2020年吉林高考文科数学试题【带答案】
2020年全国统一高考数学试卷(文科)(新课标ⅱ)(含解析版)

2020年全国统一高考数学试卷(文科)(新课标Ⅱ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={x||x|<3,x∈Z},B={x||x|>1,x∈Z},则A∩B=()A.∅B.{﹣3,﹣2,2,3}C.{﹣2,0,2}D.{﹣2,2}2.(5分)(1﹣i)4=()A.﹣4B.4C.﹣4i D.4i3.(5分)如图,将钢琴上的12个键依次记为a1,a2,…,a12.设1≤i<j<k≤12.若k﹣j=3且j﹣i=4,则a i,a j,a k为原位大三和弦;若k﹣j=4且j﹣i=3,则称a i,a j,a k为原位小三和弦.用这12个键可以构成的原位大三和弦与原位小三和弦的个数之和为()A.5B.8C.10D.154.(5分)在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05.志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者()A.10名B.18名C.24名D.32名5.(5分)已知单位向量,的夹角为60°,则在下列向量中,与垂直的是()A .B.2+C .﹣2D.2﹣6.(5分)记S n为等比数列{a n}的前n项和.若a5﹣a3=12,a6﹣a4=24,则=()A.2n﹣1B.2﹣21﹣n C.2﹣2n﹣1D.21﹣n﹣17.(5分)执行如图的程序框图,若输入的k=0,a=0,则输出的k为()A.2B.3C.4D.58.(5分)若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x﹣y﹣3=0的距离为()A .B .C .D .9.(5分)设O为坐标原点,直线x=a与双曲线C :﹣=1(a>0,b>0)的两条渐近线分别交于D,E 两点.若△ODE的面积为8,则C的焦距的最小值为()A.4B.8C.16D.3210.(5分)设函数f(x)=x3﹣,则f(x)()A.是奇函数,且在(0,+∞)单调递增B.是奇函数,且在(0,+∞)单调递减C.是偶函数,且在(0,+∞)单调递增D.是偶函数,且在(0,+∞)单调递减11.(5分)已知△ABC 是面积为的等边三角形,且其顶点都在球O的球面上.若球O的表面积为16π,则O到平面ABC的距离为()A .B .C.1D .12.(5分)若2x﹣2y<3﹣x﹣3﹣y,则()A.ln(y﹣x+1)>0B.ln(y﹣x+1)<0C.ln|x﹣y|>0D.ln|x﹣y|<0二、填空题:本题共4小题,每小题5分,共20分。
2020年普通高等学校招生全国统一考试文科数学(全国III卷)(含答案)

如果您喜欢这份文档,欢迎下载! 来源网络,造福学生
———————欢迎下载,祝您学习进步,成绩提升———————
11
如果您喜欢这份文档,欢迎下载! 来源网络,造福学生
———————欢迎下载,祝您学习进步,成绩提升———————
12
如果您喜欢这份文档,欢迎下载! 来源网络,造福学生
———————欢迎下载,祝您学习进步,成绩提升———————
17.(12 分)
设等比数列 an 满足 a1+a2 =4 , a3 -a1=8 (1) 求an 的通项公式; (2) 记 sn 为数列 log3 a n 的前 n 项和.若 sm +sm+1=sm+3 ,求 m.
18.(12 分)
某学生兴趣小组随机调查了某市 100 天中每天的空气质量等级和当天到某公园锻炼的人次,
为代表);
(3) 若某天的空气质量等级为 1 或 2,则称这天“空气质量好”;若某天的空气质量等
级为 3 或 4,则称这天“空气质量不好”。根据所给数据,完成下面的 2 2 列联表,
并根据列联表,判断是否有 95%的把握认为一天中到该公园锻炼的人次与该市当天
的空气质量有关?
人次 400
人次>400
A. 5
B.2 5
C.4 5
D.8 5
12. 已知函数 f (x) sin x 1 ,则 sin x
A. f (x) 的最小值为 2
B. f (x) 的图像关于 y 轴对称 C. f (x) 的图像关于直线 x 对称 D. f (x) 的图像关于直线 x 对称
2
二、填空题:本题共 4 小题,每小题 5 分,共 20 分。
A. 圆
B. 椭圆
2020年全国统一高考数学试卷(文科)(新课标ⅱ)(含解析版)

绝密★启用前2020年普通高等学校招生全国统一考试文科数学注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题目时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号框涂黑.如需改动,用橡皮擦干净后,在选涂其它答案标号框.回答非选择题目时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题目:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={x ||x |<3,x ∈Z },B ={x ||x |>1,x ∈Z },则A ∩B =()A. B.{–3,–2,2,3)C.{–2,0,2} D.{–2,2}【答案】D 【解析】【分析】解绝对值不等式化简集合,A B 的表示,再根据集合交集的定义进行求解即可.【详解】因为3,2,1,0,1,2A x x x Z ,1,1B x x x Z x x 或 1,x x Z ,所以 2,2A B ∩.故选:D.【点睛】本题考查绝对值不等式的解法,考查集合交集的定义,属于基础题.2.(1–i )4=()A.–4B.4C.–4iD.4i【答案】A【解析】【分析】根据指数幂的运算性质,结合复数的乘方运算性质进行求解即可.【详解】422222(1)[(1)](12)(2)4i i i i i .故选:A.【点睛】本题考查了复数的乘方运算性质,考查了数学运算能力,属于基础题.3.如图,将钢琴上的12个键依次记为a 1,a 2,…,a 12.设1≤i <j <k ≤12.若k –j =3且j –i =4,则称a i ,a j ,a k 为原位大三和弦;若k –j =4且j –i =3,则称a i ,a j ,a k 为原位小三和弦.用这12个键可以构成的原位大三和弦与原位小三和弦的个数之和为()A.5B.8C.10D.15【答案】C 【解析】【分析】根据原位大三和弦满足3,4k j j i ,原位小三和弦满足4,3k j j i 从1i 开始,利用列举法即可解出.【详解】根据题意可知,原位大三和弦满足:3,4k j j i .∴1,5,8i j k ;2,6,9i j k ;3,7,10i j k ;4,8,11i j k ;5,9,12i j k .原位小三和弦满足:4,3k j j i .∴1,4,8i j k ;2,5,9i j k ;3,6,10i j k ;4,7,11i j k ;5,8,12i j k .故个数之和为10.故选:C .【点睛】本题主要考查列举法的应用,以及对新定义的理解和应用,属于基础题.4.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者()A.10名B.18名C.24名D.32名【答案】B 【解析】【分析】算出第二天订单数,除以志愿者每天能完成的订单配货数即可.【详解】由题意,第二天新增订单数为50016001200900 ,故需要志愿者9001850名.故选:B【点晴】本题主要考查函数模型的简单应用,属于基础题.5.已知单位向量a ,b 的夹角为60°,则在下列向量中,与b 垂直的是()A.a +2bB.2a +bC.a –2bD.2a –b【答案】D 【解析】【分析】根据平面向量数量积的定义、运算性质,结合两平面向量垂直数量积为零这一性质逐一判断即可.