轴上表示不等式的解集;解一元一次不等式组.专题:计算题.分析:(1)原式第一项利用绝对值的代数意义化简,第二项利用零指数幂法则计算,最后一项利用负指数幂法则计算即可得到结果;(2)方程组整理后,利用加减消元法求出解即可;(3)分别求出不等式组中两不等式的解集,找出解集的公共部分即可.解答:解:(1)原式=3+1﹣4+3=3;(2)方程组整理得:,②﹣①得:6y=18,即y=3,把y=3代入①得:x=2,则方程组的解为;(3),由①得:x≥﹣2;由②得:x<1,则不等式的解集为﹣2≤x<1.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.若x,y 为实数,且满足.求的值.考点:算术平方根;非负数的性质:绝对值;非负数的性质:算术平方根.专题:计算题.分析:利用非负数的性质求出x与y的值,原式整理后代入计算即可求出值.解答:解:∵+|y ﹣|=0,∴x=,y=,则原式==|2x+y|=1.点评:此题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.21.作图题:(不要求写作法)如图,在平面直角坐标系中,△ABC的三个顶点的坐标别为A(﹣2,4),B(﹣4,2),C(﹣1,0).(1)将△ABC先向右平移3个单位,再向下平移4个单位,则得到△A1B1C1,请直接写点B1的坐标(﹣1,﹣2);若把△A1B1C1看成是由△ABC经过一次平移得到的(即从A到A1方向平移),请直接写出这一次平移的距离5.(2)在正方形网格中作出△ABC绕点O顺时针旋转90°后得到的△A2B2C2.考点:作图-旋转变换;作图-平移变换.专题:作图题.分析:(1)根据网格结构找出点A、B、C平移后的对应点A1、B1、C1的位置,然后顺次连接即可,再根据平面直角坐标系写出点B1的坐标,根据一对对应点,利用勾股定理列式计算求出平移距离;(2)根据网格结构找出点A、B、C绕点O顺时针旋转90°后的对应点A2、B2、C2的位置,然后顺次连接即可.解答:解:(1)△A1B1C1如图所示;点B1(﹣1,﹣2),由勾股定理得,平移距离==5;(2)△A2B2C2如图所示.点评:本题考查了利用旋转变换作图,熟练掌握网结构准确找出对应点的位置是解题的关键.四、解答题:(本大题5个小题,其中22题8分、23题10分、24题10分、25题12分、26题12分,共52分)解答时每小题必须给出必要的演算过程或推理步骤.22.为参加重庆一中教师元旦晚会演出,初二年级老师欲租用男、女演出服装若干套以供跳舞用.已知5套男装和8套女装租用一天共需租金510元,6套男装和10套女装租用一天共需630元.(1)租用男装、女装一天的价格分别是多少?(2)该节目原计划由6名男教师和17名女教师完成,后因节目需要,将其中3名女教师由扮演舞者角色转向歌手角色,歌手服装每套租用一天的价格比已选定女装价格贵20%,求在演出当天租用服装实际需支付租金多少?考点:二元一次方程组的应用.分析:(1)设租用男装一天x元,租用女装需要y元,根据5套男装和8套女装租用一天共需租金510元,6套男装和10套女装租用一天共需630元,列方程组求解;(2)根据(1)中所求的结果求出实际需支付租金.解答:解:(1)设租用男装一天x元,租用女装需要y元,由题意得,,解得:,答:租用男装一天30元,租用女装需要45元;(2)实际支付的租金为:6×30+(17﹣3)×45+3×45×(1+20%)=972(元).答:演出当天租用服装实际需支付租金为972元.点评:本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.23.(10分)(202X秋•沙坪坝区校级期末)如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连结AD、AG.求证:(1)AD=AG;(2)AD⊥AG.考点:全等三角形的判定与性质.专题:证明题.分析:(1)先由条件可以得出∠ABE=∠ACF,就可以得出△ABD≌△GCA,就有AD=GA,∠BAD=∠G;(2)由(1)可以得出∠GAD=90°,进而得出AG⊥AD.解答:解:∵BE、CF分别是AC、AB两边上的高,∴∠AFC=∠BFC=∠BEC=∠BEA=90°∴∠BAC+∠ACF=90°,∠BAC+∠ABE=90°,∠G+∠GAF=90°,∴∠ABE=∠ACF.在△ABD和△GCA中,,∴△ABD≌△GCA(SAS),∴AD=GA,(2)∵△ABD≌△GCA(SAS),∴∠BAD=∠G,∴∠BAD+∠GAF=90°,∴AG⊥AD.点评:本题考查了全等三角形的判定及性质的运用,垂直的性质的运用,垂直的判定的运用,解答时证明三角形全等是关键.24.(10分)(202X秋•沙坪坝区校级期末)古巴国家芭蕾舞团作为世界芭蕾舞团之一,将于202X年携亚洲巡演版特别纪念版《天鹅湖》首次到访山城,届时,重庆市民将领略“世界第一黑天鹅”的迷人风采.某票务网站抢得商机拿到了亲子套票和VIP专享票的销售权.但由于票价较高,该票务网站准备用不超过105000元购进这两种票共150张票,其中亲子套票每张订购价550元,VIP专享票每张订购价800元,亲子套票每张票价600元,VIP专享票每张票价880元,预计销售额不低于114640元.设亲子套票购进x张,票务网站的总利润为y(元).(1)请你设计出该票务网站的订购方案有哪几种?(2)求出总利润为y(元)与订购亲子套票x(张)的函数关系式,并利用函数关系式说明哪种方案的利润最大,最大利润是多少元?考点:一次函数的应用.分析:(1)设亲子套票购买x张,则VIP套票购买(150﹣x)张,根据采购金额和销售金额的数量关系建立不等式组,求出其解即可;(2)根据总利润=亲子票的利润+VIP套票的利润就可以得出y与x之间的关系式,由一次函数的性质就可以求出最大利润.解答:解:(1)设亲子套票购买x张,则VIP套票购买(150﹣x)张,由题意,得,解得:60≤x≤62.∵x为正整数,∴x=60,61,62.∴订购方案有三种,方案1,亲子套票购60张,VIP套票购买90张,方案2,亲子套票购61张,VIP套票购买89张,方案3,亲子套票购62张,VIP套票购买88张,(2)由题意,得y=(600﹣550)x+(880﹣800)(150﹣x),y=﹣30x+120XX∵k=﹣30<0,∴y随x的增大而减小,∴当x=60时,y最大=10200.∴购买亲子票60张,VIP套票90张获利最大,最大利润为10200元.点评:本题考查了列一元一次不等式组解实际问题的运用,一元一次不等式组的解法的运用,一次函数的解析式的运用,一次函数的性质的运用,解答时求出函数的解析式是关键.25.(12分)(202X秋•沙坪坝区校级期末)如图,直线y=2x+m(m>0)与x轴交于点A(﹣2,0),直线y=﹣x+n(n>0)与x轴、y轴分别交于B、C两点,并与直线y=2x+m(m>0)相交于点D,若AB=4.(1)求点D的坐标;(2)求出四边形AOCD的面积;(3)若E为x轴上一点,且△ACE为等腰三角形,求点E的坐标.考点:两条直线相交或平行问题.专题:计算题.分析:(1)先把A点坐标代入y=2x+m得到m=4,则y=﹣2x+4,再利用AB=4可得到B点坐标为(2,0),则把B点坐标代入y=﹣x+n可得到n=2,则y=﹣x+2,然后根据两直线相交的问题,通过解方程组得到D点坐标;(2)先确定C点坐标为(0,2),然后利用四边形AOCD的面积=S△DAB﹣S△COB进行计算即可;(3)先利用A、C两点的坐标特征得到△ACO为等腰直角三角形,AC=2,然后分类讨论:当AE=AC=2时,以A点为圆心,2画弧交x轴于E1点和E2点,再写出它们的坐标;当CE=CA时,E3点与点A关于y轴对称,即可得到它的坐标;当EA=EC时,E4点为坐标原点.解答:解:(1)把A(﹣2,0)代入y=2x+m得﹣4+m=0,解得m=4,∴y=﹣2x+4,∵AB=4,A(﹣2,0),∴B点坐标为(2,0),把B(2,0)代入y=﹣x+n得﹣2+n=0,解得n=2,∴y=﹣x+2,解方程组得,∴D 点坐标为(﹣,);(2)当x=0时,y=﹣x+2=2,。

