20112012学年度第一学期期末考试九年级数学
2010-2011学年度上学期九年级期末考试数学

2011-2012学年度上学期九年级期末考试数学试题参考答案一.选择题(本大题共有12小题,每小题3分,共36分)题号123456789101112答案B C A A D C B C B D A D二.填空题(本大题共有5小题,每小题3分,共15分)13. 2 14.k<4且k≠3 15. 16.32 17.600三.解答题(本大题共有9小题,共69分)18. (本题满分5分,每小题4分)解:当x=-1时,原式=3-5(5分)19. 解:由题意,共有AB、AC、AD、BC、BD、CD等6种等可能情况。
(3分)恰好一名男生一名女生的有4种(4分).则所求概率为(6分).20.解:配方法:(2分) ∴ 或∴原方程的解为,.(3分)求根公式法:(4分)==.(5分)∴原方程的解为,.(6分)21.解:∵△ECD是等边三角形,∴CD=CE,∠DCE=60°.(2分)同理CA=CB,∠ACB=60.(4分)∴以点C为旋转中心将△DAC逆时针旋转60°就得到△EBC.(6分)22.解:设每轮感染中平均每一台电脑会感染x台电脑(1分).依题意得1+x+x(1+x)=81,(1+x)2=81 (3分).x1=8 x2=-10(舍去)(1+x)3=729>700.(6分)答:每轮感染中平均一台电脑会感染8台电脑, 3轮感染后,被感染的电脑会超过700台.23.解:(1)∵BC垂直于直径AD,∴BE=CE,=.(1分)∵∠ADB=30°,∴∠AOC=60°.(3分)(2)∵BE=CE,BC=8,∴CE=4.在Rt△COE中,设OE=x,则,解之,得.OE=.(4分)OC=.(5分) ∴S阴影=S扇型AOC-S△EOC=.(7分)24.(1)(0≤x≤100)(3分) (2)x=70时,y=600(7分)(3)不是.(9分)每天的最大利润为625元,此时商品售价为每件75元.(10分)25.(1)连接OC,则OC∥AD(1分),证出∠CAB=∠CAD(3分)(2)过C作CF⊥AB于F,证出CF=CD.(4分)证出△CAF∽△BCF.(5分)求出CD=CF=4.(7分)(3)求出BE=.(9分) AE=AB+BE=.(10分)26.解:(1)求出OD=6(1分),求出BE=3(4分).(2)求出抛物线解析式为.(8分)(3),故其对称轴为x=5.(9分)存在.P1(15,33),P2(-5,33),P3(5,16).(12分)(每个点1分)。
2011-2012第一学期九年级数学期末考试卷

第一学期期末质量检测试卷·九 年 级 数 学·一、选择题(本题共10小题,每小题4分,满分40分) 1.下列计算正确的是+=;B.2+=;C.=321=-=.2.方程x=x(x-1)的根是 A.x=0; B. x=2; C.x 1=0, x 2=1; D.x 1=0, x 2=2.3.下列平面图形中,既是轴对称图形,又是中心对称图形的是4.根据电视台天气预报:无为县明天降雨的概率为80%.对此信息,下列几种说法中正确的是 A.无为县明天一定会下雨; B.无为县明天有80%的地区会降雨; C.无为县明天有80%的时间会降雨; D.无为县明天下雨的可能性比较大.5.如图是小颖同学的眼镜,则两镜片所在两圆的位置关系是 A.外离; B.外切; C.内含; D.内切.6.把一个正五角星绕着中心旋转到与原来重合,至少需要转动的度数是A.36°;B.72°;C.108°;D.144°.7.小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图所示,为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是A.第①块;B.第②块;C.第③块;D.第④块. 8.如图,这是中央电视台“曲苑杂谈”中的一副图案,它是一扇形图形,其中AOB ∠为120,OC 长为8cm ,CA 长为12cm ,则阴影部分的面积为A.264πcm ; B.2112πcm ; C.2144πcm ; D.2152πcm .9.