【详解】由已知可得:11cos 601122a b a b .A :因为215(2)221022a b b a b b ,所以本选项不符合题意;B :因为21(2)221202a b b a b b ,所以本选项不符合题意;C :因213(2)221022a b b a b b ,所以本选项不符合题意;D:因为21(2)22102a b b a b b ,所以本选项符合题意.故选:D.【点睛】本题考查了平面向量数量积的定义和运算性质,考查了两平面向量数量积为零则这两个平面向量互相垂直这一性质,考查了数学运算能力.6.记S n 为等比数列{a n }的前n 项和.若a 5–a 3=12,a 6–a 4=24,则nnS a =()A.2n –1 B.2–21–n C.2–2n –1D.21–n –1【答案】B 【解析】【分析】根据等比数列的通项公式,可以得到方程组,解方程组求出首项和公比,最后利用等比数列的通项公式和前n 项和公式进行求解即可.【详解】设等比数列的公比为q ,由536412,24a a a a 可得:421153111122124a q a q q a a q a q ,所以1111(1)122,21112n nn n n n n a q a a qS q ,因此1121222n n n n n S a .故选:B.【点睛】本题考查了等比数列的通项公式的基本量计算,考查了等比数列前n 项和公式的应用,考查了数学运算能力.7.执行右面的程序框图,若输入的k =0,a =0,则输出的k 为()A.2B.3C.4D.5【答案】C 【解析】分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出的k 值,模拟程序的运行过程,分析循环中各变量值的变化情况,即可求得答案.【详解】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出的k 值模拟程序的运行过程0,0k a 第1次循环,2011a ,011k ,210 为否第2次循环,2113a ,112k ,310 为否第3次循环,2317a ,213k ,710 为否第4次循环,27115a ,314k ,1510 为是退出循环输出4k .故选:C.【点睛】本题考查求循环框图的输出值,解题关键是掌握模拟循环语句运行的计算方法,考查了分析能力和计算能力,属于基础题.8.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y 的距离为()A.55B.255C.355D.455【答案】B 【解析】【分析】由题意可知圆心在第一象限,设圆心的坐标为 ,,0a a a ,可得圆的半径为a ,写出圆的标准方程,利用点 2,1在圆上,求得实数a 的值,利用点到直线的距离公式可求出圆心到直线230x y 的距离.【详解】由于圆上的点 2,1在第一象限,若圆心不在第一象限,则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必在第一象限,设圆心的坐标为,a a ,则圆的半径为a ,圆的标准方程为 222x a y a a .由题意可得 22221a a a ,可得2650a a ,解得1a 或5a ,所以圆心的坐标为 1,1或 5,5,圆心到直线230x y 的距离均为22555d;所以,圆心到直线230x y 的距离为255.故选:B.【点睛】本题考查圆心到直线距离的计算,求出圆的方程是解题的关键,考查计算能力,属于中等题.9.设O 为坐标原点,直线x a 与双曲线2222:1(0,0)x y C a b a b的两条渐近线分别交于,D E 两点,若ODE 的面积为8,则C 的焦距的最小值为()A.4B.8C.16D.32【答案】B 【解析】【分析】因为2222:1(0,0)x y C a b a b ,可得双曲线的渐近线方程是b y x a,与直线x a 联立方程求得D ,E 两点坐标,即可求得||ED ,根据ODE 的面积为8,可得ab 值,根据2222c a b ,结合均值不等式,即可求得答案.【详解】∵2222:1(0,0)x y C a b a b双曲线的渐近线方程是by x a∵直线x a 与双曲线2222:1(0,0)x y C a b a b的两条渐近线分别交于D ,E 两点不妨设D 为在第一象限,E 在第四象限联立x ab y x a,解得x a y b故(,)D a b 联立x ab y x a,解得x a y b故(,)E a b ||2ED bODE 面积为:1282ODE S a b ab△∵双曲线2222:1(0,0)x y C a b a b其焦距为2222222168c a b ab 当且仅当22a b 取等号C 的焦距的最小值:8【点睛】本题主要考查了求双曲线焦距的最值问题,解题关键是掌握双曲线渐近线的定义和均值不等式求最值方法,在使用均值不等式求最值时,要检验等号是否成立,考查了分析能力和计算能力,属于中档题.10.设函数331()f x x x,则()f x ()A.是奇函数,且在(0,+∞)单调递增 B.是奇函数,且在(0,+∞)单调递减C.是偶函数,且在(0,+∞)单调递增 D.是偶函数,且在(0,+∞)单调递减【答案】A 【解析】【分析】根据函数的解析式可知函数的定义域为0x x ,利用定义可得出函数 f x 为奇函数,再根据函数的单调性法则,即可解出.【详解】因为函数 331f x x x定义域为 0x x ,其关于原点对称,而 f x f x ,所以函数 f x 为奇函数.又因为函数3y x 在()0,+¥上单调递增,在(),0-¥上单调递增,而331y x x在()0,+¥上单调递减,在(),0-¥上单调递减,所以函数 331f x x x在()0,+¥上单调递增,在(),0-¥上单调递增.故选:A .【点睛】本题主要考查利用函数的解析式研究函数的性质,属于基础题.11.已知△ABC 是面积为934的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为()A.3B.32C.1D.32【答案】C【分析】根据球O 的表面积和ABC 的面积可求得球O 的半径R 和ABC 外接圆半径r ,由球的性质可知所求距离22d R r.【详解】设球O 的半径为R ,则2416R ,解得:2R .设ABC 外接圆半径为r ,边长为a ,ABC ∵ 是面积为934的等边三角形,21393224a ,解得:3a ,22229933434a r a ,球心O 到平面ABC 的距离22431d R r .故选:C.【点睛】本题考查球的相关问题的求解,涉及到球的表面积公式和三角形面积公式的应用;解题关键是明确球的性质,即球心和三角形外接圆圆心的连线必垂直于三角形所在平面.12.若2233x y x y ,则()A.ln(1)0y x B.ln(1)0y x C.ln ||0x y D.ln ||0x y 【答案】A 【解析】【分析】将不等式变为2323x x y y ,根据 23t tf t 的单调性知x y ,以此去判断各个选项中真数与1的大小关系,进而得到结果.【详解】由2233x y x y 得:2323x x y y ,令 23ttf t ,2x y ∵为R 上的增函数,3x y 为R 上的减函数, f t 为R 上的增函数,x y ,0y x Q ,11y x , ln 10y x ,则A 正确,B 错误;x y Q 与1的大小不确定,故CD 无法确定.故选:A.【点睛】本题考查对数式的大小的判断问题,解题关键是能够通过构造函数的方式,利用函数的单调性得到,x y 的大小关系,考查了转化与化归的数学思想.二、填空题目:本题共4小题,每小题5分,共20分.13.若2sin 3x ,则cos 2x __________.【答案】19【解析】【分析】直接利用余弦的二倍角公式进行运算求解即可.【详解】22281cos 212sin 12()1399x x .故答案为:19.【点睛】本题考查了余弦的二倍角公式的应用,属于基础题.14.记n S 为等差数列 n a 的前n 项和.若1262,2a a a ,则10S __________.