最新浙教版八年级数学上学期期末模拟统考检测题及答案解析(精品试题).doc

最新浙教版八年级数学上学期期末模拟统考检测题及答案解析(精品试题).doc

八年级(上)期末数学模拟试卷一、选择题(每题3分,共30分)1.下列各组数不可能是一个三角形的边长的是()A.1,2,3 B.4,4,4 C.6,6,8 D.7,8,92.满足﹣1<x≤2的数在数轴上表示为()A.B.C.D.3.如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A.∠B=∠C B.AD⊥BC C.AD平分∠BAC D.AB=2BD4.在圆周长计算公式C=2πr中,对半径不同的圆,变量有()A.C,r B.C,π,r C.C,πD.C,2π,r5.一次函数y=3x+6的图象经过()A.第一、二、三象限B.第二、三、四象限C.第一、二、四象限D.第一、三、四象限6.已知正比例函数y=kx(k≠0)的图象经过点(1,﹣2),则这个正比例函数的解析式为()A.y=2x B.y=﹣2x C.D.7.已知△ABC中,∠A=∠B=∠C,则它的三条边之比为()A.1:1:B.1::2 C.1:: D.1:4:18.如果不等式组的解集是x>7,则n的取值范围是()A.n=7 B.n<7 C.n≥7 D.n≤79.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2x,y+1),则y关于x的函数关系为()A.y=x B.y=﹣2x﹣1 C.y=2x﹣1 D.y=1﹣2x10.一次长跑中,当小明跑了1600米时,小刚跑了1400米,小明、小刚在此后所跑的路程y(米)与时间t(秒)之间的函数关系如图,则这次长跑的全程为()米.A.2000米B.2100米C.2200米D.2400米二、填空题(本小题共8小题,每小题3分,共24分)11.请用不等式表示“x的2倍与3的和大于1”:.12.已知y是x的正比例函数,当x=﹣2时,y=4,当x=3时,y= .13.已知点A的坐标为(﹣2,3),则点A关于x轴的对称点A1的坐标是.14.如图,点B,F,C,E在同一直线上,BF=CE,AB∥DE,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是(只需写一个,不添加辅助线).15.命题“等腰三角形的两个底角相等”的逆命题是.16.在平面直角坐标系中,若点A(m,2)向上平移3个单位,向左平移2个单位后得到点B(3,n),则m+n= .17.如图,△ABC中,∠ACB=90°,D在BC上,E为AB之中点,AD、CE相交于F,且AD=DB.若∠B=20°,则∠DFE等于°.18.如图,已知B1(1,y1),B2(2,y2)B3(3,y3)…在直线y=2x+3上,在x轴上取点A1,使OA1=a(0<a<1);作等腰△A1B1A2面积为S1,等腰△A2B2A3面积为S2…;求S2017﹣S2016= .三、解答题(共46分)19.解不等式<1﹣,把它的解集在数轴上表示出来,并写出该不等式的自然数解.20.在棋盘中建立如图的直角坐标系,三颗棋子A,O,B的位置如图,它们分别是(﹣1,1),(0,0)和(1,0).(1)如图2,添加棋子C,使A,O,B,C四颗棋子成为一个轴对称图形,请在图中画出该图形的对称轴;(2)在其他格点位置添加一颗棋子P,使A,O,B,P四颗棋子成为一个轴对称图形,请直接写出棋子P的位置的坐标.(写出2个即可)21.如图,已知一次函数y=2x+a与y=﹣x+b的图象都经过点A(﹣2,0)且与y 轴分别交于B,C两点.(1)分别求出这两个一次函数的解析式;(2)求△ABC的面积.22.某校八年级举行英语演讲比赛,购买A,B两种笔记本作为奖品.这两种笔记本的单价分别是12元和8元,根据比赛设奖情况需购买这两种笔记本共30本,并且所购买的A种笔记本的数量多于B种笔记本数量,但又不多于B种笔记本数量2倍,如果设他们买A种笔记本n本,买这两种笔记本共花费w元.(1)请写出w(元)关于n(本)的函数关系式,并求出自变量n的取值范围;(2)请你帮助他们计算购买这两种笔记本各多少时,花费最少,此时的花费是多少元.23.在直线上顺次取A,B,C三点,分别以AB,BC为边长在直线的同侧作正三角形,作得两个正三角形的另一顶点分别为D,E.(1)如图①,连结CD,AE,求证:CD=AE;(2)如图②,若AB=1,BC=2,求证:∠BDE=90°;(3)如图③,将图②中的正三角形BEC绕B点作适当的旋转,连结AE,若有DE2+BE2=AE2,试求∠DEB的度数.24.如图,直线y=kx﹣3与x轴、y轴分别交于B、C两点,且OC=2OB(1)求点B坐标和k值.(2)若点A(x,y)是直线y=kx﹣3上在第一象限内的一个动点,当点A在运动过程轴,求△AOB的面积S与x的函数关系式(不要求写自变量范围);并进一步求出点A的坐标为多少时,△AOB的面积为;(3)在上述条件下,x轴正半轴上是否存在点P,使△ABP为等腰三角形?若存在请写出满足条件的所有P点坐标;若不存在,请说明理由.数学试卷参考答案与试题解析一、选择题(每题3分,共30分)1.下列各组数不可能是一个三角形的边长的是()A.1,2,3 B.4,4,4 C.6,6,8 D.7,8,9【考点】三角形三边关系.【分析】看哪个选项中两条较小的边的和不大于最大的边即可.【解答】解:A、1+2=3,不能构成三角形;B、4+4>4,能构成三角形;C、6+6>8,能构成三角形;D、7+8>9,能构成三角形.故选A.2.满足﹣1<x≤2的数在数轴上表示为()A.B.C.D.【考点】在数轴上表示不等式的解集.【分析】﹣1<x≤2表示不等式x>﹣1与不等式x≤2的公共部分.实心圆点包括该点,空心圆圈不包括该点,大于向右小于向左.两个不等式的公共部分就是不等式组的解集.【解答】解:由于x>﹣1,所以表示﹣1的点应该是空心点,折线的方向应该是向右.由于x≤2,所以表示2的点应该是实心点,折线的方向应该是向左.所以数轴表示的解集为故选B.3.如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A.∠B=∠C B.AD⊥BC C.AD平分∠BAC D.AB=2BD【考点】等腰三角形的性质.【分析】此题需对每一个选项进行验证从而求解.【解答】解:∵△ABC中,AB=AC,D是BC中点∴∠B=∠C,(故A正确)AD⊥BC,(故B正确)∠BAD=∠CAD(故C正确)无法得到AB=2BD,(故D不正确).故选:D.4.在圆周长计算公式C=2πr中,对半径不同的圆,变量有()A.C,r B.C,π,r C.C,πD.C,2π,r【考点】常量与变量.【分析】根据函数的意义可知:变量是改变的量,常量是不变的量,据此即可确定变量与常量.【解答】解:∵在圆的周长公式C=2πr中,C与r是改变的,π是不变的;∴变量是C,r,常量是2π.故选A.5.一次函数y=3x+6的图象经过()A.第一、二、三象限B.第二、三、四象限C.第一、二、四象限D.第一、三、四象限【考点】一次函数图象与系数的关系;一次函数的性质.【分析】根据一次函数解析式中k=3>0、b=6>0,结合一次函数图象与系数的关系即可得出结论.【解答】解:∵在一次函数y=3x+6中:k=3>0,b=6>0,∴一次函数y=3x+6的图象经过第一、二、三象限.故选A.6.已知正比例函数y=kx(k≠0)的图象经过点(1,﹣2),则这个正比例函数的解析式为()A.y=2x B.y=﹣2x C.D.【考点】待定系数法求正比例函数解析式.【分析】利用待定系数法把(1,﹣2)代入正比例函数y=kx中计算出k即可得到解析式.【解答】解:∵正比例函数y=kx经过点(1,﹣2),∴﹣2=1•k,解得:k=﹣2,∴这个正比例函数的解析式为:y=﹣2x.故选B.7.已知△ABC中,∠A=∠B=∠C,则它的三条边之比为()A.1:1:B.1::2 C.1:: D.1:4:1【考点】勾股定理.【分析】根据给出的条件和三角形的内角和定理计算出三角形的角,再计算出它们的边的比.【解答】解:∵∠A=∠B=∠C,∠A+∠B+∠C=180°,∴∠A=30°,∠B=60°,∠C=90°,∴c=2a,b=a,∴三条边的比是1::2.故选:B.8.如果不等式组的解集是x>7,则n的取值范围是()A.n=7 B.n<7 C.n≥7 D.n≤7【考点】解一元一次不等式组.【分析】先解两个不等式得到x>7和x>n,然后根据同大取大可确定n的范围.【解答】解:,解①得x>7,解②得x>n,而不等式组的解集是x>7,所以n≤7.故选D.9.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2x,y+1),则y关于x的函数关系为()A.y=x B.y=﹣2x﹣1 C.y=2x﹣1 D.y=1﹣2x【考点】作图—基本作图;坐标与图形性质.【分析】根据角平分线的性质以及第二象限点的坐标特点,进而得出答案.【解答】解:由题意可得出:P点在第二象限的角平分线上,∵点P的坐标为(2x,y+1),∴2x=﹣(y+1),∴y=﹣2x﹣1.故选:B.10.一次长跑中,当小明跑了1600米时,小刚跑了1400米,小明、小刚在此后所跑的路程y(米)与时间t(秒)之间的函数关系如图,则这次长跑的全程为()米.A.2000米B.2100米C.2200米D.2400米【考点】一次函数的应用.【分析】设小明的速度为a米/秒,小刚的速度为b米/秒,由行程问题的数量关系建立方程组求出其解即可.【解答】解:设小明的速度为a米/秒,小刚的速度为b米/秒,由题意,得,解得:.故这次越野跑的全程为:1600+300×2=2200米.故选C.二、填空题(本小题共8小题,每小题3分,共24分)11.请用不等式表示“x的2倍与3的和大于1”:2x+3>1 .【考点】由实际问题抽象出一元一次不等式.【分析】x的2倍为2x,大于1即>1,据此列不等式.【解答】解:由题意得,2x+3>1.故答案为:2x+3>1.12.已知y是x的正比例函数,当x=﹣2时,y=4,当x=3时,y= ﹣6 .【考点】待定系数法求正比例函数解析式.【分析】设y与x之间的函数关系式是y=kx,把x=﹣2,y=4代入求出k的值,得出解析式,然后代入x=3,求得y即可.【解答】解:设y与x之间的函数关系式是y=kx,把x=﹣2,y=4代入得:4=﹣2k,解得:k=﹣2,所以,y=﹣2x,当x=3时,y=﹣2×3=﹣6,故答案为﹣6.13.已知点A的坐标为(﹣2,3),则点A关于x轴的对称点A1的坐标是(﹣2,﹣3).【考点】关于x轴、y轴对称的点的坐标.【分析】根据平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,﹣y),进而得出答案.【解答】解:∵点A的坐标为(﹣2,3),则点A关于x轴的对称点A1的坐标是(﹣2,﹣3).故答案为:(﹣2,﹣3).14.如图,点B,F,C,E在同一直线上,BF=CE,AB∥DE,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是AB=DE (只需写一个,不添加辅助线).【考点】全等三角形的判定.【分析】求出BC=EF,∠ABC=∠DEF,根据SAS推出两三角形全等即可.【解答】解:AB=DE,理由是:∵BF=CE,∴BF+FC=CE+FC,∴BC=EF,∵AB∥DE,∴∠ABC=∠DEF,在△ABC和△DEF中,∴△ABC≌△DEF(SAS),故答案为:AB=DE.15.命题“等腰三角形的两个底角相等”的逆命题是两个角相等三角形是等腰三角形.【考点】命题与定理.【分析】先找到原命题的题设和结论,再将题设和结论互换,即可而得到原命题的逆命题.【解答】解:因为原命题的题设是:“一个三角形是等腰三角形”,结论是“这个三角形两底角相等”,所以命题“等腰三角形的两个底角相等”的逆命题是“两个角相等三角形是等腰三角形”.16.在平面直角坐标系中,若点A(m,2)向上平移3个单位,向左平移2个单位后得到点B(3,n),则m+n= 10 .【考点】坐标与图形变化﹣平移.【分析】直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【解答】解:∵点A(m,2)向上平移3个单位,向左平移2个单位后得到点B (3,n),∴m﹣2=3,2+3=n,∴m=5,n=5,∴m+n=10,故答案为:10.17.如图,△ABC中,∠ACB=90°,D在BC上,E为AB之中点,AD、CE相交于F,且AD=DB.若∠B=20°,则∠DFE等于60 °.【考点】直角三角形斜边上的中线.【分析】由直角三角形的性质知,中线CE=AE=BE,所以∠EAC=∠ECA,∠B=∠BCE,由三角形内角和即可求得.【解答】解:由直角三角形性质知,∵E为AB之中点,∴CE=AE=BE,(直角三角形斜边上的中线等于斜边的一半)∴∠B=∠BCE=20°,∠EAC=∠ECA=70°,∴∠ACF=70°,又∵AD=DB,∴∠B=∠BAD=20°,∴∠FAC=50°,∴在△ACF中,∠AFC=180°﹣70°﹣50°=60°,∴∠DFE=∠AFC=60°.故答案为,6018.如图,已知B1(1,y1),B2(2,y2)B3(3,y3)…在直线y=2x+3上,在x轴上取点A1,使OA1=a(0<a<1);作等腰△A1B1A2面积为S1,等腰△A2B2A3面积为S2…;求S2017﹣S2016= 4037﹣8072a .【考点】一次函数图象上点的坐标特征;等腰三角形的性质.【分析】根据一次函数图象上点的坐标特征,求得点B1、B2、B3的纵坐标,然后由三角形的面积公式求得S1,S2…S n;由此得出规律,即可求得S2017﹣S2016的值.【解答】解:∵B1(1,y1)、B2(2,y2)、B3(3,y3),…,在直线y=2x+3上,∴y1=2×1+3=5,y2=2×2+3=7,y3=2×3+3=9,y4=2×4+3=11,…,y n=2n+3;又∵OA1=a(0<a<1),∴S1=×2×(1﹣a)×5=5(1﹣a);S2=×2×[2﹣a﹣2×(1﹣a)]×7=7a;S3=×2×{3﹣a﹣2×(1﹣a)﹣2×[2﹣a﹣2×(1﹣a)]}×9=9(1﹣a);S4=×2×[1﹣(1﹣a)]×11=11a;…∴S n=(2n+3)(1﹣a)(n是奇数);S n=(2n+3)a(n是偶数),∴S2017﹣S2016=(2×2017+3)(1﹣a)﹣(2×2016+3)a=4037﹣8072a.故答案是:4037﹣8072a.三、解答题(共46分)19.解不等式<1﹣,把它的解集在数轴上表示出来,并写出该不等式的自然数解.【考点】一元一次不等式的整数解;在数轴上表示不等式的解集;解一元一次不等式.【分析】先求出不等式的解集,再在数轴上表示解集,最后求出自然数解即可.【解答】解:去分母得:2x<4﹣x+3,2x+x<4+3,3x<7,x<,在数轴上表示为:,不等式的自然数解为0,1,2.20.在棋盘中建立如图的直角坐标系,三颗棋子A,O,B的位置如图,它们分别是(﹣1,1),(0,0)和(1,0).(1)如图2,添加棋子C,使A,O,B,C四颗棋子成为一个轴对称图形,请在图中画出该图形的对称轴;(2)在其他格点位置添加一颗棋子P,使A,O,B,P四颗棋子成为一个轴对称图形,请直接写出棋子P的位置的坐标.(写出2个即可)【考点】利用轴对称设计图案;坐标与图形性质.【分析】(1)根据A,B,O,C的位置,结合轴对称图形的性质进而画出对称轴即可;(2)利用轴对称图形的性质得出P点位置.【解答】解:(1)如图2所示,C点的位置为(﹣1,2),A,O,B,C四颗棋子组成等腰梯形,直线l为该图形的对称轴;(2)如图1所示:P(0,﹣1),P′(﹣1,﹣1)都符合题意.21.如图,已知一次函数y=2x+a与y=﹣x+b的图象都经过点A(﹣2,0)且与y 轴分别交于B,C两点.(1)分别求出这两个一次函数的解析式;(2)求△ABC的面积.【考点】两条直线相交或平行问题.【分析】(1)把A点坐标分别代入两函数解析式,可求得a、b的值,可求得两函数的解析式;(2)由两函数解析式,可求得B、C两点的坐标,可求得△ABC的面积.【解答】解:(1)把A(﹣2,0)分别代入y=2x+a和y=﹣x+b得,a=4,b=﹣2,∴这两个函数分别为y=2x+4和y=﹣x﹣2;(2)在y=2x+4和y=﹣x﹣2中,令x=0,可分别求得y=4和y=﹣2,∴B(0,4),C(0,﹣2),又∵A(﹣2,0),∴OA=2,BC=6,∴S△ABC=OA•BC=×2×6=6.22.某校八年级举行英语演讲比赛,购买A,B两种笔记本作为奖品.这两种笔记本的单价分别是12元和8元,根据比赛设奖情况需购买这两种笔记本共30本,并且所购买的A种笔记本的数量多于B种笔记本数量,但又不多于B种笔记本数量2倍,如果设他们买A种笔记本n本,买这两种笔记本共花费w元.(1)请写出w(元)关于n(本)的函数关系式,并求出自变量n的取值范围;(2)请你帮助他们计算购买这两种笔记本各多少时,花费最少,此时的花费是多少元.【考点】一次函数的应用.【分析】(1)根据题意可以求得w关于n的函数关系式,由所购买的A种笔记本的数量多于B种笔记本数量,但又不多于B种笔记本数量2倍,可以确定n 的取值范围;(2)根据(1)中的函数关系式可以求得w的最小值及此时购买的A和B种两种笔记本的数量.【解答】解:(1)由题意可得,w=12n+8(30﹣n)=4n+240,∵,解得,15<n≤20,即w(元)关于n(本)的函数关系式是w=4n+240(15<n≤20);(2)∵w=4n+240(15<n≤20),n为正整数,∴n=16时,w取得最小值,此时w=4×16+240=304,∴30﹣n=30﹣16=14,即购买A种笔记本16本、B种笔记本14本时,花费最少,此时的花费是304元.23.在直线上顺次取A,B,C三点,分别以AB,BC为边长在直线的同侧作正三角形,作得两个正三角形的另一顶点分别为D,E.(1)如图①,连结CD,AE,求证:CD=AE;(2)如图②,若AB=1,BC=2,求证:∠BDE=90°;(3)如图③,将图②中的正三角形BEC绕B点作适当的旋转,连结AE,若有DE2+BE2=AE2,试求∠DEB的度数.【考点】三角形综合题.【分析】(1)欲证明CD=AE,只要证明△ABE≌△DBC即可.(2)如图②中,取BE中点F,连接DF,证出△DBF是等边三角形,进一步得出∴∠FDE=∠FED=30°,即可证明△BDE是直角三角形.(3)如图③中,连接DC,先利用勾股定理的逆定理证明△DEC是直角三角形,得∠DEC=90°即可解决问题.【解答】(1)证明:∵△ABD和△ECB都是等边三角形,∴AD=AB=BD,BC=BE=EC,∠ABD=∠EBC=60°,∴∠ABE=∠DBC,在△ABE和△DBC中,,∴△ABE≌△DBC(SAS),∴CD=AE.(2)证明:如图②中,取BE中点F,连接DF.∵BD=AB=1,BE=BC=2,∠ABD=∠EBC=60°,∴BF=EF=1=BD,∠DBF=60°,∴△DBF是等边三角形,∴DF=BF=EF,∠DFB=60°,∵∠BFD=∠FED+∠FDE,∴∠FDE=∠FED=30°∴∠EDB=180°﹣DEB∠DBE﹣∠DEB=90°.(3)解:如图③中,连接DC,∵△ABD和△ECB都是等边三角形,∴AD=AB=BD,BC=BE=EC,∠ABD=∠EBC=60°,∴∠ABE=∠DBC,在△ABE和△DBC中,,∴△ABE≌△DBC(SAS),∴AE=DC.∵DE2+BE2=AE2,BE=CE,∴DE2+CE2=CD2,∴∠DEC=90°,∵∠BEC=60°,∴∠DEB=∠DEC﹣∠BEC=30°.24.如图,直线y=kx﹣3与x轴、y轴分别交于B、C两点,且OC=2OB(1)求点B坐标和k值.(2)若点A(x,y)是直线y=kx﹣3上在第一象限内的一个动点,当点A在运动过程轴,求△AOB的面积S与x的函数关系式(不要求写自变量范围);并进一步求出点A的坐标为多少时,△AOB的面积为;(3)在上述条件下,x轴正半轴上是否存在点P,使△ABP为等腰三角形?若存在请写出满足条件的所有P点坐标;若不存在,请说明理由.【考点】一次函数综合题.【分析】(1)首先求得直线y=kx﹣3与y轴的交点,则OC的长度即可求解,进而求得B的坐标,把B的坐标代入解析式即可求得k的值;(2)根据三角形的面积公式即可求解;再利用函数关系式即可得出结论;(3)分三种情况,利用等腰三角形的性质即可得出结论.【解答】解:(1)在y=kx﹣3中,令x=0,则y=﹣3,∴C的坐标是(0,﹣3),OC=3,∵OC=2OB,∴OB=OC=,则B的坐标是:(,0),把B的坐标代入y=kx﹣3,得:k﹣3=0,∴k=2;(2)OB=,则S=×(2x﹣3)=x﹣;∵△AOB的面积为;∴x﹣=,∴x=3,则A的坐标是(3,3);(3)设P(m,0),(m>0)由(1)(2)知,A(3,3),B(,0),∴AB2=(3﹣)2+9=,AP2=(m﹣3)2+9=m2﹣6m+18,BP2=(m﹣)2,∵△ABP为等腰三角形,①当AB=AP时,∴AB2=AP2,∴=m2﹣6m+18,∴m=﹣(舍)或m=,∴P(,0)②当AB=BP时,∴AB2=BP2,∴=(m﹣)2,∴m=(舍)或m=,∴P(,0)③当AP=BP时,AP2=BP2,∴m2﹣6m+18=(m﹣)2,∴m=,∴P(,0)满足条件的P的坐标为P(,0)或(,0)或(,0).2017年2月28日。