如图,在ΔABC 中,AB=13,AC=5,BC=12,经过点C 且与边AB 相切的动圆与CA 、CB 分别相交于点P 、Q ,则线段PQ 长度的最小值是 A.125; B.6013; C.5; D.无法确定. 10.如图,从A 地到B 地有两条路可走,一条路是大半圆,另一条路是4个小半圆.有一天,一只猫和一只老鼠同时从A 地到B 地.老鼠见猫沿着大半圆行走,它不敢与猫同行(怕被猫吃掉),就沿着4个小半圆行走.假设猫和老鼠行走的速度相同,那么下列结论正确的是A.猫先到达B 地;B.老鼠先到达B 地;C.猫和老鼠同时到达B 地;D.无法确定. 二、填空题(本题共4小题,每小题5分,满分20分)11.请写出一个无理数,使它与12的积是有理数,这个无理数可以是 .12.挂钟分针的长10cm ,经过45分钟,它的针尖转过的弧长是 cm.13.如图,在10×6的网格图中(每个小正方形的边长均为1个单位),⊙A 的半径为1,⊙B 的半径为2,要使⊙A 与静止⊙B 内切,那么⊙A 由图示位置需向右平移个单位. 14.小华与父母从合肥乘车去无为县米公祠(北宋大书法家米芾故居)参观,车厢里每排有左、中、右三个座位,小华一家三口随意坐某排的三个座位,则小华恰好坐在中间的概率是 .三、(本题共2小题,每小题8分,满分16分)15.计算:0(π1)+-. 16.用配方法解方程:0562=--x x .第5题图第10题图BA第9题图第7题图ACOB第8题图A 第13题图四、(本题共2小题,每小题8分,满分16分)17.⑴计算各次检查中“优等品”的频率,并填入上表; ⑵估计该厂生产的羽毛球“优等品”的概率.18.如图是无为中学某景点内的一个拱门,它是⊙O 的一部分.已知拱门的地面宽度CD=2m ,它的最大高度EM=3m ,求构成该拱门的⊙O 的半径.五、(本题共2小题,每小题10分,满分20分)19.如图所示,点O 、B 坐标分别为(0,0)、(3,0),将△ABO 绕点O 按逆时针方向旋转90°得到△OA 'B ';⑴根据题中条件在图中画出直角坐标系,并画出△OA ′B ′; ⑵点A ′的坐标是 ; ⑶求BB ′的长;20.下图表示的是聪聪从自已家到叔叔家,再到奶奶家的路线图.由图中可以看到:从聪聪家到叔叔家有4条路,从叔叔家到奶奶家有2条路.你能求出从聪聪家到奶奶家始终利用一种交通工具的路线概率吗?请用树状图表示.C DM E第18题图 ·O第20题图航运第19题图六、(本题满分12分)21.某商场购进一种新商品,每件进价是120元,在试销期间发现,当每件商品售价130元时,每天可销售70件,当每件商品售高(或低)于130元时,每涨(或降)价1元,日销售量就减少(或增加)1件.据此规律,请回答: ⑴当每件商品售价定为170元时,每天可销售多少件商品?商场获得的日盈利是多少? ⑵在上述条件不变,商品销售正常的情况下,每件商品的销售价定为多少元时,商场日盈利可达到1600元?(提示:盈利=售价—进价) 七、(本题满分12分) 22.如图,已知在⊙O 中,AC 是⊙O 的直径,AC⊥BD 于F ,∠A=30°.⑴求图中阴影部分的面积; ⑵若用阴影扇形OBD 围成一个圆锥侧面,请求出这个圆锥底面圆的半径. 八、(本题满分14分)23.如图,在平面直角坐标系中,以坐标原点O 为圆心的⊙O 的半径为2-1,直线l :y=-x -2分别与x 轴、y 轴交于A 、C 两点,点B 的坐标为(4,1),⊙B 与x 轴相切于点M. (1)求点A 的坐标及∠CAO 的度数;(2)⊙B 以每秒1个单位长度的速度沿x 轴负方向平移,那么经过多长时间⊙B 与⊙O 第一次相切?(3)在⊙B 移动的同时,直线l 绕点A 顺时针匀速旋转.当⊙B 第一次与⊙O 相切时,直线l 也恰好与⊙B 第一次相切.问:直线AC 绕点A 每秒旋转多少度?第22题图第23题图无为县2011~2012学年度第一学期期末质量检测参考答案·九 年 级 数 学·一、选择题二、填空题11、答案不惟一.