【答案】25【解析】【分析】因为 n a 是等差数列,根据已知条件262a a ,求出公差,根据等差数列前n 项和,即可求得答案.【详解】∵ n a 是等差数列,且12a ,262a a 设 n a 等差数列的公差d根据等差数列通项公式: 11n a a n d 可得1152a d a d 即: 2252d d 整理可得:66d 解得:1d∵根据等差数列前n 项和公式:*1(1),2n n n S na d n N可得: 1010(101)1022045252S1025S .故答案为:25.【点睛】本题主要考查了求等差数列的前n 项和,解题关键是掌握等差数列的前n 项和公式,考查了分析能力和计算能力,属于基础题.15.若x ,y 满足约束条件1121,x y x y x y,,则2z x y 的最大值是__________.【答案】8【解析】【分析】在平面直角坐标系内画出不等式组表示的平面区域,然后平移直线12y x ,在平面区域内找到一点使得直线1122y x z在纵轴上的截距最大,求出点的坐标代入目标函数中即可.【详解】不等式组表示的平面区域为下图所示:平移直线12y x,当直线经过点A 时,直线1122y x z 在纵轴上的截距最大,此时点A 的坐标是方程组121x y x y的解,解得:23x y,因此2z x y 的最大值为:2238 .故答案为:8.【点睛】本题考查了线性规划的应用,考查了数形结合思想,考查数学运算能力.16.设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内.p 2:过空间中任意三点有且仅有一个平面.p 3:若空间两条直线不相交,则这两条直线平行.p 4:若直线l 平面α,直线m ⊥平面α,则m ⊥l .则下述命题中所有真命题的序号是__________.①14p p ②12p p ③23p p ④34p p 【答案】①③④【解析】【分析】利用两交线直线确定一个平面可判断命题1p 的真假;利用三点共线可判断命题2p 的真假;利用异面直线可判断命题3p 的真假,利用线面垂直的定义可判断命题4p 的真假.再利用复合命题的真假可得出结论.【详解】对于命题1p ,可设1l 与2l 相交,这两条直线确定的平面为 ;若3l 与1l 相交,则交点A 在平面 内,同理,3l 与2l 的交点B 也在平面 内,所以,AB ,即3l ,命题1p 真命题;对于命题2p ,若三点共线,则过这三个点的平面有无数个,命题2p 为假命题;对于命题3p ,空间中两条直线相交、平行或异面,命题3p 为假命题;对于命题4p ,若直线m 平面 ,则m 垂直于平面 内所有直线,∵直线l 平面 , 直线m 直线l ,命题4p 为真命题.综上可知,14p p 为真命题,12p p 为假命题,23p p 为真命题,34p p 为真命题.故答案为:①③④.【点睛】本题考查复合命题的真假,同时也考查了空间中线面关系有关命题真假的判断,考查推理能力,属于中等题.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知25cos ()cos 24A A .(1)求A ;(2)若33b c a,证明:△ABC 是直角三角形.【答案】(1)3A;(2)证明见解析【解析】【分析】(1)根据诱导公式和同角三角函数平方关系,25cos cos 24A A可化为251cos cos 4A A,即可解出;(2)根据余弦定理可得222b c a bc ,将33b c a 代入可找到,,a b c 关系,再根据勾股定理或正弦定理即可证出.【详解】(1)因为25cos cos 24A A,所以25sin cos 4A A ,即251cos cos 4A A ,解得1cos 2A ,又0A ,所以3A;(2)因为3A ,所以2221cos 22b c a A bc ,即222b c a bc ①,又33b c a②,将②代入①得, 2223b c b c bc ,即222250b c bc ,而b c ,解得2b c ,所以3a c,故222b a c ,即ABC 是直角三角形.【点睛】本题主要考查诱导公式和平方关系的应用,利用勾股定理或正弦定理,余弦定理判断三角形的形状,属于基础题.18.某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i =1,2,…,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20160i ix,2011200i iy,2021)80i i x x (,2021)9000i i y y (,201))800i i i x y x y ((.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i )(i =1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数r =12211))))ni iiiin ni i x y x x y y y x((((,2=1.414.【答案】(1)12000;(2)0.94;(3)详见解析【解析】【分析】(1)利用野生动物数量的估计值等于样区野生动物平均数乘以地块数,代入数据即可;(2)利用公式20120202211()()()()iii iii i x x yy r x x yy计算即可;(3)各地块间植物覆盖面积差异较大,为提高样本数据的代表性,应采用分层抽样.【详解】(1)样区野生动物平均数为201111200602020i i y ,地块数为200,该地区这种野生动物的估计值为2006012000 (2)样本(,)i i x y 的相关系数为20120202211()()800220.943809000()()iii i i i i x x y y r x x y y(3)由于各地块间植物覆盖面积差异较大,为提高样本数据的代表性,应采用分层抽样先将植物覆盖面积按优中差分成三层,在各层内按比例抽取样本,在每层内用简单随机抽样法抽取样本即可.【点晴】本题主要考查平均数的估计值、相关系数的计算以及抽样方法的选取,考查学生数学运算能力,是一道容易题.19.已知椭圆C 1:22221x y a b(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴重直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)若C 1的四个顶点到C 2的准线距离之和为12,求C 1与C 2的标准方程.【答案】(1)12;(2)1C :2211612x y ,2C :28y x .【解析】【分析】(1)根据题意求出2C 的方程,结合椭圆和抛物线的对称性不妨设,A C 在第一象限,运用代入法求出,,,A B C D 点的纵坐标,根据4||||3CD AB ,结合椭圆离心率的公式进行求解即可;(2)由(1)可以得到椭圆的标准方程,确定椭圆的四个顶点坐标,再确定抛物线的准线方程,最后结合已知进行求解即可;【详解】解:(1)因为椭圆1C 的右焦点坐标为:(c,0)F ,所以抛物线2C 的方程为24y cx ,其中22c a b.不妨设,A C 在第一象限,因为椭圆1C 的方程为:22221x y a b,所以当x c 时,有222221c y b y a b a ,因此,A B 的纵坐标分别为2b a ,2ba;又因为抛物线2C 的方程为24y cx ,所以当x c 时,有242y c c y c ,所以,C D 的纵坐标分别为2c ,2c ,故22||bAB a,||4CD c .由4||||3CD AB 得2843b c a,即2322()c c a a ,解得2c a (舍去),12c a .所以1C 的离心率为12.(2)由(1)知2a c ,3b c ,故22122:143x y C c c,所以1C 的四个顶点坐标分别为(2,0)c ,(2,0)c ,(0,3)c ,(0,3)c ,2C 的准线为x c .由已知得312c c c c ,即2c .