山东省临沂市兰陵县2022-2023学年八年级数学第一学期期末教学质量检测模拟试题含解析

山东省临沂市兰陵县2022-2023学年八年级数学第一学期期末教学质量检测模拟试题含解析

2022-2023学年八上数学期末模拟试卷考生须知: 1.全卷分选择题和非选择题两部分,全部在答题纸上作答。

选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。

2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。

3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

一、选择题(每题4分,共48分)1.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x 匹,小马有y 匹,则可列方程组为( )A .100131003x y x y +=⎧⎪⎨+=⎪⎩B .100131003x y x y +=⎧⎪⎨+=⎪⎩C .1003100x y x y +=⎧⎨+=⎩D .1003100x y x y +=⎧⎨+=⎩2.如图,∠AOB =150°,OC 平分∠AOB ,P 为OC 上一点,PD ∥OA 交OB 于点D ,PE ⊥OA 于点E .若OD =4,则PE 的长为( )A .2B .2.5C .3D .43.如图,将一块含有30角的直角三角尺的两个顶点放在长方形直尺的一组对边上,如果268∠=︒,那么1∠的度数为( )A .38︒B .35︒C .34︒D .304.如图钢架中,∠A=a ,焊上等长的钢条P 1P 2,P 2P 3,P 3P 4,P 4P 5来加固钢架,若P 1A=P 1P 2,∠P 5P 4B=95°,则a 等于( )A.18°B.23.75°C.19°D.22.5°5.如图,在△ABC中,AB=AC,以B为圆心,BC长为半径画弧,交AC于点D,则下列结论一定正确的是()A.AD=DC B.AD=BD C.∠DBC=∠A D.∠DBC=∠ABD6.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧①;步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是( )A.BH垂直平分线段AD B.AC平分∠BADC.S△ABC=BC⋅AH D.AB=AD7.在投掷一枚硬币100次的试验中,“正面朝下”的频数45,则“正面朝下”的频率为( )A.0.45B.0.55C.45D.558.下列因式分解结果正确的有( )①32-(-1)x x x x =;②2-9(3)(-3)a a a =+;③2224(2)x x x ++=+;④322-412-(4-12)m m m m += A .1个B .2个C .3个D .4个9.等腰三角形是轴对称图形,它的对称轴是( ) A .中线 B .底边上的中线C .中线所在的直线D .底边上的中线所在的直线10.给出下列四组条件:①AB=DE ,BC=EF ,AC=DF ; ②AB=DE ,∠B=∠E .BC=EF ; ③∠B=∠E ,AC =DF ,∠C=∠F ; ④AB=DE ,AC=DF ,∠B=∠E . 其中,能使△ABC ≌△DEF 的条件共有( ) A .1组B .2组C .3组D .4组11.下列计算正确的是( ) A .339x x x = B .224x x x +=C .()()257xx x--= D .632x x x ÷=12.如图,观察图中的尺规作图痕迹,下列说法错误的是( )A .DAE EAC ∠=∠B .C EAC ∠=∠ C .//AE BCD .DAE B ∠=∠二、填空题(每题4分,共24分)13.函数x 1的自变量x 的取值范围是 .14.已知函数y=x+m-2019 (m 是常数)是正比例函数,则m= ____________ 15.一粒大米的质量约为0.000021千克,将0.000021这个数用科学记数法表示为____________16.如图,已知一次函数()0y ax b a =+≠和()0y kx k =≠的图象交于点P ,则二元一次方程组220y ax by kx --=⎧⎨--=⎩的解是 _______.17.比较大小23______5(填“>”或“<”) . 18.点P (3,-4)到 x 轴的距离是_____________. 三、解答题(共78分) 19.(8分)解方程: (1)4x 2=25 (2)(x ﹣2)3+27=020.(8分)小明在学了尺规作图后,通过“三弧法”作了一个ACD △,其作法步骤是: ①作线段AB ,分别以,A B 为圆心,取AB 长为半径画弧,两弧的交点为C ; ②以B 为圆心,AB 长为半径画弧交AB 的延长线于点D ; ③连结,,AC BC CD .画完后小明说他画的ACD △的是直角三角形,你认同他的说法吗,请说明理由.21.(8分)小慧根据学习函数的经验,对函数11y x =-+图像与性质进行了探究,下面是小慧的探究过程,请补充完整:(1)若()8,8A ,(),8B m 为该函数图像上不同的两点,则m = ,该函数的最小值为 .(2)请在坐标系中画出直线1132y x =+与函数11y x =-+的图像并写出当1y y ≤时x 的取值范围是 .22.(10分)一辆汽车开往距离出发地300km 的目的地,出发后第一小时内按原计划的速度匀速行驶,一小时后以原来速度的1.2倍匀速行驶,并比原计划提前半小时到达目的地.求汽车前一小时的行驶速度. 23.(10分)计算: (1231(2)510683-- (33224332⎛÷ ⎝a ab a b bb 24.(10分)新华中学暑假要进行全面维修,有甲、乙两个工程队共同完成,甲队单独完成这项工程所需天数是乙队单独完成所需天数的23,若由甲队先做10天,剩下的工程再由甲、乙两队合作,再做30天可以完成. (1)求甲、乙两队单独完成这项工程各需多少秀?(2)已知甲队每天的施工费用为0.84万元,乙队每天的施工费用为0.56万元,若由甲、乙两队合作,则工程预算的施工费用50万元是否够用?若不够用,需追加多少万元?25.(12分)(1)化简 22221244a b a b a b a ab b ---÷+++ (2)解方程21333x x x--=-- (3)分解因式 228168ax axy ay -+-26.如图,ABC ∆三个顶点的坐标分别为()1,1A 、()4,2B 、()3,4C .(1)若111A B C ∆与ABC ∆关于y 轴成轴对称,则111A B C ∆三个顶点坐标分别为1A _________,1B ____________,1C ____________;(2)若P 为x 轴上一点,则PA PB +的最小值为____________; (3)计算ABC ∆的面积.参考答案一、选择题(每题4分,共48分) 1、B【分析】设大马有x 匹,小马有y 匹,根据题意可得等量关系:大马数+小马数=100,大马拉瓦数+小马拉瓦数=100,根据等量关系列出方程即可. 【详解】解:设大马有x 匹,小马有y 匹,由题意得:100131003x y x y +=⎧⎪⎨+=⎪⎩, 故选:B . 【点睛】本题主要考查的是由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,列出方程组. 2、A【解析】分析:根据平行线的性质,可得∠PDO 的度数,然后过O 作OF⊥PD 于F ,根据平行线的推论和30°角所在的直角三角形的性质可求解. 详解:∵PD ∥OA ,∠AOB=150° ∴∠PDO+∠AOB=180°∴∠PDO=30° 过O 作OF⊥PD 于F ∵OD=4 ∴OF=12×OD=2 ∵PE ⊥OA ∴FO=PE=2. 故选A.点睛:此题主要考查了直角三角形的性质,关键是通过作辅助线,利用平行线的性质和推论求出FO=PE. 3、A【分析】先根据两直线平行内错角相等得出2=3∠∠,再根据外角性质求出1∠即得. 【详解】如下图:∵a ∥b ,268∠=︒ ∴2=3=68︒∠∠ ∵3=1+30︒∠∠ ∴1=330=38-︒︒∠∠故选:A . 【点睛】本题考查了平行线的性质及三角形外角性质,抓住直尺两边平行的性质是解题关键. 4、C【分析】已知∠A=α,根据等腰三角形等边对等角的性质以及三角形一个外角等于与它不相邻的两个内角和求出∠P 5P 4B=5α,且∠P 5P 4B=95°,即可求解. 【详解】∵P 1A=P 1P 2=P 2P 3=P 3P 4=P 4P 5 ∴∠A=∠AP 2P 1=α∴312132122P PP PP P A PP A ααα∠=∠=∠+∠=+=32434213223P P P P P P A PP P ααα∠=∠=∠+∠=+= 53435434234P P P P P P A P P P ααα∠=∠=∠+∠=+=∵∠P 5P 4B=3544595A P P P ααα∠+∠=+==︒ ∴19α=︒ 故选:C 【点睛】本题考查了等腰三角形等边对等角的性质以及三角形一个外角等于与它不相邻的两个内角和. 5、C【分析】根据等腰三角形的性质可得,ACB ABC ACB BDC ∠=∠∠=∠,再结合三角形的内角和定理可得DBC A ∠=∠. 【详解】AB AC =ACB ABC ∴∠=∠∵以B 为圆心,BC 长为半径画弧DB BC ∴=ACB BDC ∴∠=∠ACB BDC ABC ∴∠=∠=∠ 180180ACB ABC A ACB BDC DBC ∠+∠+∠=︒⎧⎨∠+∠+∠=︒⎩DBC A ∴∠=∠故选:C . 【点睛】本题考查了等腰三角形的性质(等边对等角)、三角形的内角和定理,熟记等腰三角形的相关性质是解题关键. 6、A【详解】解:如图连接CD 、BD ,∵CA=CD ,BA=BD ,∴点C 、点B 在线段AD 的垂直平分线上, ∴直线BC 是线段AD 的垂直平分线, 故A 正确.B 、错误.CA 不一定平分∠BDA .C 、错误.应该是S △ABC =12•BC•AH . D 、错误.根据条件AB 不一定等于AD . 故选A . 7、A【分析】根据事件发生的频率的定义,求得事件“正面朝下”的频率即可. 【详解】解:“正面朝下”的频数45,则“正面朝下”的频率为45=0.45100, 故答案为:A . 【点睛】本题考查了频率的定义,解题的关键是正确理解题意,掌握频率的定义以及用频数计算频率的方法. 8、A【分析】根据提公因式法和公式法因式分解即可.【详解】①32(1)(1)(1)x x x x x x x -=-=+-,故①错误; ②()293(3)a a a =+--,故②正确;③2224(2)x x x ++≠+,故③错误; ④3224124(3)m m m m -+=--,故④错误. 综上:因式分解结果正确的有1个 故选A . 【点睛】此题考查的是因式分解,掌握提公因式法和公式法因式分解是解决此题的关键,需要注意的是因式分解要彻底. 9、D【分析】根据等腰三角形的三线合一的性质,可得出答案.【详解】解:等腰三角形的对称轴是顶角的角平分线所在直线,底边高所在的直线,底边中线所在直线, A 、中线,错误; B 、底边上的中线,错误; C 、中线所在的直线,错误; D 、底边上的中线所在的直线,正确. 故选D . 【点睛】本题考查了轴对称图形的知识,解答本题的关键是掌握轴对称及对称轴的定义. 10、C【分析】根据全等三角形的判定方法逐一判断即得答案.【详解】解:①若AB=DE ,BC=EF ,AC=DF ,则根据SSS 能使△ABC ≌△DEF ; ②若AB=DE ,∠B=∠E ,BC=EF ,则根据SAS 能使△ABC ≌△DEF ; ③若∠B=∠E ,AC =DF ,∠C=∠F ,则根据AAS 能使△ABC ≌△DEF ; ④若AB=DE ,AC=DF ,∠B=∠E ,满足有两边及其一边的对角对应相等,不能使△ABC ≌△DEF ;综上,能使△ABC ≌△DEF 的条件共有3组. 故选:C . 【点睛】本题考查了全等三角形的判定,属于基础题型,熟练掌握判定三角形全等的方法是解题的关键. 11、C【解析】直接利用同底数幂的乘除法运算法则、合并同类项法则分别化简求出答案. 【详解】A. 336x x x =,故此项错误; B. 2222x x x +=,故此项错误; C. ()()257xx x --=,故此项正确;D. 633x x x ÷=,故此项错误.故选:C【点睛】本题是考查计算能力,主要涉及同底数幂的乘除法运算法则、合并同类项法则,掌握这些运算法则是解题的关键.12、A【分析】由作法知,∠DAE=∠B ,进而根据同位角相等,两直线平行可知AE ∥BC ,再由平行线的性质可得∠C=∠EAC.【详解】由作法知,∠DAE=∠B ,∴AE ∥BC ,∴∠C=∠EAC ,∴B 、C 、D 正确;无法说明A 正确.故选A.【点睛】本题主要考查了尺规作图,平行线的性质与判定的综合应用,熟练掌握平行线的性质与判定方法是解答本题的关键.解题时注意:平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.二、填空题(每题4分,共24分)13、x≥1【解析】试题分析:根据二次根式有意义的条件是被开方数大于等于1,可知x≥1. 考点:二次根式有意义14、1【分析】根据正比例函数的定义,m-1=0,从而求解.【详解】解:根据题意得:m-1=0,解得:m=1,故答案为1.【点睛】本题主要考查了正比例函数的定义,形如y =kx (k 是常数,k ≠0)的函数,其中k 叫做比例系数.正比例函数一定是一次函数,但一次函数不一定是正比例函数.15、-52.110【解析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数,0.000021=2.1×10-5,故答案为2.1×10-5. 16、40x y =-⎧⎨=⎩【分析】2y ax b --=是()0y ax b a =+≠图像上移2个单位,20y kx --=是()0y kx k =≠图像上移2个单位,所以交点P 也上移两个单位,据此即可求得答案.【详解】解:∵2y ax b --=是()0y ax b a =+≠图像上移2个单位得到, 20y kx --=是()0y kx k =≠图像上移2个单位得到,∴ 交点P (-4,-2),也上移两个单位得到P '(-4,0),∴++2+2y ax b y kx =⎧⎨=⎩的解为40x y =-⎧⎨=⎩, 即方程组220y ax b y kx --=⎧⎨--=⎩ 的解为40x y =-⎧⎨=⎩, 故答案为:40x y =-⎧⎨=⎩. 【点睛】此题主要考查了一次函数与二元一次方程(组):函数图像的交点坐标为两函数解析式组成的方程组的解.17、<【分析】根据算术平方根的意义,将,将5比较.【详解】解:∵又∵1225<,<即5<.故答案为:<.【点睛】本题考查实数的大小比较,掌握算术平方根的意义正确将,将5写成18、4【解析】试题解析:根据点与坐标系的关系知,点到x 轴的距离为点的纵坐标的绝对值, 故点P (3,﹣4)到x 轴的距离是4.三、解答题(共78分)19、(1)x =±52;(2)x =﹣1【分析】(1)由直接开平方法,即可求解;(2)先移项,再开立方,即可求解.【详解】(1)4x 2=25,x 2=254, ∴x =±52;(2)(x ﹣2)3+27=0,(x ﹣2)3=﹣27,x ﹣2=﹣3,∴x =﹣1.【点睛】本题主要考查解方程,掌握开平方和开立方运算,是解题的关键.20、同意,理由见解析【分析】利用等边对等角可得,A ACB D BCD ∠=∠∠=∠,再根据三角形内角和定理即可证明.【详解】同意,理由如下:解:∵AC=BC=BD ,∴,A ACB D BCD ∠=∠∠=∠,∵180A ACD D ∠+∠+∠=︒,∴2()180A ACB BCD D ACB BCD ∠+∠+∠+∠=∠+∠=︒,∴180ACB BCD ∠+∠=︒,∴∠ACD=90° ,即△ACD 是直角三角形.【点睛】本题考查等边对等角,三角形内角和定理.能利用等边对等角把相等的边转化为相等的角是解题关键.21、(1)6-,1;(2)作图见解析,23x ≤或6x ≥ 【分析】(1)将(),8B m 代入函数解析式,即可求得m ,由10x -≥可知1y ≥; (2)采用描点作图画出图象,再根据图象判断直线1132y x =+在函数11y x =-+图象下方时x 的取值范围,即可得到1y y ≤时x 的取值范围.【详解】(1)将(),8B m 代入11y x =-+得:118-+=m ,解得8m =或-6∵()8,8A ,(),8B m 为该函数图像上不同的两点∴6m =-∵10x -≥∴111=-+≥y x 即函数的最小值为1,故答案为:-6,1.(2)当1x ≥时,函数11==-+y x x ,当1x <时,函数11=2=-+-y x x如图所示,设y 1与y 的图像左侧交点为A ,右侧交点为B解方程组1322y x y x ⎧=+⎪⎨⎪=-⎩得2383x y ⎧=-⎪⎪⎨⎪=⎪⎩,则A 点坐标为2833,⎛⎫- ⎪⎝⎭, 解方程组132y x y x⎧=+⎪⎨⎪=⎩得66x y =⎧⎨=⎩,则B 点坐标为()66, 观察图像可得:当直线1132y x =+在函数11y x =-+图象下方时, x 的取值范围为23x ≤-或6x ≥, 所以当1y y ≤时x 的取值范围是23x ≤-或6x ≥. 故答案为:23x ≤-或6x ≥. 【点睛】 本题考查了一次函数的图像与性质,熟练掌握一次函数交点的求法以及一次函数与不等式的关系是解题的关键.22、汽车前一小时的速度是75km/时【分析】设汽车前一小时的行驶速度为km/x 时,则一小时后的速度为1.2xkm/时,根据“原计划所需时间=1小时+提速后所用时间+半小时”的等量关系列方程求解.【详解】解:设汽车前一小时的行驶速度为km/x 时 根据题意得,30030011 1.22x x x -=++ 去分母得,360 1.23000.6x x x =+-+解得75x =经检验75x =是原方程的根答:汽车前一小时的速度是75km/时.【点睛】本题考查分式方程的应用,理解题意找准等量关系是解题关键,注意分式方程结果要检验.23、(1)42-;(2)2-【分析】(1)先进行二次根式的乘除法运算,再将二次根式化简,同时求出立方根,最后合并化简;(2)根据二次根式的性质和乘除法法则计算化简即可.【详解】解:(1)原式22422 ==+=-;(2)原式314()22 23=⨯-⨯==--【点睛】本题考查的知识点是二次根式的混合运算,掌握二次根式混合运算的运算顺序以及运算法则是解此题的关键.24、(1)甲乙两队单独完成这项工程雷要60天和90天;(2)工程預算费用不够,需追要0.4万元.【分析】(1)由题意设乙队单独完成这项工程需要x天,则甲队单独完戒这项工程需要23x天,根据题意列出方程求解即可;(2)由题意设甲乙两队合作完成这项工程需要y天,并根据题意解出y的值,进而进行分析即可.【详解】解:(1)设乙队单独完成这项工程需要x天,则甲队单独完戒这项工程需要2 3 x天,依题意则有111 10301 2233xx x⎛⎫⎪++⨯⨯=⎪⎪⎝⎭解得90x=经检验,90x=是原分式方程的解,且符合题意22=90=6033x⨯(天)故甲乙两队单独完成这项工程雷要60天和90天.(2)设甲乙两队合作完成这项工程需要y天,则111 6090y⎛⎫+= ⎪⎝⎭解得y=36所需费用36(0.840.56)50.4⨯+=(万元)50.450∴>,∴工程預算费用不够,需追要0.4万元.【点睛】本题考查分式方程的应用,根据题意找到合适的等量关系列出方程是解决问题的关键.25、(1)b a b-+;(2)无解;(3)()28a x y -- 【分析】(1)直接根据分式知识化简即可;(2)去分母然后解方程即可;(3)先提公因式,再根据完全平方因式分解即可.【详解】解:(1)()()()2221a b a b a a a b b b --+++-· =21a b a b-++ =()()2a b a b a b+--+ =()()2a b a b a b+-++ =b a b-+; (2)21333x x x -+=-- 2139x x -+=-3x =检验:把x=3代入得:x-3=0,则x=3为方程的增根,故原方程无解;(3)原式=228168ax axy ay -+-=()2282a x xy y--+=()28a x y --.【点睛】 本题是对计算的综合考查,熟练掌握分式化简,分式方程及因式分解是解决本题的关键.26、(1)作图见解析,A 1(-1,1)、B 1(-4,2)、C 1(-3,4);(2)(3)72. 【分析】(1)分别作出点A ,B ,C 关于x 轴的对称点,再首尾顺次连接即可得; (2)作出点A 的对称点,连接A'B ,则A'B 与x 轴的交点即是点P 的位置,则PA+PB 的最小值=A′B ,根据勾股定理即可得到结论;(3)根据三角形的面积公式即可得到结论.【详解】(1)如图所示,△A 1B 1C 1即为所求,由图知,A1的坐标为(-1,1)、B1的坐标为(-4,2)、C1的坐标为(-3,4);(2)如图所示:作出点A的对称点,连接A'B,则A'B与x轴的交点即是点P的位置,则PA+PB的最小值=A′B,∵223332+=∴PA+PB的最小值为32(3)△ABC的面积=1117 333112232222⨯-⨯⨯-⨯⨯-⨯⨯=.【点睛】本题主要考查作图-轴对称变换,解题的关键是熟练掌握轴对称变换的定义和性质及利用轴对称性质求最短路径.。