如3等. 12、15π. 13、4或6. 14、31.三、15、解:原式=1-332+ =31-. 16、解:配方,得 95962+=+-x x . ()1432=-x .∴ 143±=-x .∴1431+=x , 1432-=x .四、17、⑴从左到右分别是:0.9、0.92、0.91、0.89、0.9.(每空1分)⑵约为0.9. 18、解:连接OC.设⊙O 的半径为xm. ∵ EM ⊥CD , ∴ CM=21CD=1m.在Rt △OCM 中,由OM 2+CM 2=OC 2,得(3-x)2+1=x 2. 解得: x=35. 答:构成该拱门的⊙O 的半径为35m. 五、19、⑴ 图略.(画出直角坐标系2分,画出△OA ′B ′3分)⑵ 点A ′的坐标是(-2,4).⑶ 解:连接BB ′.∵ OB ′=OB=3,∠BOB ′=90°, ∴ BB ′=2233+=32. 20、解:用树状图表示如下:由上图可知,从聪聪家到奶奶家的行走路线共有8种结果,其中始终利用一种交通工具的路线有2种结果:(铁路,铁路)、(公路,公路). ……………………………… 7分所以,从聪聪家到奶奶家始终利用一种交通工具的概率是:4182=.…………… 9分 答:从聪聪家到奶奶家始终利用一种交通工具的路线概率是41.……………… 10分六、21、解:⑴每天销售商品的件数是:70-(170-130)=70-40=30(件).…………… 2分商场获得的日盈利是:30×(170-120)=1500(元).…………………………… 5分答:当每件商品售价定为170元时,每天可销售30件商品,商场获得的日盈利是1500元.⑵设每件商品的销售价定为x 元时,商场日盈利可达到1600元. 根据题意,得(x-120)[70-(x-130)]=1600.化简,得 x 2-320x+25600=0.解得 x 1=x 2=160. 答:每件商品的销售价定为160元时,商场日盈利可达到1600元. 七、22、解:⑴ ∵ ∠A=30°, ∴ ∠BOC=60°. ∴ ∠OBF=90°-60°=30°. ∴ OF=21OB.在Rt △ABF 中,∵ AB=43, ∠A=30°,∴ BF=21AB=23. 在Rt △OBF 中,由OB 2=OF 2+BF 2 得 OB 2=(21OB)2+(23)2.解得 OB=4.又 AC ⊥BD , ∴ ∠BOD=60°×2=120°.∴ S 阴影=ππ31636041202=⋅. 即图中阴影部分面积是π316. ⑵设这个圆锥底面圆的半径为r ,则2πr=1804120⨯⨯π.解得 r=34. 即这个圆锥底面圆的半径为34.八、23、解:⑴当y=0时,x=-2.∴点A 的坐标是(-2,0).∴ OA=2.当x =0时,y =-2. ∴ OB=2.从聪聪家到叔叔家: 从叔叔家 到奶奶家:公路铁路水路航运铁路 铁路 铁路 铁路 公路 公路 公路 公路 (5分)∴ OA=OB.又 ∠AOC=90°. ∴∠CAO=∠ACO=29018000-=45°. ⑵如图,设⊙B 平移t 秒到⊙B 1处与⊙O 第一次相切,⊙B 1与x 轴相切于点N,连接B 1O 、B 1N,则MN=t, OB 1=2, B 1N ⊥AN.……………… 6分 在Rt △OB 1N 中,由勾股定理,得 ON=2121N B OB -=()2212-=1.………… 7分∴MN=4-1=3 即t=3.………………………… 8分(3) 设⊙B 平移到⊙B 1处与⊙O 第一次相切时,直线l 旋转到l '恰好与⊙B 1第一次相切于点P, 连接B 1A 、 B 1P. 则B 1P ⊥AP , ∴B 1P = B 1N.∴∠PAB 1=∠NAB 1.…………………………………………………………………… 10分 ∵OA=OB 1=2, ∴∠AB 1O=∠NAB 1. ∴∠PAB 1=∠AB 1O.∴PA ∥B 1O .…………………………………………………………………………… 12分 在Rt △NOB 1中,∵ON=B 1N , ∴∠B 1ON=450,∴∠PAN=450, ∴∠1= 900.∴直线AC 绕点A 每秒旋转的度数为900÷3=300.………………………………… 14分第23题图。