所以1C 的标准方程为2211612x y ,2C 的标准方程为28y x .【点睛】本题考查了求椭圆的离心率,考查了求椭圆和抛物线的标准方程,考查了椭圆的四个顶点的坐标以及抛物线的准线方程,考查了数学运算能力.20.如图,已知三棱柱ABC –A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点.过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1//MN ,且平面A 1AMN ⊥平面EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心,若AO =AB =6,AO //平面EB 1C 1F ,且∠MPN =π3,求四棱锥B –EB 1C 1F 的体积.【答案】(1)证明见解析;(2)24.【解析】【分析】(1)由,M N 分别为BC ,11B C 的中点,1//MN CC ,根据条件可得11//AA BB ,可证1MN AA //,要证平面11EB C F 平面1A AMN ,只需证明EF 平面1A AMN 即可;(2)根据已知条件求得11EB C F S 四边形和M 到PN 的距离,根据椎体体积公式,即可求得11B EB C F V .【详解】(1)∵,M N 分别为BC ,11B C 的中点,1//MN BB 又11//AA BB1//MN AA 在等边ABC 中,M 为BC 中点,则BC AM 又∵侧面11BB C C 为矩形,1BC BB 1//MN BB ∵MN BC由MN AM M ,,MN AM 平面1A AMNBC ⊥平面1A AMN又∵11//B C BC ,且11B C 平面ABC ,BC 平面ABC ,11//B C 平面ABC又∵11B C 平面11EB C F ,且平面11EB C F 平面ABC EF11//B C EF//EF BC又BC ∵平面1A AMNEF 平面1A AMN EF ∵平面11EB C F 平面11EB C F 平面1A AMN(2)过M 作PN 垂线,交点为H ,画出图形,如图∵//AO 平面11EB C FAO 平面1A AMN ,平面1A AMN 平面11EB C F NP//AO NP又∵//NO AP6AO NP ∵O 为111A B C △的中心.1111sin 606sin 60333ON A C故:3ON AP,则333AM AP ,∵平面11EB C F 平面1A AMN ,平面11EB C F 平面1A AMN NP ,MH 平面1A AMNMH 平面11EB C F又∵在等边ABC 中EF APBC AM即36233AP BC EF AM由(1)知,四边形11EB C F 为梯形四边形11EB C F 的面积为:111126=62422EB C F EF B C S NP 四边形111113B EBC F EB C F V S h 四边形,h 为M 到PN 的距离23sin 603MH , 1243243V .【点睛】本题主要考查了证明线线平行和面面垂直,及其求四棱锥的体积,解题关键是掌握面面垂直转为求证线面垂直的证法和棱锥的体积公式,考查了分析能力和空间想象能力,属于中档题.21.已知函数f (x )=2ln x +1.(1)若f (x )≤2x +c ,求c 的取值范围;(2)设a >0时,讨论函数g (x )=()()f x f a x a的单调性.【答案】(1)1c ;(2)()g x 在区间(0,)a 和(,)a 上单调递减,没有递增区间【解析】【分析】(1)不等式()2f x x c 转化为()20f x x c ,构造新函数,利用导数求出新函数的最大值,进而进行求解即可;(2)对函数()g x 求导,把导函数()g x 分子构成一个新函数()m x ,再求导得到()m x ,根据()m x 的正负,判断()m x 的单调性,进而确定()g x 的正负性,最后求出函数()g x 的单调性.【详解】(1)函数()f x 的定义域为:(0,)()2()202ln 120()f x x c f x x c x x c ,设()2ln 12(0)h x x x c x ,则有22(1)()2x h x x x,当1x 时,()0,()h x h x 单调递减,当01x 时,()0,()h x h x 单调递增,所以当1x 时,函数()h x 有最大值,即max ()(1)2ln11211h x h c c ,要想不等式() 在(0,) 上恒成立,只需max ()0101h x c c ;(2)2ln 1(2ln 1)2(ln ln )()(0x a x a g x x x a x a且)x a 因此22(ln ln )()()x a x x x a g x x x a ,设()2(ln ln )m x x a x x x a ,则有()2(ln ln )m x a x ,当x a 时,ln ln x a ,所以()0m x ,()m x 单调递减,因此有()()0m x m a ,即()0g x ,所以()g x 单调递减;当0x a 时,ln ln x a ,所以()0m x ,()m x 单调递增,因此有()()0m x m a ,即()0g x ,所以()g x 单调递减,所以函数()g x 在区间(0,)a 和(,)a 上单调递减,没有递增区间.【点睛】本题考查了利用导数研究不等式恒成立问题,以及利用导数判断含参函数的单调性,考查了数学运算能力,是中档题.(二)选考题:共10分.请考生在第22、23题中选定一题作答,并用2B 铅笔在答题卡上将所选题目对应的题号方框涂黑.按所涂题号进行评分,不涂、多涂均按所答第一题评分;多答按所答第一题评分.[选修4—4:坐标系与参数方程]22.已知曲线C 1,C 2的参数方程分别为C 1:224cos 4sin x y ,(θ为参数),C 2:1,1x t t y t t(t 为参数).(1)将C 1,C 2的参数方程化为普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.设C 1,C 2的交点为P ,求圆心在极轴上,且经过极点和P 的圆的极坐标方程.【答案】(1)1:4C x y ;222:4C x y ;(2)17cos 5.【解析】【分析】(1)分别消去参数 和t 即可得到所求普通方程;(2)两方程联立求得点P ,求得所求圆的直角坐标方程后,根据直角坐标与极坐标的互化即可得到所求极坐标方程.【详解】(1)由22cos sin 1 得1C 的普通方程为:4x y ;由11x t t y t t 得:2222221212x t t y t t,两式作差可得2C 的普通方程为:224x y .(2)由2244x y x y 得:5232x y ,即53,22P ;设所求圆圆心的直角坐标为 ,0a ,其中0a ,则22253022a a,解得:1710a , 所求圆的半径1710r , 所求圆的直角坐标方程为:22217171010x y ,即22175x y x , 所求圆的极坐标方程为17cos 5.【点睛】本题考查极坐标与参数方程的综合应用问题,涉及到参数方程化普通方程、直角坐标方程化极坐标方程等知识,属于常考题型.[选修4—5:不等式选讲]23.已知函数2()|21|f x x a x a .(1)当2a 时,求不等式()4f x 的解集;(2)若()4f x ,求a 的取值范围.【答案】(1)32x x或112x;(2) ,13, .【解析】【分析】(1)分别在3x 、34x 和4x 三种情况下解不等式求得结果;(2)利用绝对值三角不等式可得到 21f x a ,由此构造不等式求得结果.【详解】(1)当2a 时, 43f x x x .当3x 时, 43724f x x x x ,解得:32x ≤;当34x 时, 4314f x x x ,无解;当4x 时, 43274f x x x x ,解得:112x;综上所述: 4f x 的解集为32x x或112x .(2) 22222121211f x x a x a x ax a a a a (当且仅当221a x a 时取等号), 214a ,解得:1a 或3a ,a 的取值范围为 ,13, .【点睛】本题考查绝对值不等式的求解、利用绝对值三角不等式求解最值的问题,属于常考题型.祝福语祝你马到成功,万事顺意!。