人教版2022-2023学年八年级数学上册期末模拟测试题(附答案)

人教版2022-2023学年八年级数学上册期末模拟测试题(附答案)

2022-2023学年八年级数学上册期末模拟测试题(附答案)一、选择题(共计24分)1.点P(1,2)关于y轴对称点的坐标是()A.(﹣1,2)B.(1,﹣2)C.(1,2)D.(﹣1,﹣2)2.将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是()A.1、2、3B.2、3、4C.3、4、5D.4、5、63.如图,点D为△ABC的边BC延长线上一点,关于∠B与∠ACD的大小关系,下列说法正确的是()A.∠B>∠ACD B.∠B=∠ACD C.∠B<∠ACD D.无法确定4.明明在对一组数据:9,1■,25,25,进行统计分析,发现其中一个两位数的个位数字被墨水涂污看不到了,则计算结果与被涂污数字无关的是()A.众数B.中位数C.平均数D.方差5.代入法解方程组时,代入正确的是()A.x﹣2﹣x=7B.x﹣2﹣2x=7C.x﹣2+2x=7D.x﹣2+x=7 6.下列计算不正确的是()A.3﹣=2B.×=C.+==3D.÷==27.中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹价值x两,牛每头y两,根据题意可列方程组为()A.B.C.D.8.下表中列出的是一个一次函数的自变量x与函数y的几组对应值:x…﹣2﹣11…y…﹣128…若将该一次函数的图象向下平移2个单位,得到一个新一次函数,下列关于新一次函数的说法中,正确的是()A.函数值y随自变量x的增大而减小B.函数图象不经过第四象限C.函数图象经过原点D.当x=2时,y的值为7二、填空题(共计15分)9.请写出一个大于3的无理数.10.命题“同位角相等”是命题(填“真”或“假”).11.甲,乙两人进行射击比赛,每人射击5次,所得平均环数相等,其中甲所得环数的方差为 2.1,乙所得环数分别为:8,7,9,7,9,那么成绩较稳定的是(填“甲”或“乙”).12.如图,点P(m+n,4m﹣n)为平面直角坐标系中第一象限内一点,PM⊥x轴于点M,PN⊥y轴于点N,若四边形OMPN是边长为5的正方形,则mn的值为.13.如图,长方体的高为9dm,底面是边长为6dm的正方形,一只蚂蚁从顶点A开始爬向顶点B,那么它爬行的最短路程为dm.三、解答题(计81分)14.计算:(π﹣3)0﹣×+|﹣1|.15.解方程组:16.如图,求图中x的值.17.若是二元一次方程4x﹣3y=10的一个解,求m的值.18.某校招聘一名数学老师,对应聘者分别进行了教学能力、教研能力和组织能力三项测试,并按教学能力占70%,教研能力占20%,组织能力占10%,计算加权平均数,作为最后评定的总成绩.王伟和李婷都应聘了该岗位,经计算,王伟的最后评定总成绩为87.8分,已知李婷的教学能力、教研能力和组织能力三项成绩依次为88分、84分、86分.若该校要在李婷和王伟两人中录用一人,谁将被录用?19.已知a+b是25的算术平方根,2a﹣b是﹣8的立方根,c是的整数部分,求a+bc的平方根.20.已知:如图:∠BEC=∠B+∠C.求证:AB∥CD.21.2021年12月12日是西安事变85周年纪念日,西安事变及其和平解决在中国社会发展中占有重要的历史地位,为中国社会的发展起到了无可替代的作用.为此,某社区开展了系列纪念活动,如图,有一块三角形空地ABC,社区计划将其布置成展区,△BCD区域摆放花草,阴影部分陈列有关西安事变的历史图片,现测得AB=20米,AC=10米,BD=6米,CD=8米,且∠BDC=90°.(1)求BC的长;(2)求阴影部分的面积.22.为巩固“精准扶贫”成果,市农科院专家指导李大爷种植某种优质水果喜获丰收,上市20天全部销售完,专家对销售情况进行了跟踪记录,并将记录情况绘制成如图所示的函数图象,其中x(天)表示上市时间,y(千克)表示日销售量.(1)当12≤x≤20时,求日销售量y与上市时间x的函数关系式;(2)求出第15天的日销售量.23.如图,在平面直角坐标系中,已知四边形ABCD的四个顶点都在网格的格点上.(1)在图中画出四边形ABCD关于x轴对称的四边形A'B'C'D';(2)在(1)的条件下,分别写出点A、B、D的对应点A'、B'、D'的坐标.24.某公司对消费者进行了随机问卷调查,共发放1000份调查问卷,并全部收回,根据调查问卷,将消费者年收入情况整理后,制成如下表格(被调查的消费者年收入情况):年收入/万元38102050被调查的消费者数/人1005003005050(1)根据表中数据,被调查的消费者平均年收入为多少万元?(2)被调查的消费者年收入的中位数和众数分别是和万元.(3)在平均数、中位数这两个数据中,谁更能反映被调查的消费者的收入水平?请说明理由.25.某山区有23名中、小学生因贫困失学需要捐助.资助一名中学生的学习费用需要a元,一名小学生的学习费用需要b元.某校学生积极捐助,初中各年级学生捐款数额与用其恰好捐助贫困中学生和小学生人数的部分情况如下表:年级捐款数额(元)捐助贫困中学生人数(名)捐助贫困小学生人数(名)初一年级400024初二年级420033初三年级7400(1)求a、b的值;(2)初三年级学生的捐款解决了其余贫困中小学生的学习费用,求初三年级学生可捐助的贫困中小学生人数.26.如图,已知直线AB经过点(1,﹣2),且与x轴交于点A(2,0),与y轴交于点B,作直线AB关于y轴对称的直线BC交x轴于点C,点P为OC的中点.(1)求直线AB的函数表达式和点B的坐标;(2)若经过点P的直线l将△ABC的面积分为1:3的两部分,求所有符合条件的直线l的函数表达式.参考答案一、选择题(共计24分)1.解:∵点P(1,2)关于y轴对称,∴点P(1,2)关于y轴对称的点的坐标是(﹣1,2).故选:A.2.解:A、∵12+22≠32,∴不能组成直角三角形,故A选项错误;B、∵22+32≠42,∴不能组成直角三角形,故B选项错误;C、∵32+42=52,∴组成直角三角形,故C选项正确;D、∵42+52≠62,∴不能组成直角三角形,故D选项错误.故选:C.3.解:∵∠ACD是△ABC的外角,∴∠ACD=∠B+∠A,∴∠B<∠ACD.故选:C.4.解:这组数据的平均数、方差和中位数都与被涂污数字有关,而这组数据的众数为25,与被涂污数字无关.故选:A.5.解:把②代入①得,x﹣2(1﹣x)=7,去括号得,x﹣2+2x=7.故选:C.6.解:A.3﹣=2,故此选项不合题意;B.×=,故此选项不合题意;C.+无法合并计算,故此选项符合题意;D.÷==2,故此选项不合题意.故选:C.7.解:设马每匹x两,牛每头y两,根据题意可列方程组为:.故选:A.8.解:设原来的一次函数解析式为y=kx+b(k≠0),代入(﹣2,﹣1),(﹣1,2),得,解得,∴原来的一次函数解析式为y=3x+5,将该一次函数图象向下平移2个单位,得到新的一次函数的解析式为y=3x+3,∵k=3>0,∴函数值y随自变量x的增大而增大,故A选项不符合题意;∵函数y=3x+3经过第一、二、三象限,不经过第四象限,故B选项符合题意;∵函数y=3x+3不是正比例函数,不经过原点,故C选项不符合题意;当x=2时,y=3×2+3=9,故D选项不符合题意,故选:B.二、填空题(共计15分)9.解:由题意可得,>3,并且是无理数.故答案为:.10.解:两直线平行,同位角相等,命题“同位角相等”是假命题,因为没有说明前提条件.故答案为:假.11.解:∵乙的平均环数为=8,∴乙射击成绩的方差为×[2×(7﹣8)2+(8﹣8)2+2×(9﹣8)2]=0.8,∵甲所得环数的方差为2.1,0.8<2.1,∴成绩比较稳定的是乙,故答案为:乙.12.解:∵P(m+n,4m﹣n)为平面直角坐标系中第一象限内一点,PM⊥x轴于点M,PN⊥y轴于点N,∴PN=m+n,PM=4m﹣n,∵四边形OMPN是边长为5的正方形,∴PM=PN=5,,∴,则mn的值为6.故答案为:6.13.解:如图,(1)AB===3;(2)AB==15,由于15<3;则蚂蚁爬行的最短路程为15dm.故答案为:15.三、解答题(共计81分)14.解:(π﹣3)0﹣×+|﹣1|=1﹣3+﹣1=﹣2.15.解:①×2得:4x+6y=16③,③﹣②得:11y=22,解得:y=2,把y=2代入②,得4x﹣10=﹣6,解得:x=1,故原方程组的解为:.16.解:由题意得:x°+(x+10)°=(x+70)°,解得:x=60.即x的值为60.17.解:把代入方程4x﹣3y=10,可得:12m+4﹣6m+6=10,解得:m=0.18.解:李婷的最后评定总成绩为:88×70%+84×20%+86×10%=87(分),∵王伟的最后评定总成绩为87.8分,87<87.8,∴王伟将被录用.19.解:∵a+b是25的算术平方根,2a﹣b是﹣8的立方根,∴,解得:,∵4<5<9,∴2<<3,∴的整数部分是2,∴c=2,∴a+bc=1+4×2=1+8=9,∴a+bc的平方根为±3.20.证明:如图,过点E作EM∥AB,∴∠B=∠BEM,∵∠BEC=∠B+∠C,∠BEC=∠BEM+∠CEM,∴∠C=∠CEM,∴EM∥CD,∴AB∥CD.21.解:(1)∵BD=6米,CD=8米,∠BDC=90°,∴BC===10(米),答:BC的长为10米;(2)∵AB=20米,AC=10米,BC=10米,∴AB2+BC2=202+102=(10)2=AC2,∴△ABC是直角三角形,且∠ABC=90,∴S阴影=S△ABC﹣S△BCD=AB•BC﹣BD•CD=×20×10﹣×6×8=76(平方米).22.解:(1)当12≤x≤20时,设y与x的函数关系式为y=kx+b,由题意得:,解得:,∴当12≤x≤20时,y与x的函数关系式为:y=﹣120x+2 400;(2)当x=15时,y=﹣120×15+2 400=600,所以第15天的日销售量为600千克.23.解:(1)如图所示:四边形A'B'C'D'即为所求;(2)点A、B、D的对应点:A'(﹣5,﹣6),B'(﹣5,﹣2),D'(3,﹣7).24.解:(1)==10.8(万元),答:被调查的消费者平均年收入约为10.8万元;(2)这组数据从小到大排列后,处在中间位置的两个数都是8万元,因此中位数为8万元;这组数据中出现次数最多的是8万元,因此众数为8万元;故答案为:8,8;(3)中位数更能反映被调查的消费者的收入水平,理由:虽然平均数,中位数均能反映一组数据的集中程度,但平均数易受极端数值影响,所以中位数更能反映被调查的消费者的收入水平.25.解:(1)依题意得:,解得:.答:a的值为800,b的值为600.(2)设初三年级学生可捐助贫困中学生x人,小学生y人,依题意得:,解得:.答:初三年级学生可捐助贫困中学生4人,小学生7人.26.解:(1)设直线AB的函数表达式为y=kx+b(h≠0).把点(1,﹣2),(2,0)代入得,解得,∴直线AB为y=2x﹣4.当x=0时,y=2x﹣4=﹣4,∴B(0,﹣4).(2)①当直线l经过点B时,如图1.∵直线AB关于y轴对称的直线BC交x轴于点C,∴OA=OC=2,∴C(﹣2,0).∵P为OC的中点,∴P(﹣1,0),∴AP=3CP,∴S△BCP:S△BAP=1:3.设此时直线l的表达式为y=mx+n(m≠0).将点P(﹣1,0)、B(0,﹣4)代入得,解得,∴此时直线l的表达式为y=﹣4x﹣4;②当直线l与AB的交点D在第四象限时,如图2.∵A(2,0),C(﹣2,0),B(0,﹣4),∴AC=4,OB=4,∴S△ABC=AC•OB=×4×4=8.∵直线l将△ABC的面积分为1:3的两部分,∴S△APD=S△ABC=2,∴•AP•|y D|=2,即×3×|y D|=2,解得|y D|=,将y=﹣代入y=2x﹣4,得x=,∴D(,﹣).设此时直线l的函数表达式为y=m2x+n2(m2≠0).将点D(,﹣)、P(﹣1,0)代入得,解得,∴此时直线l的函数表达式为y=﹣.综上所述,所有符合条件的直线l的函数表达式为y=﹣4x﹣4或y=﹣x﹣.。

河北省承德市平泉市2023-2024学年八年级上学期期末数学模拟试题(含答案)

河北省承德市平泉市2023-2024学年八年级上学期期末数学模拟试题(含答案)