2011-2012学年九年级(上)期末数学试卷

2011-2012学年九年级(上)期末数学试卷一、选择题:请将唯一正确答案的编号填入答卷中,本题共12题,每题2分,共24分.1.(2分)(2006•邵阳)方程x2﹣2x=0的解是( ) A.x=2 B.x1=,x2=0 C.x1=2,x2=0 D.x=02.(2分)电影院呈阶梯或下坡形状的主要原因是( ) A.为了美观B.减小盲区C.增大盲区D.盲区不变3.(2分)(2005•枣庄)反比例函数y=(k>0)在第一象限内的图象如图,点M是图象上一点,MP垂直x轴于点P,如果△MOP的面积为1,那么k的值是( ) A.1B.2C.4D.4.(2分)某学校有320名学生,现对他们的生日进行统计(可以不同年),下列说法正确的是( ) A.至少有两人生日相同 B.可能有两人生日相同,且可能性较大 C.不可能有两人生日相同 D.可能有两人生日相同,但可能性较小5.(2分)下列四个命题中,假命题的是( ) A.有三个角是直角的四边形是矩形 B.对角线互相垂直平分且相等的四边形是正方形 C.四条边都相等的四边形是菱形 D.顺次连接一个四边形各边中点,得到一个菱形,那么这个四边形是等腰梯形6.(2分)如图,▱ABCD的周长为16cm,AC与BD相交于点O,OE⊥AC交AD于E,则△DCE的周长为( ) A.4cm B.6cm C.8cm D.10cm7.(2分)如果小强将飞镖随意投中如图所示的正方形木板,那么飞镖落在阴影部分的概率为( ) A.B.C.D.8.(2分)(2006•曲靖)如图,CD是Rt△ABC斜边AB上的高,将△BCD沿CD折叠,B点恰好落在AB的中点E处,则∠A等于( ) A.25°B.30°C.45°D.60°9.(2分)(2006•兰州)如图,在直角坐标系中,将矩形OABC沿OB对折,使点A落在A1处,已知OA=,AB=1,则点A1的坐标是( ) A.()B.()C.()D.()10.(2分)(2007•黔东南州)已知正比例函数y=k1x(k1≠0)与反比例函数y=(k2≠0)的图象有一个交点的坐标为(﹣2,﹣1),则它的另一个交点的坐标是( ) A.(2,1)B.(﹣2,﹣1)C.(﹣2,1)D.(2,﹣1)11.(2分)(2005•湘潭)如图,它们是一个物体的三视图,该物体的形状是( ) A.圆柱B.正方体C.圆锥D.长方体12.(2分)(2007•黔东南州)如图,小亮拿一张矩形纸图(1),沿虚线对折一次得图(2),下将对角两顶点重合折叠得图(3),按图(4)沿折痕中点与重合顶点的连线剪开,得到三个图形,这三个图形分别是( ) A.都是等腰梯形B.都是等边三角形 C.两个直角三角形,一个等腰三角形D.两个直角三角形,一个等腰梯形二、填空题(每空2分,共14分)13.(2分)(2005•大连)若点(2,1)在双曲线y=上,则k的值为 _________ .14.(2分)请写出一个根为x=1,另一根满足﹣1<x<1的一元二次方程 _________ .15.(2分)(2005•威海)已知双曲线y=经过点(﹣1,3),如果A(a1,b1),B(a2,b2)两点在该双曲线上,且a1<a2<0,那么b1 _________ b2(选填“>”、“=”、“<”).16.(2分)(2006•曲靖)一质点P从距原点1个单位的A点处向原点方向跳动,第一次跳动到OA的中点A1处,第二次从A1点跳动到O A1的中点A2处,第三次从A2点跳动到OA2的中点A3处,如此不断跳动下去,则第n次跳动后,该质点到原点O的距离为 _________ .17.(2分)某养鱼专业户为了估计鱼塘中鱼的总条数,他先从鱼塘中捞出100条,将每条鱼作了记号后放回水中,当它们完全混合于鱼群后,再从鱼塘中捞出100条鱼,发现其中带记号的鱼有10条,估计该鱼塘里约有 _________ 条鱼.18.(2分)有一对酷爱运动的年轻夫妇给他们12个月大的婴儿拼3块分别写有“20”、“08”和“北京”的字块.