2020年高考全国II卷文科数学试题(含解析)

2020年全国统一高考数学试卷(文科)(全国新课标II )一、选择题1.已知集合{||3,}A x x x Z =<∈,{||1,}B x x x Z =>∈,则A B ⋂= ( )A.∅B.{3,2,2,3}--C.{2,0,2}-D.{2,2}-【答案】D【解析】{|1||3,}{2,2}A B x x x Z ⋂=<<∈=-,故选D . 2.4(1)i -= ( )A.4-B.4C.4i -D.4i【答案】A【解析】42(1)(2)4i i -=-=-,故选A .3.如图,将钢琴上的12个键依次记为1212,,...,a a a ,设112i j k ≤<<≤.若3k j -=且4j i -=,则称,,i j k a a a 为原位大三和弦;若4k j -=且3j i -=,则称,,i j k a a a 为原位小三和弦,用这12个键可以构成的原位大三和弦与原位小三和弦的个数之和为 ( )A. 5B. 8C.10D. 15【答案】C【解析】原位大三和弦:1i =,5j =,8k =;2i =,6j =,9k =;3i =,7j =,10k =;4i =,8j =,11k =;5i =,9j =,12k =共5个;原位小三和弦:1i =,4j =,8k =;2i =,5j =,9k =;3i =,6j =,10k =;4i =,7j =,11k =;5i =,8j =,12k =共5个;总计10个.4.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者 ( )A.10名B.18名C.24名D.32名【答案】B【解析】积压500份订单未配货,次日产生新订单超过1600份的概率为0.05,其中1200份不需要志愿者配货,志愿者只需负责400份配货,也就是需要志愿者配货的为900份,故需要18名志愿者.5.已知单位向量a ,b 的夹角为60︒,则在下列向量中, 与b 垂直的是 ( )A.2a b +B.2a b +C.2a b -D.2a b -【答案】D【解析】21(2)2211102a b b a b b -⋅=⋅-=⨯⨯⨯-=,故选D . 6.记n S 为等比数列{}n a 的前n 项和.若5312a a -=,6424a a -=,则nnS a = ( )A.21n- B.122n--C.122n -- D.121n--【答案】 B 【解析】设等比数列{}n a 的通项公式为11n n a a q -=,根据5312a a -=,6424a a -=.解得11a =,2q =,故12n n a -=,122112nn n S -==--,可得122n n n S a -=- ,故选B .7.执行右面的程序框图,若输入0k =,0a =,则输出的k 为 ( )A.2B.3C.4D.5【答案】C【解析】当0k =,0a =运行后:1a =,1k =,再次运行后: 3a =,2k =,再次运行后: 7a =,3k =,再次运行后:15a =,4k =,此时达到输出条件,所以输出4k =,故选C .8.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为 ( )A.5B.5C.5D.5【答案】B【解析】依题意,因为点(2,1)在直线230x y --=上,结合题意可设圆心坐标为(,)a a ,则222(2)(1)a a a -+-=,即2650a a -+=,所以1a =,或5a =,所以圆心坐标为(1,1)或(5,5),当圆心坐标为(1,1)时,其到直线230x y --==标为(5,5)时,其到直线230x y --==,综上,可知B 正确. 9.设O 为坐标原点,直线x a =与双曲线22221(0,0)x ya b a b-=>>的两边渐近线分别交于D ,E 两点.若ODE ∆的面积为8,则C 的焦距的最小值为( )A.4B.8C.16D.32【答案】B【解析】双曲线2222:1x y C a b -=(0,0)a b >>的两条渐近线分别为b y x a =±,则容易得到||2DE b =,则8ODE S ab ∆==,222216c a b ab =+≥=,当且仅当a b ==立,所以min 4c =,焦距min (2)8c =. 10.设函数331()f x x x=-,则()f x ( )A.是奇函数,且在(0,)+∞单调递增B.是奇函数,且在(0,)+∞单调递减C.是偶函数,且在(0,)+∞单调递增D.是偶函数,且在(0,)+∞单调递减【答案】A【解析】因为331()f x x x=-,所以()333311()()()0f x f x x x x x +-=-+--=-,所以函数()f x 是奇函数.又因为331()f x x x =-由函数31y x =(为(0,)+∞增函数)加上函数231y x =-(为(0,)+∞增函数)得到,所以函数331()f x x x =-为(0,)+∞增函数,故选A . 判断单调性时也可以这样处理:因为当(0,)x ∈+∞,243()30f x x x '=+>,所以()f x 在(0,)+∞上是单调递增的.11.已知ABC ∆的等边三角形,且其顶点都在球O 的球面上,若球O 的表面积为16π,则O 到平面ABC 的距离为 ( )B.32C.1【答案】C【解析】2ABC S AB ∆==3AB =.设球O 的半径为R ,则2416R ππ=,解得2R =.设O 在ABC ∆内的射影为'O ,'O 是ABC ∆的重心,故2'3O A ==O 到平面ABC 的距离1h ==,故选C .12. 若2233x y x y ---<-,则( )A.ln(1)0y x -+>B.ln(1)0y x -+<C.ln ||0x y ->D.ln ||0x y -<【答案】A【解析】11223323232233xyxy x x y y x y x y -----<-⇒-<-⇒-<-.设1()23xx f x =-,已知()f x 是定义在R 上的增函数,故由112233xyx y -<-可得x y <,所以011y x y x ->⇒-+>,从而ln(1)0y x -+>,故选A .二、填空题 13.若2sin 3x =-,则cos2x = . 【答案】19【解析】22281cos 212sin 12()1399x x =-=--=-=. 14.记n S 为等差数列{}n a 的前n 项和,若12a =-,262a a +=,则10S =______. 【答案】25【解析】由262a a +=,可得1152a d a d +++=,因为12a =-,可求出1d =,由数列的前n 项和公式得1010(101)21012045252S ⨯-=-⨯+⨯=-+=. 15.若x ,y 满足约束条件1121x y x y x y +≥-⎧⎪-≥-⎨⎪-≤⎩,则2z x y =+的最大值是_______.【答案】8【解析】方法一:如图当2x =,3y =时,max 8z =.方法二:联立11x y x y +=-⎧⎨-=-⎩,得(1,0)-,联立121x y x y +=-⎧⎨-=⎩,得(0,1)-,联立121x y x y -=-⎧⎨-=⎩,得(2,3),代入验证可得当2x =,3y =时,max 8z =. 16.设有下列四个命题:1:p 两两相交且不过同一点的三条直线必在同一平面内.2:p 过空间中任意三点有且仅有一个平面. 3:p 若空间两条直线不相交,则这两条直线平行. 4:p 若直线l ⊂平面α,直线m ⊥平面α,则m l ⊥.则下列命题中所有真命题的序号是 . ①14p p ∧ ②21p p ∧ ③23p p ⌝∨ ④34p p ⌝∨⌝ 【答案】①③④【解析】对于1:p 可设1l 与2l 相交,所得平面为α.