河北省承德市平泉市2023-2024学年八年级上学期期末数学模拟试题注意事项:1.本试卷共8页,考试时间120分钟.2.答题前,考生务必将姓名、准考证号填写在试卷和答题卡的相应位置.3.所均在答题卡上作答,在本试卷或草稿纸上作答无效.答题前,请仔细阅读答题卡上的“注意事项”,按照“注意事项”的规定答题.4.答选择题时,用2B 铅笔将答题卡上对应题目的答案标号涂黑;答非选择题时,请在答题卡上对应题目的答题区域内答题.5.考试结束时,请将本试卷和答题卡一并交回.一、选择题(本大题共16个小题,共38分.1~6小题各3分,7~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.133=,则?是() A .1-B .0C .1D .32.AD 是ABC △的中线同时平分BAC ∠,则ABC △一定是() A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形 3.下列运算正确的是()A .2(32)(32)34x x x +-=-B .22(1)1a a +=+C .()236a a -=D .2122a a a -⋅=4.如图,C 处在B 处的北偏西40︒方向,C 处在A 处的北偏西75︒方向,则ACB ∠的度数为()A .30︒B .35︒C .40︒D .45︒ 5.2101等于()A .210021001+⨯+B .210021001-⨯+C .21001+D .21001-6.若k 为任意整数,则22(23)(22)k k +--的值总能() A .被2整除B .被3整除C .被5整除D .被7整除7.人体中枢神经系统中含有1千亿个神经元.某个神经元的直径约为52微米,52微米为55.210-⨯米.将55.210-⨯用小数表示为()A .0.00052B .0.000052C .0.0052D .0.00000528.下面四幅作品分别代表二十四节气中的“立春”,“芒种”,“白露”,“大雪”,其中是轴称图形的是()A .B .C .D .9.如图,若MNP MEQ △≌△,则点Q 应是图中的()A .点AB .点BC .点CD .点D10.如图,八边形ABCDEFGH 每条边都相等,且C E H ∠=∠=∠.若BDF △,四边形ABFG 的周长分别为a,b ,则下列正确的是()A .a b <B .a b =C .a b >D .,a b 大小无法比较11.在ABC △中,高2,4AD CE ==.则边:AB BC 是() A .1:2B .2:1C .3:1D .1:312.在ABC △和A B C '''△中,30B B '∠=∠=︒,6,4AB A B AC A C ''''====.已知C n ∠=︒,则C '∠=()A .30︒B .n ︒C .n ︒或180n ︒-︒D .30︒或150︒13.在探究证明“三角形的内角和等于180︒”时,飞翔班的同学作了如下四种辅助线,其中不能证明“三角形的内角和等于180︒”的是()A .延长BC 至D 过C 作CE AB ∥B .过A 作DE BC ∥C .过D 作DE BC ∥D .过P 作,,FG AB DE BC HI AC ∥∥∥ 14.如图,若x 为正整数,则表示211x x ++的值的点落在()A .段①B .段①C .段①D .段①15.如图,直线12l l ∥,一副三角板放置在12,l l 之间,一三角板直角边在1l 上,三角板斜边在同一直线上.则α∠=()A .10︒B .15︒C .20︒D .25︒16.如图,用一把长方形直尺的一边压住射线OB ,再用另一把完全相同的直尺的一边压住射线OA ,两把直尺的另一边交于点P .下列判断错误的是()A .射线OP 是AOB ∠角平分线 B .POC △是等腰三角形射线C .OP 是AOB ∠角平分线依据是角平分线上的点到这个角两边的距离相等D .OP 是AOB ∠角平分线依据是在角的内部,到角两边距离相等的点在这个角的平分线上 二、填空题(本大题共3个小题,共9分.17题18题每空2分,19每空1分) 17.若分式211x x +-的值为0,则x =___________. 18.如图,已知点P 是AOB ∠角平分线上的一点,60,8,AOB OP PD OA ∠=︒=⊥,如果点C 是OB 上一个动点.(1)若PC OC =时,PC 与OA 的位置关系___________;(2)PC 最小值为___________.19.如图①,有A 、B 两个正方形,边长分别为a ,b ,若将这两个正方形叠放在一起可得到图①,则图中阴影部分面积为1,若将A,B 并列放置构造出新的正方形可得到图①,图中阴影部分面积为24.图① 图① 图① 则:(1)2()b a -=___________;(2)ab =___________; (3)新构造出的正方形面积为___________.三、解答题(本大题共7个小题,共73分.解答应写出文字说明、证明过程或演算步骤) 20.(本小题满分9分)已知:2(4)(1)3,24A m m m B m m =-++=- (1)将A 分解因式(2)比较A 、B 的大小,(2)m ≠ (3)求3m =时BA的值 21.(本小题满分9分)如图,在由边长为1个单位长度的小正方形组成的网格中,点A,B,C,D 均为格点(网格线的交点).(1)画出线段AB 关于平面镜CD 所成像11A B ;(2)一束光线从A 点出发经平面镜上P 点反射后经过点B ,请在平面镜上确定点P ,保留作图痕迹;(提示此时PAB △周长最小)(3)描出线段AB 上的点M 及直线CD 上的点N ,使得直线MN 垂直平分AB . 22.(本小题满分10分)机器人AD 在水平线路BC 间(不含B 、C )做往返运动,10,BC D =为BC 上动点,,6AD BC AD ⊥=,连接AB AC 、.(1)机器人在运动中,ABC △周长是否改变?___________(填“变”或“不变”);ABC △面积是否改变?___________(填“变”或“不变”)(2)机器人运动到BC 中点时,判断ABC △的形状,并说明理由. (3)机器人运动中ABC △为等腰三角形,点D 的位置有___________处. 23.(本小题满分10分)已知多项式2(2)(1)9P x x x =++--(x 为整数). (1)试说明:多项式P 被5整除.(2)若15P =,求22421139x x x x -+⎛⎫-÷ ⎪+-⎝⎭的值. 24.(本小题满分10分)甲乙两船从B 港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中速度都是30km/h ,水流速度时km/h,6h a 后两船同时到达A 、C 两港口;卸装货物后,又同时出发,甲船驶往C 港口,乙船驶往A 港口.(提示:顺水速度=船速+水速;逆水速度=船速-水速)(1)A 、C 两港口相距多远?(2)卸装货物后两船再同时出发,乙船到达A 港口时,甲船距C 港口120km ,求a 值. 25.(本小题满分12分)己知:AB CD ⊥于点,O AB AC CD ==,点I 是,BAC ACD ∠∠的平分线的交点,连接,IB ID(1)AIC ∠=___________度; (2)求证:IB IC =且IB IC ⊥; (3)探究:①AIC BID ∠+∠=___________度; ①IBD S △___________AIC S △(填“>”“<”“=”) 26.(本小题满分13分)图,Rt ACB △中90ACB ∠=︒,在CA 上取E ,使CE CB =,延长BC 至D ,使得CD CA =.(1)求证:AB DE =.(2)判断AB 与DE 的位置关系,并说明理由. (3)若DE 的延长线过AB 的中点,求B ∠的度数.迁移应用:图,ABC △中,,90AB AC BAC =∠=︒,点D 在线段BC 上,12EDB C ∠=∠,BE DE ⊥,垂足为,E DE 与AB 相交于F .直接写出线段BE 与FD 的数量关系,并在图中画出探究时所需要的辅助线.八年级数学试题答案一、选择题(本大题共16个小题,16每小题2分,7~16每小题2分,共38分.)二、填空题(本题共9分.17题每空2分,18、19第一空2分、第二空1分)(按此标准给分) 17.12-18.(1)PC OA ∥(2)419.(1)1(2)12(3)49 三、解答题(本大题共7个小题,共73分) 20.解(1)(4)(1)3A m m m =-++2343m m m =--+(1分) 24m =-(2分) (2)(2)m m =+-(3分)(2)()22244B A m m m -=---244m m =-+2(2)m =-(1分)2m ≠2(2)0m ∴->(2分)B A ∴>(3分)(3)22242(2)24(2)(2)2B m m m m mA m m m m --===-+-+(2分)3m =时,65B A =(3分) 21.(1)作图略(3分) (2)作图略(6分) (3)作图略(9分)22.(1)变,不变(4分)(2)ABC △为等腰三角形;(5分)理由:全等或垂直平分线性质均可(过程略)(8分) (3)3(10分)23.(1)2(2)(1)9P x x x =++--22449x x x x =+++--(1分)55x =-5(1)x =-(3分)①多项式P 被5整除.(5分) (2)15,5(1)15,4P x x =-==(7分)22421139x x x x -+⎛⎫-÷ ⎪+-⎝⎭ 21(3)(3)3(1)x x x x x -+-=⨯+- 31x x -=-(9分) 13=(10分) 24.(1)6(30)6(30)360km a a ++-=(4分) (2)由题意得:3603601203030a a -=+-(6分) 360(30)240(30)a a -=+解得:6a =(8分)经检验6a =是原方程的解且符合题意(9分)6a ∴=(10分)25.(1)135(2分)(2)(1)①由点I 是,BAC ACD ∠∠的平分线的交点,BAI CAI ∴∠=∠,在ACI △和ABI △中,AI AI BAI CAI AB AC =⎧⎪∠=∠⎨⎪=⎩(SAS)ABI ACI ∴△≌△,IA ID ∴=(6分)①由点I 是,BAC ACD ∠∠的平分线的交点11()904522CAI ACI CAO ACO ∴∠+∠=∠+∠=⨯︒=︒ 18045135AIC AIB ∴∠=-==∠︒︒︒36013513590BIC ︒︒∴=-︒∠-=︒即IB IC ⊥;(8分)(3)①180︒(10分)①“=”(12分)26.(1)由题知90ACB DCE ∠=∠=︒在ACB △和DCE △中,AC DC ACB DCE CB CE =⎧⎪∠=∠⎨⎪=⎩,()ACB DCE SAS ∴△≌△AB DE ∴=(4分)(2)AB DE ⊥(5分)理由:ACB DCE △≌△B CED ∴∠=∠90CED D ∠+∠=︒90B D ∴∠+∠=︒即AB DE ⊥(7分)(3)连接AD ,CD CA =45CAD CDA ∴∠=∠=︒(8分),AB DE DE ⊥过AB 中点DE∴垂直平分ABBD AD∴=67.5B BAD∴∠=∠=︒(10分)迁移应用:12BE FD=(12分)辅助线(13分)(过D作DH AC∥交BE延长线于H)其它正确均可。