如果婴儿能拼出“2008北京”和“北京2008”,他们就给婴儿奖励.假设该婴儿能将字块横着正排,那么这个婴儿能得到奖励的概率为 _________ .19.(2分)如图,将边长为2cm的两个互相重合的正方形纸片按住其中一个不动,另一个绕点B顺时针旋转一个角度α(0°<α<90°),若两正方形重叠部分的面积为,则这个旋转角度为 _________ 度.三、解答题(第20、21每题4分,第22题5分,共13分)20.(4分)解方程:x2﹣2x﹣3=021.(4分)补全右图的三视图:22.(5分)如图,路灯下一墙墩(用线段AB表示)的影子是BC,小明(用线段DE表示)的影子是EF,在M 处有一颗大树,它的影子是MN.(1)指定路灯的位置(用点P表示);(2)在图中画出表示大树高的线段;(3)若小明的眼睛近似地看成是点D,试画图分析小明能否看见大树.四、(第23题6分,第24题6分,共12分)23.(6分)学了一元二次方程后,学生小刚和小明都想出个问题考考对方.下面是他们俩的一段对话:聪明的你能替小刚或小明解决问题吗?(要求任选一人回答)24.(6分)我们在探索平面图形性质时,往往通过剪拼的方式帮助我们寻找解题思路.例如,在证明三角形中位线性质定理时,就可以采用下图①的剪拼方式:将三角形转化为平行四边形,使问题得以解决.请你依照图①的方法,在图②和图③中,分别只剪一次,实现下列转化:(1)将平行四边形转化为矩形;(2)将梯形转化为三角形.(要求:作出剪切线,不写作法,画出拼补图形,工具不限.)五、(每题6分,共12分)25.(6分)(2005•江西)将一张矩形纸片沿对角线剪开,得到两张三角形纸片,再将这两张三角形纸片摆放成如下图的形式,使点B、F、C、D在同一条直线上.(1)求证:AB⊥ED;(2)若PB=BC,请找出图中与此条件有关的一对全等三角形,并给予证明.26.(6分)(附加题)你还记得图形的旋转吗?如图,P是正方形ABCD内一点.PA=1,PB=2,PC=3,将△APB 绕点B按顺时针方向旋转,使AB和BC重合,得△CBP′.求证:(1)△PBP′是等腰直角三角形.(2)猜想△PCP′的形状,并说明理由.六、(每题6分,共12分)27.(6分)(2005•济南)你吃过拉面吗?实际上在做拉面的过程中就渗透着数学知识:一定体积的面团做成拉面,面条的总长度y(m)是面条的粗细(横截面积)s(mm2)的反比例函数,其图象如图所示.(1)写出y与s的函数关系式;(2)求当面条粗1.6mm2时,面条的总长度是多少米?28.(6分)(2004•无为县)如图,王华同学在晚上由路灯AC走向路灯BD,当他走到点P时,发现身后他影子的顶部刚好接触到路灯AC的底部,当他向前再步行12m到达Q点时,发现身前他影子的顶部刚好接触到路灯BD 的底部.已知王华同学的身高是1.6m,两个路灯的高度都是9.6m.(1)求两个路灯之间的距离;(2)当王华同学走到路灯BD处时,他在路灯AC下的影子长是多少?七、(6分)29.(6分)(2005•扬州)某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.现该商场要保证每天盈利6 000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?八、(7分)30.(7分)如图,四边形ABCD是正方形,CE是∠BCD的外角∠DCF的平分线.(如果需要,还可以继续操作、实验与测量)(1)操作实验:将直角尺的直角顶点P在边BC上移动(与点B、C不重合),且一直角边经过点A,另一直角边与射线CE交于点Q,不断移动P点,同时测量线段PQ与线段PA的长度,完成下列表格(精确到0.1cm).PA PQ第一次第二次(2)观测测量结果,猜测它们之间的关系: _________ ;(3)对你猜测的结论是否成立均进行说明理由;(4)当点P在BC的延长线上移动时,继续(1)的操作实验,试问:(1)中的猜测结论还成立吗?