若3l 与1l 相交,则交点A 必在α内,同理,3l 与2l 交点B 也在α内,故AB 直线在α内,即3l 在α内,故1p 为真命题. 对于2:p 过空间中任意三点,若三点共线,可形成无数多平面,故2p 为假命题. 对于3:p 空间中两条直线的位置关系有相交、平行、异面,故3p 为假命题. 对于4:p 若m ⊥平面α,则m 垂直于平面α内的所有直线,故m l ⊥,故4p 为真命题.综上可知:14p p ∧为真命题,12p p ∧为假命题,23p p ⌝∨为真命题,34p p ⌝∨⌝为真命题,故正确的有:①③④.三、解答题17.ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知25cos ()cos 24A A π++=. (1)求A ;(2)3b c a -=,证明:ABC ∆是直角三角形. 【解析】(1)由25cos ()cos 24A A π++=可得:25sin cos 4A A +=,2214cos 4cos 10(2cos 1)0cos 2A A A A -+=⇒-=⇒=,∵(0,)A π∈,∴3A π=.(2)解法1:由b c -=可得)a b c =-,又2221cos 22b c a A bc +-==,即222b c a bc +-=,∴2223()b c b c bc +--=,(2)(2)0b c b c ⇒--=,∴2b c =或2c b=(舍),∴a =,即222a c b +=,故三角形为直角三角形.解法2:因为b c -=,由正弦定理得1sin sin 2B C A -==,由于A B C π++=,于是1sin()sin 32C C π+-=,又因为1sin()sin sin sin 32C C C C C π+-=+-1sin sin()23C C C π=-=-,又因为(,)333C πππ-∈-,于是36C ππ-=,6C π=,所以()2B AC ππ=-+=,故三角形为直角三角形.18.某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加,为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据,1,2(,...,0)2)(i i x y i =,其中i x 和i y 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20160ii x==∑,2011200i i y ==∑,2021()80ii x x =-=∑,2021()9000i i y y =-=∑,201()()800i i i x x y y =--=∑,(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本,1,2(,...,0)2)(i i x y i =的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大,为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数:()()niix x y y r --=∑1.414≈【解析】(1) 由题意可知,1个样区这种野生动物数量的平均数12006020==,故这种野生动物数量的估计值6020012000=⨯=;(2)由参考公式得()()0.94niix x yy r --===≈∑;(3)由题意可知,各地块间植物覆盖面积差异很大,因此在调查时,先确定该地区各地块间植物覆盖面积大小并且由小到大排序,每十个分为一组,采用系统抽样的方法抽取20个地块作为样区进行样本统计.19.已知椭圆22122:1(0)x y C a b a b+=>>的右焦点F 与抛物线2C 的焦点重合,1C 的中心与2C 的顶点重合,过F 且与x 轴垂直的直线交1C 于A ,B 两点,交2C 于C 、D 两点,且4||||3CD AB =. (1)求1C 的离心率;(2)若1C 的四个顶点到2C 的准线距离之和为12,求1C 与2C 的标准方程.【解析】(1)由题意知:222242232b p a p c a b c ⎧=⋅⎪⎪⎪=⎨⎪=+⎪⎪⎩,∴ 24243b c a =⋅,∴ 2232()ac a c =-,即222320c ac a +-=,∴22320e e +-=,∴12e =或2e =-,∵01e <<,即1C 的离心率为12. (2)设1C 的四个顶点到2C 的准线距离为1d ,2d ,3d ,4d ,则:∵123422d a c d a c p d c p d c =-⎧⎪=+⎪⎪⎨==⎪⎪==⎪⎩,又∵ 123412d d d d +++=∴122a c a c c c pc -++++=⎧⎪⎨=⎪⎩ ∴6a c += ∵12c a = ∴26c c +=∴216a =,24c =,24p c == ∴212b =∴221:11612x y C +=,22:8C y x =.20.如图,已知三棱柱111ABC A B C -的底面是正三角形,侧面11BB C C 是矩形,M ,N 分别为BC ,11B C 的中点,P 为AM 上一点,过11B C 和P 的平面交AB 于E ,交AC 于F (1)证明:1//AA MN ,且平面1A AMN ⊥平面11EB C F ;(2)设O 为111A B C ∆的中心,若6AO AB ==,//AO 平面11EB C F ,且3MPN π∠=,求四棱锥11B EB C F -的体积.【解析】(1)证明∵M ,N 分别为BC ,11B C 的中点,底面为正三角形,∴1B N BM =,四边形1BB NM 为矩形,∴1//BB MN ,而11//AA BB ,∴1//AA MN ,可得1,,,A A M N 共面,由四边形1BB NM 为矩形,得11MN B C ⊥,由11B N NC =,得111A N B C ⊥,又1MN A N N ⋂=,得11B C ⊥面1A AMN ,11B C ⊂面11EB C F ∴面1A AMN ⊥面11EB C F ;(2)因为//AO 平面11EB C F ,AO ⊂平面1A NMA ,平面1A NMA平面11EB C F NP =,所以//AO NP ,又因为//NO AP ,所以四边形AONP 为平行四边形,6AO NP ==,ON AP ==M 做MH 垂直于NP ,垂足为H ,因为平面11EB C F ⊥平面1A AMN ,平面11EB C F平面1A AMN NP =,MH ⊂平面1A AMN ,所以MH⊥平面11EB C F,由PM =,6AO =,MN =,得PM MNMH PN⋅==11111()242EB C FS B C EF NP =+⋅=,由//BC 平面11EB C F,所以11111113B EB F M EBC FB C C E F V V S MH --==⋅⋅= 21.已知函数()2ln 1f x x =+,(1)若()2f x x c ≤+,求c 的取值范围; (2)设0a >,讨论函数()()()f x f a g x x a-=-的单调性.【解析】(1)()2f x x c ≤+等价于2ln 21x x c -≤-,设()2ln 2h x x x =-,22(1)'()2x h x x x-=-=, 当01x <<时,()0h x '>,所以()h x 在(0,1)上递增, 当1x >时,()0h x '<,所以()h x 在(1,)+∞递减,故max ()(1)2h x h ==-,所以12c -≥-.即1c ≥-,所以c 的取值范围是[1,)-+∞; (2)2(ln ln )()(0,,0)x a g x x x a a x a-=>≠>-,所以2222()2ln 2ln 2ln 2ln 2'()()()a x a x a x a x x g x x a x a --+--++==--,令2()2ln 2ln 2(0)a w x x a x x =--++>,则22222()'()a a x w x x x x -=-=, 令'()0w x >得0x a <<,'()0w x <得x a >,所以()w x 在(0,)a 上单调递增,在(,)a +∞上单调递减,所以,()()0w x w a ≤=,即'()0g x <,所以,()g x 在(0,)a 和(,)a +∞上单调递减.