辽宁省营口市大石桥市金桥中学2023-2024学年八年级数学第一学期期末调研模拟试题【含解析】

辽宁省营口市大石桥市金桥中学2023-2024学年八年级数学第一学期期末调研模拟试题【含解析】

辽宁省营口市大石桥市金桥中学2023-2024学年八年级数学第一学期期末调研模拟试题一学期期末调研模拟试题注意事项1.考生要认真填写考场号和座位序号。

2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。

第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。

3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

一、选择题(每题4分,共48分)1.如图,//AB CD ,以点A 为圆心,小于AC 长为半径作弧,分别交AB 、AC 于E 、F 两点,再分别以,E F 为圆心,大于12EF 的长为半径画弧,两弧交于点G ,作射线AG ,交CD 于点H ,若ACD ∠120=︒,则AHD ∠的度数为()A .150︒B .115︒C .120︒D .160︒2.如图,点P 是∠AOB 平分线I 上一点,PD ⊥OB ,垂足为D ,若PD =3,则点P 到边OA 的距离是()A B .2C .3D .43.20190等于()A .1B .2C .2019D .04.相距S 千米的两个港口A 、B 分别位于河的上游和下游,货船在静水中的速度为a 千米/时,水流的速度为b 千米/时,一艘货船从A 港口出发,在两港之间不停顿地往返一次所需的时间是()A .2Sa b +小时B .2Sa b-小时C .S S a b ⎛⎫+⎪⎝⎭小时D .S S a b a b ⎛⎫+ ⎪+-⎝⎭小时5.下列各多项式从左到右变形是因式分解,并分解正确的是()A .m 2﹣n 2+2=(m+n )(m ﹣n )+2B .(x+2)(x+3)=x 2+5x+6C .4a 2﹣9b 2=(4a ﹣9b )(4a+9b )D .(a ﹣b )3﹣b (b ﹣a )2=(b ﹣a )2(a ﹣2b )6.已知a b >,则下列不等式中正确的是()A .22a b->-B .22a b<C .22a b->-D .22a b +>+7.下列计算正确的是()A .33(2)2a a -=-B .22()()a b a b b a ---=-C .222()a b a b +=+D .336()()--=a a a 8.老师设计了一个接力游戏,用小组合作的方式完成分式的运算,规则是:每人只能看见前一个人给的式子,并进行一步计算,再将结果传递给下一个人,最后完成计算.其中一个组的过程是:老师给甲,甲一步计算后写出结果给乙,乙一步计算后写出结果给丙,丙一步计算后写出结果给丁,丁最后算出结果.老师:a b a b a b --+,甲:2222()()a a b b a b a b a b +----,乙:22()()a ab ab b a b a b +--+-,丙:22()()a b a b a b -+-,丁:1接力中,计算出现错误的是().A .甲B .乙C .丙D .丁9.如图,AB ∥CD ,BC 平分∠ABD ,∠1=50°,则∠2的度数是()A .50B .60C .70D .8010.甲车行驶30千米与乙车行驶40千米所用时间相同,已知乙车每小时比甲车多行驶15千米,设甲车的速度为x 千米/小时,依据题意列方程正确的是()A .304015x x =-B .304015x x=-C .304015x x =+D .304015x x=+11.在△ABC 中,若∠A=95°,∠B=40°,则∠C 的度数为()A .35°B .40°C .45°D .50°12.一个多边形每个外角都是72︒,则该多边形的边数是()A .4B .5C .6D .7二、填空题(每题4分,共24分)13.若分式12020x x --有意义,则x 的取值范围是__________.14.一次函数y =(2m -6)x +5中,y 随x 的增大而减小,则m 的取值范围是________.15.小明用100元钱去购买笔记本和钢笔共30件,已知每本笔记本2元,每枝钢笔5元,那么小明最多能买________枝钢笔.16.函数2y x =-中,自变量x 的取值范围是.17.直线26y x =-+与x 轴的交点为M ,将直线26y x =-+向左平移5个单位长度,点M 平移后的对应点M '的坐标为______________,平移后的直线表示的一次函数的解析式为_____________.18.若解分式方程1244x mx x -=+++产生增根,则m =__________.三、解答题(共78分)19.(8分)(阅读·领会)0)a ≥的式子叫做二次根式,其中a 叫做被开方数.其中,被开方数相同的二次根式叫做同类二次根式.像同类项一样,同类二次根式也可以合并,合并方法类似合并同类项,是把几个同类二次根式前的系数相加,作为结果的系数,即(0).m n x =+≥利用这个式子可以化简一些含根式的代数式.材料二:二次根式可以进行乘法运算,公式是0,0)a b =≥≥我们可以利用以下方法证明这个公式:一般地,当0,0a b ≥≥时,根据积的乘方运算法则,可得222ab =⨯=,∵2(0)a a =≥,∴2ab =都是ab 的算术平方根,0,0)a b =≥≥利用这个式子,可以进行一些二次根式的乘法运算.0,0)a b =≥≥它可以用来化简一些二次根式.材料三:一般地,化简二次根式就是使二次根式:(I )被开方数中不含能开得尽方的因数或因式;(II )被开方数中不含分母;(III )分母中不含有根号.这样化简完后的二次根式叫做最简二次根式.(积累·运用)(1)仿照材料二中证明二次根式乘法公式那样,试推导二次根式的除法公式.(2)化简:2325(2)(0,0,0)a b c a b c -≥≥≥=______.(3)当0a b <<时,化简2232232,a b b ab a a b a b a b +-+-+并求当7,9a b =⎧⎨=⎩时它的值.20.(8分)如图,ABC ∆是等边三角形,点D 在AC 上,点E 在BC 的延长线上,且BD DE =.(1)如图甲,若点D 是AC 的中点,求证:;AD CE =(2)如图乙,若点D 不AC 的中点,AD CE =是否成立?证明你的结论.(3)如图丙,若点D 在线段AC 的延长线上,试判断AD 与CE 的大小关系,并说明理由.21.(8分)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC 的顶点A ,C 的坐标分别为(,5),(,3).⑴请在如图所示的网格平面内作出平面直角坐标系;⑵请作出△ABC 关于y 轴对称的△A′B′C′;⑶写出点B′的坐标.22.(10分)《九章算术》是我国古代最重要的数学著作之一,在“勾股”章中记载了一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去本三尺,问折者高几何?”翻译成数学问题是:如图所示,在ABC 中,90,10,3ACB AC AB BC ∠=︒+==,求AC 的长.23.(10分)如图,ABC ∆是等边三角形,P 是ABC ∆的角平分线BD 上一点,PE AB ⊥于点E ,线段BP 的垂直平分线交BC 于点F ,垂足为点Q .BQ=,求PE的长.(1)若2∆的形状,并说明理由.(2)连接PF,EF,试判断EFP24.(10分)如图,已知ABC.A B C;(1)画ABC关于x轴对称的'''+最短.(2)在y轴上画出点D,使AD CD25.(12分)如图,在平面直角坐标系中,△ABC的顶点A(0,1),B(2,0),C(4,4)均在正方形网格的格点上.(1)画出△ABC关于x轴对称的图形△A1B1C1并写出顶点A1,B1,C1的坐标;(2)已知P为y轴上一点,若△ABP与△ABC的面积相等,请直接写出点P的坐标.26.(1)用简便方法计算:20202﹣20192(2)化简:[(x﹣y)2+(x+y)(x﹣y)]÷2x参考答案一、选择题(每题4分,共48分)1、A【分析】先由平行线的性质得出,180CHA HAB ACD CAB ∠=∠∠+∠=︒,进而可求出CAB ∠的度数,再根据角平分线的定义求出HAB ∠的度数,则CHA ∠的度数可知,最后利用180AHD CHA ∠=︒-∠求解即可.【详解】∵//AB CD∴,180CHA HAB ACD CAB ∠=∠∠+∠=︒120ACD ∠=︒180********CAB ACD ∴∠=︒-∠=︒-︒=︒∵AH 平分CAB∠1302HAB CAB ∴∠=∠=︒30CHA ∴∠=︒180150AHD CHA ∴∠=︒-∠=︒故选:A .【点睛】本题主要考查平行线的性质和角平分线的画法及定义,掌握平行线的性质和角平分线的画法及定义是解题的关键.2、C【分析】作PE ⊥OA 于E ,根据角平分线的性质解答.【详解】作PE ⊥OA 于E ,∵点P 是∠AOB 平分线OC 上一点,PD ⊥OB ,PE ⊥OA ,∴PE=PD=3,故选C .【点睛】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.3、A【分析】任意一个非零数的零次幂都等于1,据此可得结论.【详解】20190等于1,故选A .【点睛】本题主要考查了零指数幂,任意一个非零数的零次幂都等于1.4、D【分析】先分别算出顺水和逆水的速度,再根据时间=路程÷速度,算出往返时间.【详解】依据顺水速度=静水速度+水流速度,逆水速度=静水速度-水流速度,则顺水速度为+a b ,时间为Sa b +,逆水速度为-a b ,时间为S a b-,所以往返时间为S Sa b a b++-.故选D 【点睛】本题主要考查了列代数式,熟练掌握顺水逆水速度,以及时间、路程、速度三者直接的关系是解题的关键.5、D【分析】直接利用因式分解的定义进而分析得出答案.【详解】解:A 、m 2-n 2+2=(m+n )(m-n )+2,不符合因式分解的定义,故此选项错误.B 、(x+2)(x+3)=x 2+5x+6,是整式的乘法运算,故此选项错误;C 、4a 2-9b 2=(2a-3b )(2a+3b ),故此选项错误;D 、(a-b )3-b (b-a )2=-(b-a )3-b (b-a )2=(b-a )2(a-2b ),是因式分解,故此选项正确;故选:D .【点睛】此题主要考查了因式分解的意义,正确把握因式分解的定义是解题关键.6、D【分析】根据不等式的性质解答即可.【详解】A.-2a<-2b ,故该项错误;B.22a b>,故该项错误;C.2-a<2-b ,故该项错误;D.22a b +>+正确,故选:D.【点睛】此题考查不等式的性质,熟记性质并熟练解题是关键.7、B【分析】分别根据对应的法则逐一分析即可【详解】解:A.33(2)8-=-a a ,故本选项不符合题意;B.22()()()(+)=---=----a b a b b a b a b a ,故本选项符合题意;C.222()2ab++=+a b a b ,故本选项不符合题意;D.336()()--=-a a a ,故本选项不符合题意;故选:B 【点睛】本题考查了积的乘方、平方差公式、完全平方公式、同底数幂的乘法等知识点,能正确求出每个式子的值是解此题的关键.8、B【分析】检查四名同学的结论,找出错误的步骤即可.【详解】出现错误的是乙,正确结果为:22()()a ab ab b a b a b +-++-,故选:B .【点睛】本题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.9、D【分析】利用角平分线和平行的性质即可求出.【详解】∵AB ∥CD∴∠ABC=∠1=50°,∠ABD+∠BDC=180°,∵BC 平分∠ABD ,∴∠ABD=2∠ABC=100°,∴∠BDC=180°-∠ABD=80°,∴∠2=∠BDC=80°.故选D .【点睛】本题考查的是平行,熟练掌握平行的性质和角平分线的性质是解题的关键.10、C【解析】由实际问题抽象出方程(行程问题).【分析】∵甲车的速度为x千米/小时,则乙甲车的速度为x15+千米/小时∴甲车行驶30千米的时间为30x,乙车行驶40千米的时间为4015x+,∴根据甲车行驶30千米与乙车行驶40千米所用时间相同得304015x x=+.故选C.11、C【详解】∵三角形的内角和是180°,又∠A=95°,∠B=40°,∴∠C=180°﹣∠A﹣∠B=180°﹣95°﹣40°=45°,故选C.12、B【分析】用多边形的外角和360°除以72°即可.【详解】解:边数n=360°÷72°=1.故选B.【点睛】本题考查了多边形的外角和等于360°,是基础题,比较简单.二、填空题(每题4分,共24分)13、2020x≠【分析】根据分式的概念,分式有意义则分母不为零,由此即得答案.【详解】要使12020xx--有意义,则2020x≠,故答案为:2020x≠.【点睛】考查了分式概念,注意分式有意义则分母不能为零,这是解题的关键内容,需要记住.14、m<1【解析】解:∵y随x增大而减小,∴k<0,∴2m-6<0,∴m<1.15、1【详解】解:设小明一共买了x 本笔记本,y 支钢笔,根据题意,可得25100{30x y x y +≤+=,可求得y≤403因为y 为正整数,所以最多可以买钢笔1支.故答案为:1.16、x 1≥-且x 2≠.【解析】试题分析:求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数和分式分母不为0的条件,要使2x -在实数范围内有意义,必须x+10x 1{{x 1x 20x 2≥≥-⇒⇒≥--≠≠且x 2≠.考点:1.函数自变量的取值范围;2.二次根式和分式有意义的条件.17、(2,0)-24y x =--【分析】求出M 的坐标,把M 往左平移5个单位即可得到'M 的坐标,直接利用一次函数图象的平移性质可得到平移后的一次函数.【详解】解:∵直线y=-2x+6与x 轴的交点为M ,∴y=0时,0=-2x+6,解得:x=3,所以:(3,0)M ∵将直线y=-2x+6向左平移5个单位长度,∴点M 平移后的对应点M ′的坐标为:(-2,0),平移后的直线表示的一次函数的解析式为:y=-2(x+5)+6=-2x-1.故答案为:(-2,0),y=-2x-1.【点睛】此题主要考查了一次函数与几何变换,正确掌握点的平移与函数图像的平移规律是解题关键.18、-5.【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.把增根代入化为整式方程的方程即可求出m 的值.【详解】方程两边都乘(x +4),得12(4)x m x -=++∵原方程增根为x =−4,∴把x=−4代入整式方程,得41m --=,解得5m =-.故答案为-5.【点睛】本题考查分式方程的增根,解决本题时需注意,要将增根x=-4,代入分式方程化为整式方程后的方程中,不然无法求得m 的值.三、解答题(共78分)19、(1)见解析;(2)2abc ;(3)ab-,463-【分析】(1)仿照材料二中证明二次根式乘法公式的方法,推导二次根式的除法公式(2)根据二次根式乘法公式进行计算即可(3)先根据二次根式除法公式进行化简,再把a 和b 的值代入即可【详解】解:(10,0)a b=≥>证明如下:一般地,当0,0a b ≥>时,根据商的乘方运算法则,可得22a b ==∵2(0)a a =≥,∴2ab =、都是a b 的算术平方根,0,0)a b=≥>利用这个式子,可以进行一些二次根式的除法运算.0,0)a b=≥>它可以用来化简一些二次根式.(20,0,0)2a b c abc ≥≥≥==故答案为:2abc (3)当0a b <<时,a b a b ab +===--当79a b =⎧⎨=⎩时,原式=46363-=-【点睛】本题考查二次根式的乘法和除法法则,,解题的关键是熟练运用公式以及二次根式的性质,本题属于中等题型.20、(1)详见解析;(2)成立,理由详见解析;(3)AD CE =,证明详见解析.【分析】(1)根据等边三角形三线合一的性质即可求得∠DBC 的度数,根据BD=DE 即可解题;(2)过D 作DF ∥BC ,交AB 于F ,证△BFD ≌△DCE ,推出DF=CE ,证△ADF 是等边三角形,推出AD=DF ,即可得出答案.(3)如图3,过点D 作DP ∥BC ,交AB 的延长线于点P ,证明△BPD ≌△DCE ,得到PD=CE ,即可得到AD=CE .【详解】()1证明:ABC ∆是等边三角形,60ABC ACB ∴∠=∠= AB AC BC==,D Q 为AC 中点,30 DBC AD DC∠==,,30BD DE E DBC =∴∠=∠=ACB E CDE ∠=∠+∠,30CDE E ∴∠==∠,,CD CE AD DC AD CE ∴==∴=,;(2)成立,如图乙,过D 作//DF BC ,交AB 于F ,则60,60,ADF ACB A AFD ∠=∠=∠=∴∆是等边三角形,60AD DF AF AFD ∴==∠=,,180 60120BFD DCE ∴∠=∠=-=,//DF BC ,FDB DBE E ∴∠=∠=∠,在BFD ∆和DCE ∆中FDB E BFD DCE BD DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,BFD DCE CE DF AD ∴∆≅∆∴==,即AD CE =()3AD CE=如图3,过点D 作//DP BC ,交AB 的延长线于点P ,ABC ∆是等边三角形,APD ∴∆也是等边三角形,60AP PD AD APD ABC ACB PDC ∴==∠=∠=∠=∠=,,,// DB DE DBC DEC DP BC =∴∠=∠,,PDB CBD ∴∠=∠PDB DEC ∴∠=∠,在BPD ∆和DCE ∆中,60PDB DEC P DCE DB DE ∠=∠⎧⎪∠=∠=⎨⎪=⎩,,BPD DCE PD CE AD CE∴∆≅∆∴=∴=【点睛】本题考查了全等三角形的判定与性质,利用了等边三角形的判定与性质,全等三角形的判定与性质,解决本题的关键是作出辅助线,构建全等三角形.21、⑴⑵如图,⑶B′(2,1)【分析】(1)易得y 轴在C 的右边一个单位,x 轴在C 的下方3个单位;(2)作出A ,B ,C 三点关于y 轴对称的三点,顺次连接即可;(3)根据所在象限及距离坐标轴的距离可得相应坐标.【详解】解:(1)如图;(2)如图;(3)点B′的坐标为(2,1).22、AC=4.55【分析】在Rt △ABC 中利用勾股定理建立方程即可求出AC .【详解】∵AC+AB=10∴AB=10-AC在Rt △ABC 中,AC 2+BC 2=AB 2即()222AC 3=10AC +-解得AC=4.55【点睛】本题考查勾股定理的应用,利用勾股定理建立方程是解题的关键.23、(1)2PE =;(2)EFP ∆是直角三角形,理由见解析.【分析】(1)由ABC ∆是等边三角形,BP 是ABC ∠的平分线,得30EBP ∠=︒,结合90BEP ∠=︒,4BP =,即可得到答案;(2)由30ABP CBD ∠=∠=︒,90PEB ∠=︒得60BPE ∠=︒,由FQ 垂直平分线段BP ,得30FBQ FPQ ∠=∠=︒,进而即可得到结论.【详解】(1)∵ABC ∆是等边三角形,BP 是ABC ∠的平分线,∴30EBP PBC ∠=∠=︒,∵PE AB ⊥于点E ,∴90BEP ∠=︒,∴12PE BP =,∵QF 为线段BP 的垂直平分线,∴2224BP BQ ==⨯=,∴1422PE =⨯=;(2)EFP ∆是直角三角形.理由如下:连接PF 、EF ,∵ABC ∆是等边三角形,BD 平分ABC ∠,∴60ABC ∠=︒,30ABP CBD ∠=∠=︒,∵PE AB ⊥,∴90PEB ∠=︒,∴60BPE ∠=︒,∵FQ 垂直平分线段BP ,∴FB FP =,∴30FBQ FPQ ∠=∠=︒,∴90EPF EPB BPF ∠=∠+∠=︒,∴EFP ∆是直角三角形.【点睛】本题主要考查等边三角形的性质定理,中垂线的性质定理以及直角三角形的判定与性质定理,掌握直角三角形中,30°角所对的直角边是斜边的一半,是解题的关键.24、(1)见解析;(2)见解析【分析】(1)作出A 、C 两点关于x 轴的对称点,再顺次连接即可;(2)作点A 关于y 轴的对称点A '',连接A C '',交y 轴于点D ,点D 即为所求.【详解】(1)如图所示:(2)①作点A 关于y 轴的对称点A '',②连接A C '',交y 轴于点D ,点D 即为所求.【点睛】此题主要考查了轴对称变换以及利用轴对称求最短路线,正确得出对应点的位置是解题关键.25、(1)见解析,A 1(0,-1),B 1(2,0),C 1(4,-4);(2)(0,6)或(0,-4).【分析】(1)根据关于x 轴对称的点的坐标特征写出顶点A 1,B 1,C 1的坐标,描点即可;(2)利用割补法求得△ABC 的面积,设点P 的坐标为()0,m ,则12152ABP Sm =⨯-=,求解即可.【详解】解:(1)作出△ABC 关于x 轴对称的△A 1B 1C 1如图所示.△A 1B 1C 1顶点坐标为:A 1(0,-1),B 1(2,0),C 1(4,-4).(2)()11114421245222ABC S =+⨯⨯-⨯⨯-⨯⨯=,设点P 的坐标为()0,m ,则12152ABP S m =⨯-=,解得4m =-或6,∴点P 的坐标为(0,6)或(0,-4).【点睛】本题考查轴对称变换、割补法求面积,掌握关于x 轴对称的点的坐标特征是解题的关键.26、(1)4039;(2)x ﹣y【分析】(1)利用平方差公式变形为(2020+2019)×(2020﹣2019),再进一步计算可得;(2)先分别利用完全平方公式和平方差公式计算括号内的,再计算除法可得.【详解】解:(1)原式=(2020+2019)×(2020﹣2019)=4039×1=4039;(2))原式()222222x xy y x y x=-++-÷()2222x xy x=-÷x y =-.【点睛】本题主要考查了乘法公式的应用,解题的关键是熟练掌握整式的混合运算顺序和运算法则及完全平方公式、平方差公式.。