四、选做题22.已知1C ,2C 的参数方程分别为2124cos :4sin x C y θθ⎧=⎨=⎩,(θ为参数),21:1x t t C y t t ⎧=+⎪⎪⎨⎪=-⎪⎩,(t 为参数)(1)将1C ,2C 的参数方程化为普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设1C ,2C 的交点为P ,求圆心在极轴上,且经过极点和P 的圆的极坐标方程.【解析】(1)由题:1C 的普通方程为:40x y +-=,(0,0)x y ≥≥; 因为222222212:12x t t C y t t ⎧=++⎪⎪⎨⎪=+-⎪⎩,故2C 的普通方程为:224x y -=;联立1C ,2C ,22404x y x y +-=⎧⎨-=⎩解得:5232x y ⎧=⎪⎪⎨⎪=⎪⎩,所以点P 坐标为:53(,)22P ,设以设所求圆圆心为(,0)Q a ,半径为a ,故圆心(,0)Q a 到53(,)22P 的距离a =,得1710a =,所以圆Q 的圆心为17(,0)10Q ,半径为1710,圆Q 的直角坐标方程为:2221717()1010()x y -+=,即221705x y x +-=,所以所求圆的极坐标方程为:17cos 5ρθ=.23.已知函数2()|||21|f x x a x a =-+-+.(1)当2a =时,求不等式()4f x ≥的解集;(2)若()4f x ≥,求a 的取值范围.【解析】当2a =时,()|4||3|f x x x =-+-,即 ()27,31,3427,4x x f x x x x -+<⎧⎪=≤≤⎨⎪->⎩所以()4f x ≥的解集为32x ≤或112x ≥. (2)222()|||21||(21)||(1)|f x x a x a x a x a a =-+-+≥---+=-,又()4f x ≥,所以2|(1)|4a -≥,则3a ≥或1a ≤-.。
2020年全国统一高考数学试卷(文科)(新课标ⅰ)(含解析版)

2020年全国统一高考数学试卷(文科)(新课标Ⅰ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={x|x2﹣3x﹣4<0},B={﹣4,1,3,5},则A∩B=()A.{﹣4,1}B.{1,5}C.{3,5}D.{1,3}2.(5分)若z=1+2i+i3,则|z|=()A.0B.1C .D.23.(5分)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()A .B .C .D .4.(5分)设O为正方形ABCD的中心,在O,A,B,C,D中任取3点,则取到的3点共线的概率为()A .B .C .D .5.(5分)某校一个课外学习小组为研究某作物种子的发芽率y和温度x(单位:℃)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(x i,y i)(i=1,2,…,20)得到下面的散点图:由此散点图,在10℃至40℃之间,下面四个回归方程类型中最适宜作为发芽率y和温度x的回归方程类型的是()A.y=a+bx B.y=a+bx2C.y=a+be x D.y=a+blnx 6.(5分)已知圆x2+y2﹣6x=0,过点(1,2)的直线被该圆所截得的弦的长度的最小值为()A.1B.2C.3D.47.(5分)设函数f(x)=cos(ωx +)在[﹣π,π]的图象大致如图,则f(x)的最小正周期为()A .B .C .D .8.(5分)设a log34=2,则4﹣a=()A .B .C .D .9.(5分)执行如图的程序框图,则输出的n=()A.17B.19C.21D.2310.(5分)设{a n}是等比数列,且a1+a2+a3=1,a2+a3+a4=2,则a6+a7+a8=()A.12B.24C.30D.3211.(5分)设F1,F2是双曲线C:x2﹣=1的两个焦点,O为坐标原点,点P在C上且|OP|=2,则△PF1F2的面积为()A .B.3C .D.212.(5分)已知A,B,C为球O的球面上的三个点,⊙O1为△ABC的外接圆.若⊙O1的面积为4π,AB=BC =AC=OO1,则球O的表面积为()A.64πB.48πC.36πD.32π二、填空题:本题共4小题,每小题5分,共20分。
2020年高考文科数学试卷 全国Ⅰ卷(含答案)

2020年高考文科数学试卷全国Ⅰ卷(含答案)2020年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合 $A=\{x|x^2-3x-4<0\}$,$B=\{-4,1,3,5\}$,则$A$ 为A。
$ \{-4,1\}$B。
$\{1,5\}$C。
$\{3,5\}$D。
$\{1,3\}$2.若 $z=1+2i+i^3$,则 $|z|$ 等于A。
$1$B。
$2$___$D。
$3$3.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥。
以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为A。
$\dfrac{5-\sqrt{5}}{4}$B。
$\dfrac{1}{2}$C。
$\dfrac{5+\sqrt{5}}{4}$D。
$\dfrac{5+\sqrt{10}}{2}$4.设 $O$ 为正方形 $ABCD$ 的中心,在 $O$,$A$,$B$,$C$,$D$ 中任取 $3$ 点,则取到的 $3$ 点共线的概率为A。
$\dfrac{1}{5}$B。
$\dfrac{2}{5}$C。
$\dfrac{4}{5}$D。
$1$5.某校一个课外研究小组为研究某作物种子的发芽率$y$ 和温度 $x$(单位:℃)的关系,在 $20$ 个不同的温度条件下进行种子发芽实验,由实验数据$(x_i,y_i)(i=1,2,\dots,20)$ 得到下面的散点图:在 $10℃$ 至 $40℃$ 之间,下面四个回归方程类型中最适宜作为发芽率 $y$ 和温度 $x$ 的回归方程类型的是A。
2020年全国统一高考文科数学全国II卷(含答案)
6.设f(x)为奇函数,且当x≥0时,f(x)= ,则当x<0时,f(x)=
A. B.
C. D.
【答案】D
【解析】
【分析】
先把x<0,转化为-x>0,代入可得 ,结合奇偶性可得 .
【详解】 是奇函数, .当 时, , ,得 .故选D.
A. B.
C. D.
【答案】B
【解析】
【分析】
利用二倍角公式得到正余弦关系,利用角范围及正余弦平方和为1关系得出答案.
【详解】 , .
,又 , ,又 , ,故选B.
【点睛】本题为三角函数中二倍角公式、同角三角函数基本关系式的考查,中等难度,判断正余弦正负,运算准确性是关键,题目不难,需细心,解决三角函数问题,研究角的范围后得出三角函数值的正负,很关键,切记不能凭感觉.
1.已知集合 , ,则A∩B=
A.(–1,+∞)B.(–∞,2)
C.(–1,2)D.
2.设z=i(2+i),则 =
A. 1+2iB. –1+2i
C. 1–2iD. –1–2i
3.已知向量a=(2,3),b=(3,2),则|a–b|=
A B. 2
C. 5 D. 50
4.生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为
9.若抛物线y2=2px(p>0)的焦点是椭圆 的一个焦点,则p=
A.2B.3
C.4D.8
【答案】D
【解析】
【分析】
利用抛物线与椭圆有共同的焦点即可列出关于 的方程,即可解出 ,或者利用检验排除的方法,如 时,抛物线焦点为(1,0),椭圆焦点为(±2,0),排除A,同样可排除B,C,故选D.
高考文科数学(2卷):答案详细解析(最新)
2020年普通高等学校招生全国统一考试文科数学(II 卷)答案详解一、选择题1.(集合)已知集合A ={}3,x x x Z <∈,B ={}1,x x x Z >∈,则A B =A.∅B.{}3,2,2,3-- C.{}2,0,2- D.{}2,2-【解析】∵{}2,1,0,1,2A x =--,∴{2,2}A B =- .【答案】D2.(复数)41i -=()A.-4 B.4C.-4iD.4i【解析】[]224221(1)244i i i i ⎡⎤=-=-=-⎣⎦-=().【答案】A3.(概率统计)如图,将钢琴上的12个键依次记为1a ,2a ,…,12a .设112i j k ≤<<≤.若3k j -=且4j i -=,则称i a ,j a ,k a 为原位大三和弦;若4k j -=且3j i -=,则称i a ,j a ,k a 为原位小三和弦.用这12个键可以构成的原位大三和弦与原位小三和弦的个数之和为A.5B.8C.10D.15【解析】原位大三和弦:1,5,8i j k ===;2,6,9i j k ===;3,7,10i j k ===;4,8,11i j k ===;5,9,12i j k ===;共5个.原位小三和弦:1,4,8i j k ===;2,5,9i j k ===;3,6,10i j k ===;4,7,11i j k ===;5,8,12i j k ===;共5个.总计10个.【答案】C4.(概率统计)在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压,为解决困难,许多志愿者踊跃报名参加配货工作,已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05。
志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者A.10名B.18名C.24名D.32名【解析】该超市某日积压500份订单未配货,次日新订单不超过1600份的概率为0.95,共2100份,其中1200份不需要志愿者,志愿者只需负责900份,故需要900÷50=18名志愿者.【答案】B5.(平面向量)已知单位向量a ,b 的夹角为60°,则在下列向量中,与b 垂直的是A.2a b+ B.2a b+ C.2a b- D.2a b -【解析】解法一(待定系数法):设()ma nb b +⊥,则有21()02ma nb b ma b nb m n +⋅=⋅+=+=,即2m n =-,故选D.解法二:2o(2)2211cos6010a b b a b b -⋅=⋅-=⨯⨯⨯-= ,故选D.特殊法:如图A5所示,画单位圆,作出四个选项的向量,只有2a b -与b 垂直.图A5【答案】D6.(数列)记n S 为等比数列{n a }的前n 项和.若5a -3a =12,6a -4a =24,则nnS a =A .21n -B .122n-- C.122n --D .121n --【解析】设{}n a 的公比为q ,∵6453()1224a a a a q q -=-==,∴2q =,∵22253311(1)(1)1212a a a q a q q a -=-=-==,∴11a =,∴111111(1)2111=22222n n n n n n n n a q S q a a q -------==-=-.【答案】B7.(算法框图)执行右面的程序框图,若输入的k =0,a =0,则输出的k 为A.2B.3C.4D.5【解析】①输入00k a ==,,得211a a =+=,11k k =+=,10a >否,继续;②输入11k a ==,,得213a a =+=,12k k =+=,10a >否,继续;③输入23k a ==,,得217a a =+=,13k k =+=,10a >否,继续;④输入37k a ==,,得2115a a =+=,14k k =+=,10a >是,程序退出循环,此时4k =.【答案】C8.(解析几何)若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为A.5B.5C.5D.5【解析】如图A8所示,设圆的方程为222()()x a y b r -+-=,∵圆过点(2,1)且与两坐标轴都相切,∴222(2)(1)a b r a b r ==⎧⎨-+-=⎩,解得1a b r ===或5a b r ===,即圆心坐标为(1,1)或(5,5),圆心到直线230x y --=5或=5.图A8【答案】B9.(解析几何)设O 为坐标原点,直线x a =与双曲线C :22221x y a b-=(a >0,b >0)的两条渐近线分别交于D ,E 两点,若ODE ∆的面积为8,则C 的焦距的最小值为A .4B .8C .16D .32【解析】如图A9所示,双曲线C :22221x y a b-=(a >0,b >0)的渐近线为b y x a =±,由题意可知,(,)D a b ,(,)E a b -,∴1282ODE S a b ab ∆=⋅==,∴焦距2248c ==≥⨯=,当且仅当a =等号成立.故C 的焦距的最小值为8.图A9【答案】B10.(函数)设函数331()f x x x =-,则()f x A.是奇函数,且在(0,+∞)单调递增B.是奇函数,且在(0,+∞)单调递减C.是偶函数,且在(0,+∞)单调递增D.是偶函数,且在(0,+∞)单调递减【解析】∵333311()()()()f x x x f x x x-=--=-+=--,∴()f x 是奇函数,243()3f x x x'=+,当x >0,()0f x '>,∴()f x 在(0,+∞)单调递减.【答案】A11.(立体几何)已知△ABC 是面积为4的等边三角形,且其顶点都在球O 的球面上,若球O 的表面积为16π,则O 到平面ABC 的距离为A B .32C .1D .32【解析】由题意可知244ABC S AB ∆==,∴3AB =,如图A11所示,设球O 的半径为R ,则24π16πR =,∴2R =,设O 在△ABC 上的射影为O 1,则O 1是△ABC 的外接圆的圆心,故1232O A =⨯=,∴O 到平面ABC 的距离11OO ==.图A11【答案】C12.(函数)若2233x y x y ---<-,则A.ln(1)0y x -+> B.ln(1)0y x -+<C.ln ||0x y -> D.ln ||0x y -<【解析】2233xyxy---<-可化为2323xxyy---<-,设1()2323xxxxf x -⎛⎫=-=- ⎪⎝⎭,由指数函数的性质易知()f x 在R 上单调递增,∵2323x x y y ---<-,∴x y <,∴0y x ->,∴11y x -+>,∴In(1)0y x -+>.【答案】A二、填空题:本题共4小题,每小题5分,共20分。
2020年高考文科数学(1卷):答案详细解析(最新)
打开导航窗口(书签),可以直接找到各个题目.
第 8 页 共 27 页
2020 年高考文科数学(全国 1 卷)答案详解及试题
(一)必考题:共 60 分
17.(12 分)(概率统计)
某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为 A,B,C,
D 四个等级,加工业务约定:对于 A 级品、B 级品、C 级品,厂家每件分别收取
第 6 页 共 27 页
2020 年高考文科数学(全国 1 卷)答案详解及试题
二、填空题:本题共 4 小题,每小题 5 分,共 20 分。 2x y 2 0
13(. 线性规划)若 x,y 满足约束条件 x y 1 0 ,则 z=x+7y 的最大值为_____. y 1 0
【解析】由约束条件,作出可行域如图 A13 所示.
【答案】 y 2x
16. (数列)数列an 满足 an2 1n an 3n 1 ,前 16 项和为 540,则 a1 =____.
打开导航窗口(书签),可以直接找到各个题目.
第 7 页 共 27 页
2020 年高考文科数学(全国 1 卷)答案详解及试题
【解析】当 n 为偶数时,有 an2 an 3n 1,故
A. 1 16
B. 1 9
C. 1 8
D. 1 6
【解析】∵ a log3
4 log3 4a
2 ,∴ 4a
32
9 ,∴ 4a
1 4a
1. 9
【答案】B
9.(算法框图)执行右面的程序框图,则输出的 n
A. 17
B. 19
C. 21
D. 23
打开导航窗口(书签),可以直接找到各个题目.
第 4 页 共 27 页
精品解析:2020年全国统一高考数学试卷(文科)(新课标Ⅰ)(解析版)
.
故答案为: .
【点睛】本题考查数列的递推公式的应用,以及数列的并项求和,考查分类讨论思想和数学计算能力,属于较难题.
三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.
(一)必考题:共60分.
17.某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A,B,C,D四个等级.加工业务约定:对于A级品、B级品、C级品,厂家每件分别收取加工费90元,50元,20元;对于D级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:
根据散点图的分布可选择合适的函数模型.
【详解】由散点图分布可知,散点图分布在一个对数函数的图象附近,
因此,最适合作为发芽率 和温度 的回归方程类型的是 .
故选:D.
【点睛】本题考查函数模型的选择,主要观察散点图的分布,属于基础题.
6.已知圆 ,过点(1,2)的直线被该圆所截得的弦的长度的最小值为()
据此结合目标函数的几何意义可知目标函数在点A处取得最大值,
联立直线方程: ,可得点A的坐标为: ,
据此可知目标函数的最大值为: .
故答案为:1.
【点睛】求线性目标函数z=ax+by(ab≠0)的最值,当b>0时,直线过可行域且在y轴上截距最大时,z值最大,在y轴截距最小时,z值最小;当b<0时,直线过可行域且在y轴上截距最大时,z值最小,在y轴上截距最小时,z值最大.
甲分厂产品等级的频数分布表