上海市协和双语学校2025届八年级数学第一学期期末经典模拟试题含解析

上海市协和双语学校2025届八年级数学第一学期期末经典模拟试题经典模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(每小题3分,共30分)1.计算12a 2b 4•(﹣332a b )÷(﹣22a b )的结果等于( ) A .﹣9a B .9a C .﹣36a D .36a2.如果一个数的平方根与立方根相同,那么这个数是( ).A .0B .±1C .0和1D .0或±13.把19547精确到千位的近似数是( )A .31.9510⨯B .41.9510⨯C .42.010⨯D .41.910⨯4.已知等腰三角形的两边长分别为3和6,则它的周长等于( ) A .12 B .12或15 C .15 D .15或185.若分式211a a --有意义,则a 满足的条件是( ) A .a≠1的实数 B .a 为任意实数 C .a≠1或﹣1的实数 D .a=﹣16.从边长为a 的大正方形纸板中挖去一个边长为b 的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算两个图形阴影部分的面积,可以验证成立的公式为( )A .()()22a b a b a b -=+-B .()2222a b a ab b +=++C .()22a b a b -=- D .()2222a b a ab b -=-+ 7.如图,正方形卡片A 类,B 类和长方形卡片C 类若干张,如果要拼一个长为(a+2b ),宽为(a+b )的大长方形,则需要C 类卡片 张.( )A .2B .3C .4D .68.把分式11361124x x +-的分子与分母各项系数化为整数,得到的正确结果是( ) A .3243x x +- B .4263x x +- C .2121x x +- D .4163x x +- 9.图中由“○”和“□”组成轴对称图形,该图形的对称轴是直线( )A .l 1B .l 2C .l 3D .l 410.直角坐标系中,我们定义横、纵坐标均为整数的点为整点.在03x <<的范围内,直线2y x =+和y x =-所围成的区域中,整点一共有( )个.A .12B .13C .14D .15二、填空题(每小题3分,共24分)11.医学研究发现一种新病毒的直径约为0.000043毫米,这个数0.000043用科学记数法表为______________.12.若,则.13.已知一次函数3y kx =+与2y x b =+的图像交点坐标为(−1,2),则方程组32y kx y x b=+⎧⎨=+⎩的解为____. 14.如图,点P 是∠BAC 的平分线AD 上一点,PE ⊥AC 于点E .已知PE =3,则点P 到AB 的距离是_____15.已知一个角的补角是它余角的3倍,则这个角的度数为_____.16.已知△ABC为等边三角形,BD为△ABC的高,延长BC至E,使CE=CD=1,连接DE,则BE=___________,∠BDE=_________ .17.如图正方形ABCD分割成为七巧板迷宫,点E,F分别是CD,BC的中点,一只蚂蚁从D处沿图中虚线爬行到出口F处,若AB=2,则它爬行的最短路径长为_____.18.用四舍五入法将2.056精确到十分位的近似值为________.三、解答题(共66分)19.(10分)如图,分别是4×4的正方形网格,请只用无刻度的直尺完成下列作图:(1)在图1中,A,B是网格的格点,请以AB为边作一个正方形;(2)在图2中,A是网格的格点,请以A为一个顶点,B,C,D三点分别在网格的格点上,在网格内作一个面积最大的正方形ABCD.20.(6分)某市举行知识大赛,A校、B校各派出5名选手组成代表队参加决赛,两校派出选手的决赛成绩如图所示.(1)根据图示填写下表:平均数中位数众数A校选手成绩85B校选手成绩8580(2)结合两校成绩的平均数和中位数,分析哪个学校的决赛成绩较好;(3)计算两校决赛成绩的方差,并判断哪个学校代表队选手成绩较为稳定.21.(6分)某商店经销一种泰山旅游纪念品,4月份的营业额为2000元,为扩大销售量,5月份该商店对这种纪念品打9折销售,结果销售量增加20件,营业额增加700元.(1)求该种纪念品4月份的销售价格;(2)若4月份销售这种纪念品获利800元,5月份销售这种纪念品获利多少元?22.(8分)某射击队有甲、乙两名射手,他们各自射击7次,射中靶的环数记录如下:甲:8,8,8,9,6,8,9乙:10,7,8,8,5,10,8(1)分别求出甲、乙两名射手打靶环数的平均数;(2)如果要选择一名成绩比较稳定的射手,代表射击队参加比赛,应如何选择?为什么?23.(8分)因汽车尾气污染引发的雾霾天气备受关注,经市大气污染防治工作领导组研究决定,在市区范围实施机动车单双号限行措施限行期间为方便市民出行,某路公交车每天比原来的运行增加20车次.经调研得知,原来这路公交车平均每天共运送乘客5600人,限行期间这路公交车平均每天共运送乘客7000人,且平均每车次运送乘客与原来的数量基本相同,问限行期间这路公交车每天运行多少车次?24.(8分)(1)如图1.在△ABC中,∠B=60°,∠DAC和∠ACE的角平分线交于点O ,则∠O = °,(2)如图2,若∠B =α,其他条件与(1)相同,请用含α的代数式表示∠O 的大小;(3)如图3,若∠B =α,11,PAC DAC PCA E n nAC ∠=∠∠=∠,则∠P = (用含α的代数式表示).25.(10分)如图,有三个论断:①∠1=∠2;②∠B =∠C ;③∠A =∠D ,请你从中任选两个作为条件,另一个作为结论构成一个命题,并证明该命题的正确性.26.(10分)如图,在ABC ∆中,AD 是BC 边上的高,AE 是ABC ∆的角平分线,,40BE AE B ︒=∠=.(1)求EAD ∠的度数;(2)若1CD =,求AC 的长.参考答案一、选择题(每小题3分,共30分)1、D【分析】通过约分化简进行计算即可.【详解】原式=12a 2b 4•(﹣332a b )·(﹣22a b) =36a.故选D.【点睛】本题考点:分式的化简.2、A【分析】根据平方根、立方根的定义依次分析各选项即可判断.【详解】∵1的平方根是±1,1的立方根是1,0的平方根、立方根均为0,-1没有平方根,-1的立方根是-1,∴平方根与它的立方根相同的数是0,故选A.【点睛】本题属于基础应用题,只需学生熟练掌握平方根、立方根的定义,即可完成. 3、C【分析】先把原数化为科学记数法,再根据精确度,求近似值,即可.【详解】19547=41.954710⨯≈42.010⨯.故选C .【点睛】本题主要考查求近似数。

八年级上数学期末模拟试题及答案

初二上学期数学期末模拟试题及答案一、选择题(本大题满分30分,每小题3分.每小题只有一个符合题意的选项,请你将正确选项的代号填在答题栏内 ) 1.16的算术平方根是A .4B .±4C .2D .±2 2.方程组⎩⎨⎧-=-=+13y x y x 的解是A .⎩⎨⎧==21y x B .⎩⎨⎧-==21y x C .⎩⎨⎧==12y x D .⎩⎨⎧-==1y x3.甲乙丙三个同学随机排成一排照相,则甲排在中间的概率是 A .21 B .31 C .41 D .61 4.下列函数中,y 是x 的一次函数的是 ① y =x -6 ② y =x 2 ③ y =8x④ y =7-x A .① ② ③ B .① ③ ④ C . ① ② ③ ④ D .② ③ ④5. 在同一平面直角坐标系中,图形M 向右平移3单位得到图形N ,如果图形M 上某点A 的坐标为(5,-6 ),那么图形N 上与点A 对应的点A '的坐标是A .(5,-9 )B .(5,-3 )C .(2,-6 )D . (8,-6 )6.如图,若在象棋盘上建立平面直角坐标系,使“帅”位于点(1 2)--,,“馬”位于点(2 2)-,,则“兵”位于点( )A .(1 1)-,B .(2 1)--,C .(12)-,D .(3 1)-,7.正比例函数y =kx (k ≠0)的函数值y 随x 的增大而减小,则一次函数y =kx -k 的图像大致是 100件产品,生产前没产(第15题图)(第6题图)品积压,生产3小时后,安排工人装箱,若每小时装150件,则未装箱产品数量y (件)与时间t (时)关系图为( )9.已知代数式15x a -1y 3与-5x b y a +b 是同类项,则a 与b 的值分别是( )A .⎩⎨⎧-==12b aB .⎩⎨⎧-=-=12b aC .⎩⎨⎧==12b aD .⎩⎨⎧=-=12b a10.在全民健身环城越野赛中,甲乙两选手的行程y (千米)随时间t (时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时甲跑了10千米,乙跑了8千米;③乙的行程y 与时间t 的解析式为y =10t ;④第1.5小时,甲跑了12千米.其中正确的说法有A .1 个B .2 个C .3 个D . 4个二、填空题(本大题满分15分,每小题311.已知方程3x +2y =6,用含x 的代数式表示y 12. 若点P (a +3, a -1)在x 轴上,则点P 的坐标为13.请写出一个同时具备:①y 随x 的增大而减小;②过点(0,-5)两条件的一次函数的表达式. 14.直线y =-21x +3向下平移5个单位长度,得到新的直线的解析式是 . 15.如图l 1的解析式为y =k 1x +b 1 , l 2的解析式为y =k 2x +b 2则方程组⎩⎨⎧+=+=2211b x k y b x k y 的解为 .三、解答题 (本大题满分55分, 16.(本题满分4分,每小题2分)计算:(1).4+3125-. (2).21.1+64.0. 17.(本题满分4分) 解方程组:⎩⎨⎧=+=+.134,1632y x y x18.(本题满分6分)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三②①(第15题图)l (第10题图)角形)ABC 的顶点A ,C 的坐标分别为(4-,5),(1-,3). ⑴请在如图所示的网格平面内画出平面直角坐标系; ⑵请作出△ABC 关于y 轴对称的△A ′B ′C ′; ⑶写出点B ′的坐标. 19.(本题满分5分)木工师傅做一个人字形屋梁,如图所示,上弦AB =AC =5m,跨度BC 为6m ,现有一根木料打算做中柱AD (AD 是△ABC 的中线), 请你通过计算说明中柱AD 的长度 . (只考虑长度、不计损耗)20.(本题满分5分) 列方程组解应用题:甲乙两人从相距36千米的两地相向而行.如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇. 甲、乙两人每小时各走多少千米? 21. (本题满分5分)小明和小亮想去看周末的一场足球比赛,但只有一张入场券.小明提议采用如下的方法来决定到底谁去看球赛:在九张卡片上分别写上1,2,3,4,5,6,7,8,9这九个数字,将它们背面朝上洗匀后,任意抽出一张,若抽出的卡片为奇数,小明去;否则,小亮去.你认为这个游戏公平吗?用数据说明你的观点.22 错误!链接无效。

山东省济宁市鱼台县2023-2024学年八年级上学期期末数学模拟试题(含答案)

山东省济宁市鱼台县2023-2024学年八年级上学期期末数学模拟试题注意事项:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页,第Ⅰ卷为选择题,36分;第Ⅱ卷为非选择题,64分;共100分.考试时间为120分钟.2.答题前,考生务必先核对条形码上的姓名、准考证号和座号,然后用0.5毫米黑色墨水签字笔将本人的姓名、准考证号和座号填写在答题卡相应位置.3.答第Ⅰ卷时,必须使用2B 铅笔把答题卡上相应题目的答案标号(ABCD )涂黑,如需改动,必须先用橡皮擦干净,再改涂其它答案.4.答第Ⅱ卷时,必须使用0.5毫米黑色墨水签字笔在答题卡上书写.务必在题号所指示的答题区域内作答.5.填空题请直接将答案填写在答题卡上,解答题应写出文字说明、证明过程或演算步骤.6.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷(选择题共36分)一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项符合题目要求.1.剪纸是我国古老的民间艺术.下列四个剪纸图案为轴对称图形的是()A .B .C .D .2.下列计算正确的是()A .B .2m m m +=()222244m n m mn n +=++C .D .()2236x x -=623x x x ÷=3.如果一个三角形的两边长分别为4和7,那么第三边长可能是()A .1B .3C .10D .12第6题图9.如图,三角形纸片中,,,.沿过点的直线将ABC 90BAC ∠=︒4AB =30C ∠=︒A 纸片折叠(折痕为),使点落在边上的点处;再折叠纸片,使点与点AF B BC D C 重合,折痕交于点(折痕为),则的长是()D ACE EG FG第9题图A .3B .4C .6D .810.利用下面图形之间的变化关系以及图形的几何意义,可以证明的数学等式是()第10题图A .B .()()22ab a b a b -=+-()2222a b a ab b -=-+C .D .()2222a b a b ab+=+-()2222a b a ab b +=++11.如图,是等边三角形,是边上的高,是的中点,是上的ABC △AD BC E AC P AD 一个动点,当与的和最小时,的度数是()PC PE CPE ∠第11题图A .30°B .45°C .60°D .90°12.如图,在中,,点为线段上一动点(不与点,重合),ABC △AB AC =D BC B C 连接,作,交线段于点,下列结论:①AD 40ADE B ︒∠=∠=DE AC E ;②若,则;③当时,则为中点;DEC BDA ∠=∠AB DC =AD DE =DE AC ⊥D BC ④当为等腰三角形时,.ADE △30BAD ∠=︒第12题图第16题图第17题图(1)作出关于直线的轴对称图形ABC △(2)直接写出(____,____1A(1)求证:;ABE CAD ≌△△(2)若,求的长.6MN =BN 23.(7分)为落实“双减政策”,某校购进“红色教育”和“传统文化”两种经典读本,花费分别是14000元和7000元,已知“红色教育”经典读本的订购单价是“传统文化”经典读本的订购单价的1.4倍,并且订购的“红色教育”经典读本的数量比“传统文化”经典读本的数量多300本.(1)求该学校订购的两种经典读本的单价分别是多少元;(2)该学校拟计划再订购这两种经典读本共1000本,总费用不超过12880元,则至少购进“传统文化”经典读本多少本?24.(9分)仔细阅读下面例题,解答问题:例题:已知二次三项式分解因式后有一个因式是,求另一个因式以及m24x x m -+()3x +的值.解:设另一个因式为,得,则()x n +()()243x x m x x n -+=++,()22433x x m x n x n -+=+++,解得:,,另一个因式为,m 的值为.343n m n+=-⎧∴⎨=⎩7n =-21m =-∴()7x -21-请仿照上述方法解答下面问题:(1)若,则______,______;()()223xbx c x x ++=+-b =c =(2)已知二次三项式分解因式后有一个因式是,求另一个因式以及2814x x k --()23x -的值;(3)已知二次三项式有一个因式是,a 是正整数,求另一个因式以2642x ax ++()2x a +及a 的值.25.(10分)已知在中,,过点引一条射线,是上一点.ABC △AB AC =B BM D BM 【问题解决】(1)如图1,若,射线在内部,,求证:60ABC ∠=︒BM ABC ∠60ADB ∠=︒.小明同学展示的做法是:在上取一点使得.通过已知的条60BDC ∠=︒BM E AE AD =件,从而求得的度数,请你帮助小明写出证明过程.BDC ∠【类比探究】(2)如图2,已知.20ABC ADB ∠=∠=︒①当射线在内,求的度数;BM ABC ∠BDC ∠②当射线在下方,如图3所示,请问的度数会变化吗?若不变,请说明理BM BC BDC ∠由,若改变,请求出的度数.BDC ∠图1图2图3(2),,()14,1A ()15,4B (1C,60BNM BAN ABN BAN CAD ∴∠=∠+∠=∠+∠=︒,,,.BM AD ⊥ 90AMB ∴∠=︒30NBM ∴∠=︒212BN MN ∴==23.(7分)解:(1)设“传统文化”经典读本的单价是x 元,则“红色教育”经典读本的单价是元,1.2x 由题意得:,解得:,1400070003001.4x x-=10x =经检验,是原分式方程的解,,10x = 1.414x ∴=答:“红色教育”的订购单价是14元,“传统文化”经典读本的单价是10元.(2)设订购“传统文化”经典读本a 本,则订购“红色教育”经典读本本,()1000a -由题意得:,解得:()1014100012880a a +-≤280a ≥至少购进“传统文化”经典读本280本.∴24.(9分)解:(1),()()22236x x x x x bx c +-=--=++,;故,;1b ∴=-6c =-1-6-(2)设另一个因式是,()4x b +则,()()()2222348212382123814x x b x bx x b x b x b x x k -+=+--=+--=--,解得:,,因此另一个因式是,212143b b k -=-⎧⎨=⎩1b =-3k =-41x -3k =-(3)设另一个因式是,则()3x m +()()()2223623642x a x m x m a x am x ax ++=+++=++则,解得或,2342m a a am +=⎧⎨=⎩21a m =⎧⎨=⎩21a m =-⎧⎨=-⎩另一个因式是,a 的值是(不符合题意舍去), 31x -2-另一个因式是,a 的值是2.∴31x +25.(10分)(1)证明:如图1,在上取一点,使,BM E AEAD =图1,是等边三角形,,60ADB ∠=︒ ADE ∴△60EAD ∴∠=︒,,是等边三角形,AB AC = 60ABC ∠=︒ABC ∴△,,60BAC ∴∠=︒BAC EAD ∴∠=∠,即,BAC EAC EAD EAC ∴∠-∠=∠-∠BAE CAD ∠=∠在和中,,BAE △CAD △AB AC BAE CAD AE AD =⎧⎪∠=∠⎨⎪=⎩,,()SAS BAE CAD ∴≌△△120ADC AEB ∴∠=∠=︒;1206060BDC ︒︒∴∠=-︒=(2)①如图2,在上取一点,,BD E AEAD=图2,,20ABC ADB ︒∠=∠= AB AC =,,20ABC ACB ︒∴∠=∠=20AED ADE ∠=∠=︒,140BAC EAD ∴∠=∠=︒BAC EAC EAD EAC ∠-∠=∠-∠,BAE CAD ∴∠=∠在和中,,BAE △CAD △AB ACBAE CAD AE AD =⎧⎪∠=∠⎨⎪=⎩,,()SAS BAE CAD ∴≌△△18020160ADC AEB ∴∠=∠=︒-︒=︒;16020140BDC ∴∠=︒-︒=︒②的度数会变化,BDC ∠理由如下:如图3.在延长线上取一点,使得,DB E AE AD =同理①的方法可证:,BAE CAD ≌△△,.20ADC E ∴∠=∠=︒202040BDC ADE ADC ∴∠=∠+∠=︒+︒=︒图3。

浙江省杭州余杭区2023-2024学年八年级数学第一学期期末考试模拟试题含答案

浙江省杭州余杭区2023-2024学年八年级数学第一学期期末考试模拟试题学校_______ 年级_______ 姓名_______注意事项1.考生要认真填写考场号和座位序号。

2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。

第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。

3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

一、选择题(每题4分,共48分)1.小李家装修地面,已有正三角形形状的地砖,现打算购买不同形状的另一种正多边形地砖,与正三角形地砖一起铺设地面,则小李不应购买的地砖形状是( )A.正方形B.正六边形C.正八边形D.正十二边形2.下列各数中,无理数是()A.0.101001B.0C.5D.2 3 -3.下列条件中,能确定三角形的形状和大小的是()A.AB=4,BC=5,CA=10 B.AB=5,BC=4,∠A=40°C.∠A=90°,AB=8 D.∠A=60°,∠B=50°,AB=54.下列各式中,能用完全平方公式进行因式分解的是() .A.2x4x4-+B.2x1+C.2x2x2--D.2x4x1++5.如图,以△ABC的顶点B为圆心,BA长为半径画弧,交BC边于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC 的大小为()A.30°B.34°C.36°D.40°6.如图为某居民小区中随机调查的10户家庭一年的月平均用水量(单位:t)的条形统计图,则这10户家庭月均用水量的众数和中位数分别是().A.6.5,7B.6.5,6.5C.7,7D.7,6.57.二班学生某次测试成绩统计如下表:则得分的众数和中位数分别是()得分(分)60 70 80 90 100人数(人)7 12 10 8 3A.70分,70分B.80分,80分C.70分,80分D.80分,70分8.在平面直角坐标系中,点(-1,2)在()A.第一象限B.第二象限C.第三象限D.第四象限9.在下列交通标识图案中,不是轴对称图形的是()A.B.C.D.+⨯的值应在()10.估计5210A.5和6之间B.6和7之间C.7和8之间D.8和9之间11.如图,已知∠ACB=∠DBC,添加以下条件,不能判定△ABC≌△DCB的是()A.∠ABC=∠DCB B.∠ABD=∠DCAC.AC=DB D.AB=DC12.已知:如图,点P在线段AB外,且PA=PB,求证:点P在线段AB的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是()A .作∠APB 的平分线PC 交AB 于点C B .过点P 作PC ⊥AB 于点C 且AC=BC C .取AB 中点C ,连接PCD .过点P 作PC ⊥AB ,垂足为C 二、填空题(每题4分,共24分) 13.若112x y+=,则分式22x xy y x xy y -+++的值为__________.14.一个样本的40个数据分别落在4个组内,第1、2、3组数据的个数分别是7、8、15,则第4组数据的频率分别为_______.15.已知点A (x ,2),B (﹣3,y ),若A ,B 关于x 轴对称,则x +y 等于_____. 16.分解因式:3x 2-6x+3=__.17.如图,在ABC ∆中,90BAC ∠=︒,点D 、E 分别在AB 、BC 上,连接DE 并延长交AC 的延长线于点F ,若AF AB BE =+,2BCA BED ∠=∠,5AB =,3CE =,则BD 的长为_________.18.如图,ABC ∆和EBD ∆都是等腰三角形,且100ABC EBD ∠=∠=︒,当点D 在AC 边上时,BAE ∠=_________________度.三、解答题(共78分)19.(8分)已知,如图,在△ABC 中,AD ,AE 分别是△ABC 的高和角平分线,若∠B =20°,∠C =60°.求∠DAE 的度数.20.(8分)已知:∠AOB 和两点C 、D ,求作一点P ,使PC=PD ,且点P 到∠AOB 的两边的距离相等.(要求:用尺规作图,保留作图痕迹,不写作法,不要求证明)21.(8分)如图,已知△ABC 中,AB=AC=10cm ,BC=8cm ,点D 为AB 的中点.如果点P 在线段BC 上以3cm/s 的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.(1)若点Q 的运动速度与点P 的运动速度相等,经过1s 后,BP= cm ,CQ= cm .(2)若点Q 的运动速度与点P 的运动速度相等,经过1s 后,△BPD 与△CQP 是否全等,请说明理由; (3)若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使△BPD 与△CQP 全等? (4)若点Q 以(3)中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿△ABC 三边运动,求经过多长时间点P 与点Q 第一次相遇?22.(10分)在Rt ABC △中,90BAC ∠=︒,2AB AC ==,AD BC ⊥于点D .(1)如图1所示,点,M N 分别在线段,AD AB 上,且90BMN ∠=︒,当30AMN =︒∠时,求线段AM 的长;(2)如图2,点M在线段AD的延长线上,点N在线段AC上,(1)中其他条件不变.①线段AM 的长为;②求线段AN的长.23.(10分)用消元法解方程组35,43 2.x yx y-=⎧⎨-=⎩①②时,两位同学的解法如下:(1)反思:上述两个解题过程中有无计算错误?若有误,请在错误处打“×”.(2)请选择一种你喜欢的方法,完成解答.24.(10分)某电器公司计划装运甲、乙两种家电到农村销售(规定每辆汽车按规定满载,且每辆汽车只能装同一种家电),已知每辆汽车可装运甲种家电20台,乙种家电30台.(1)若用8辆汽车装运甲、乙两种家电共190台到A地销售,问装运甲、乙两种家电的汽车各有多少辆?(2)如果每台甲种家电的利润是180元,每台乙种家电的利润是300元,那么该公司售完这190台家电后的总利润是多少?25.(12分)龙人文教用品商店欲购进A、B两种笔记本,用160元购进的A种笔记本与用240元购进的B种笔记本数量相同,每本B种笔记本的进价比每本A种笔记本的进价贵10元.(1)求A、B两种笔记本每本的进价分别为多少元?(2)若该商店准备购进A、B两种笔记本共100本,且购买这两种笔记本的总价不超过2650元,则至少购进A种笔记本多少本26.(12分)如图1,在平面直角坐标系中,直线AB分别交y轴、x轴于点A(1,a),点B(b,1),且a、b满足a2-4a+4+22b =1.(1)求a,b的值;(2)以AB为边作Rt△ABC,点C在直线AB的右侧,且∠ACB=45°,求点C的坐标;(3)若(2)的点C在第四象限(如图2),AC与x轴交于点D,BC与y轴交于点E,连接DE,过点C作CF⊥BC 交x轴于点F.①求证:CF=12 BC;②直接写出点C到DE的距离.参考答案一、选择题(每题4分,共48分)1、C2、C3、D4、A5、B6、B7、C8、B9、D10、B11、D12、B二、填空题(每题4分,共24分)13、114、0.115、﹣1.16、3(x-1)217、118、1三、解答题(共78分)19、20°20、见详解.21、(1)BP=3cm,CQ=3cm;(2)全等,理由详见解析;(3)154;(4)经过803s点P与点Q第一次相遇.22、(13;(223、(1)解法一中的计算有误;(2)原方程组的解是12 xy=-⎧⎨=-⎩.24、(1)装运甲种家电的汽车有5辆,装运乙种家电的汽车有3辆;(2)该公司售完这190台家电后的总利润是45000元.25、(1)A、B两种笔记本每本的进价分别为20 元、30 元;(2)至少购进A种笔记本35 本26、(2)a=2,b=-2;(2)满足条件的点C(2,2)或(2,-2);(3)①证明见解析;②2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级上学期数学期末模拟试题及答案
YKK standardization office【 YKK5AB- YKK08- YKK2C- YKK18】
(考试时间90分钟满分120分)
一、精心选一选(本大题共有8个小题,每小题3分,共24分.每小题只有一个正确选
项,请把正确选项的字母代号填在下面的表格内).
题号 1 2 3 4 5 6 7 8 答案
1.下面是某同学在一次测验中的计算摘录①325
a b ab
+=;②333
45
m n mn m n
-=-;
③5
2
36
)
2
(
3x
x
x-
=
-
⋅;④32
4(2)2
a b a b a
÷-=-;⑤()235
a a
=;⑥()()
32
a a a
-÷-=-.其中正确的个数有
个个个 D. 4个
2下列交通标志是轴对称图形的是()X k B 1 . c o m
A. B. C. D.
3.下列长度的三条线段能组成三角形的是
A.6, 8 ,10 B.4, 5,9 C.1,2, 4 D.5, 15, 8
4.在
5
8

n
m
3

3
y
x+

x
1

b
a+
3
中,分式的个数是
A.1 B.2 C.3 D. 4
5.如图点A、D、C、E在同一条直线上,AB∥EF,AB=EF,
∠B=∠F, AE=10,AC=7,则CD的长为。

A. B.4 C. D.3
第5题
6.等腰三角形一腰上的高与另一要的夹角为300,则顶角度数为
或600
7.如(x +m)与(x +3)的乘积中不含x 的一次项,则m 的值为.X|k | B| 1 . c |O |m A .-3
B .3
C .0
D .1
8.如图,直线L 是一条河,P ,Q 是两个村庄.欲在L 上的某处修建一个水泵站,向P ,Q 两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是。

二、细心填一填,一锤定音(每小题3分,满分24分)
9. 英国曼彻斯特大学的两位科学家因为成功地从石墨中分离出石墨烯,获得了诺贝尔物理学奖.石墨烯是目前世界上最薄却最坚硬的纳米材料,同时也是导电性最好的材料,其理论厚度仅 000 34毫米,将 000 34用科学记数法表示应为
10.已知x=-2时,分式a x b
x +-无意义,x=4时,此分式的值为0,则a+b= .
11.计算(-3x 2y)2· (213xy )=__________.(54)2014×(-141
)2015=
(π0= 。

12. 已知4x 2+mx +9是完全平方式,则m =_________
13.如图,点B 在AE 上,∠CAB=∠DAB ,要使△ABC ≌△ABD ,可补充的一个条件是: 。

(答案不唯一,写一个即可)
14.如图,△ABC 的周长为16,且AB=AC ,AD ⊥BC 于D ,△ACD 的周长为12,那么AD 的长
为 。

15.若3 x =10, 3 y =5,则32x —y = .
+1+a(a+1)+a(a+1)2+……+a(a+1)2014 = .
三、认真做一做(共72分) 17.(每题4分,共20分) (1)计算:
①xy xy y x 2)26(23÷+-
② 2(a -3)(a +2)-(4+a)(4-a). X k B 1 . c o m
③ 2014 2-2015×2013
(2)分解因式:
①9a2(x-y)+4b2(y-x);② -3x2+6xy-3y2
18.( 8分)如图,在平面直角坐标系中,每个小正方形的边长为1,点A的坐标为(-3,2)。

(1)利用关于坐标轴对称的点的坐标的特点画出△ABC关于x轴的对称图形△A1B1C1和
△ABC关于y轴的对称图△A2B2C2。

(2)写出点A1和点C2的坐标.
19.(8分)数学课上老师出了一道题:计算2962的值,喜欢数学的小亮举手做出这道
题,他的解题过程如下:
2962=(300-4)2=3002-2×300×(-4)+42
=90000+2400+16=92416
老师表扬小亮积极发言的同时,也指出了解题中的错误,你认为小亮的解题过程错在哪儿,并给出正确的答案.
20. (8分)在△ABC 中,∠C=90°,DE 垂直平分斜边AB ,分别交AB 、BC 于D 、E .若 ∠CAB=∠B+30°,CE=2cm.
求:(1)∠AEB 度数.(2)BC 的长。

21.先化简,再求值.(6分)
2
2
)11(y xy y x y y x -÷-++,其中2-=x ,1=y 。

22. (6分)如图,点D 为码头,A ,B 两个灯塔与码头的距离相等,DA ,DB 为海岸线.一 轮船离开码头,计划沿∠ADB 的角平分线航行,在航行途中C 点处,测得轮船与灯塔A 和灯塔B 的距离相等.试问:轮船航行是否偏离指定航线?请说明理由.
23.(8分)如图,在△ABC 中,AB=AC ,点D 、E 、F 分别在BC 、AB 、AC 边上, 且BE=CF ,AD+EC=AB .
(1)求证:△DEF 是等腰三角形;(4分) (2)当∠A=40°时,求∠DEF 的度数。

(4分)
24. (8分)请认真观察图形,解答下列问题:
(1)根据图中条件,用两种方法表示两个阴影图形的面积的和(只需表示,不必化简);
(2)由(1),你能得到怎样的等量关系?请用等式表示; (3)如果图中的,a b (a >b )满足2253a b +=,14ab =,
求:①a b +的值; ②44a b -的值.
附加题:(10分)
在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工
程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成. (1)乙队单独完成这项工程需要多少天?
(2)甲队施工一天,需付工程款万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?
19. 错在“-2×300×(-4)”,应为“-2×300×4”,公式用错.
∴2962=(300-4)2=300
2-2×300×4 +42=90000-2400+16=87616.
22.答:轮船航行没有偏离指定航线。

理由是:在⊿ADC与⊿BDC中,∵AD=BD,DC=DC,AC=BC ∴⊿ADC≌⊿BDC(SSS)∴∠ADC=∠BDC ∴轮船航线DC即为∠ADB的角平分线
故轮船航行没有偏离指定航线。

23.(1)证明:∵AB=AC ∴∠B=∠C ∵AB=AD+BD AB=AD+EC∴BD=EC 在△DBE和△ECF中
∴△DBE
≌△ECF(SAS)∴DE=EF ∴△DEF是等腰三角形BE=CF
∠B=∠C
BD=EC
222
()2
25
a b a b ab
-=+-
=
24.解:(1)两个阴影图形的面积和可表示为:22
a b
+或2
()2
a b ab
+-;
(2)222
()2
a b a b ab
+=+-;
(3)∵,a b(a>b)满足2253
a b
+=,14
ab=,
∴①222
()2
a b a b ab
+=++= 53+2×14 = 81
∴9
a b
+=±,又∵a>0,b>0,∴9
a b
+=.
②∵4422
()()()
a b a b a b a b
-=++-,

∴5
a b
-=±又∵a>b>0,∴5
a b
-=
∴4422
()()()
a b a b a b a b
-=++-=53×9×5=2385.
(2)显然乙队单独完成这项工程需要的天数超过70,可不予考虑。

若由甲对单独完成需付工程款×60=210(万元)
若由甲乙两队全程合作完成需付工程款×44+2×24=202(万元)
因为202<210,所以由甲乙两队全程合作完成该工程省钱。

新课标第一网系列资料。

相关文档
最新文档