若成立,请给出理由;若不成立,也请说明理由.2011-2012学年北师大版九年级(上)期末数学试卷参考答案与试题解析一、选择题:请将唯一正确答案的编号填入答卷中,本题共12题,每题2分,共24分.1.(2分)(2006•邵阳)方程x2﹣2x=0的解是( ) A.x=2 B.x1=,x2=0 C.x1=2,x2=0 D.x=0考点:解一元二次方程-因式分解法.专题:计算题.分析:本题应对方程进行移项,等式右边化为0,即为x2﹣2x=0,提取公因式x,将原式化为两式相乘的形式,x(x﹣2)=0,再根据“两式相乘值为0,这两式中至少有一式值为0”来求解.解答:解:原方程变形为:x2﹣2x=0,x(x﹣2)=0,x1=0,x2=2.故本题选C.点评:本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法,本题运用的是因式分解法.2.(2分)电影院呈阶梯或下坡形状的主要原因是( ) A.为了美观B.减小盲区C.增大盲区D.盲区不变考点:视点、视角和盲区.分析:电影院呈阶梯或下坡形状可以使后面的观众看到前面,避免盲区.解答:解:电影院呈阶梯或下坡形状是为了然后面的观众有更大的视角范围,减小盲区.故选B.点评:本题是结合实际问题来考查学生对视点,视角和盲区的理解能力.3.(2分)(2005•枣庄)反比例函数y=(k>0)在第一象限内的图象如图,点M是图象上一点,MP垂直x轴于点P,如果△MOP的面积为1,那么k的值是( ) A.1B.2C.4D.考点:反比例函数系数k的几何意义.专题:计算题;数形结合.分析:根据双曲线的图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系S=|k|即可求得k的值.解答:解:由于点M是反比例函数y=(k>0)图象上一点,则S△MOP=|k|=1;又由于k>0,则k=2.故选B.点评:本题主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义. 4.(2分)某学校有320名学生,现对他们的生日进行统计(可以不同年),下列说法正确的是( ) A.至少有两人生日相同 B.可能有两人生日相同,且可能性较大 C.不可能有两人生日相同 D.可能有两人生日相同,但可能性较小考点:可能性的大小.专题:分类讨论.分析:依据可能性的大小的概念对各选项进行逐一分析即可.解答:解:A、因为一年有365天而某学校只有320人,所以至少有两名学生生日相同是随机事件.故本选项错误;B、因为=>50%,所以可能性较大.正确;C、两人生日相同是随机事件,故本选项错误;D、由B可知,可能性较大,故本选项错误.故选B.点评:本题主要考查可能性大小的比较,关键是确定所给事件的类型;随机事件是指在一定条件下,可能发生也可能不发生的事件;概率较小的事件发生的可能性较小.5.(2分)下列四个命题中,假命题的是( ) A.有三个角是直角的四边形是矩形 B.对角线互相垂直平分且相等的四边形是正方形 C.四条边都相等的四边形是菱形 D.顺次连接一个四边形各边中点,得到一个菱形,那么这个四边形是等腰梯形考点:命题与定理.分析:根据矩形、正方形、菱形、等腰梯形的判定即可求出答案.解答:解:A、四边形的内角和为360°,正确;B、对角线互相垂直平分且相等的四边形是正方形,正确;C、四条边都相等的四边形是菱形,正确;D、顺次连接一个四边形各边中点,得到一个菱形,那么这个四边形可能是矩形,不正确.故选D.点评:本题综合考查四边形的性质和特点.6.(2分)如图,▱ABCD的周长为16cm,AC与BD相交于点O,OE⊥AC交AD于E,则△DCE的周长为( ) A.4cm B.6cm C.8cm D.10cm考点:平行四边形的性质;线段垂直平分线的性质.分析:根据平行四边形的对角线互相平分,可得OA=OC,又因为OE⊥AC,可得OE是线段AC的垂直平分线,可得AE=CE,即可求得△DCE的周长.解答:解:∵四边形ABCD为平行四边形,∴OA=OC;∵OE⊥AC,∴AE=EC;∵▱ABCD的周长为16cm,∴CD+AD=8cm;∴△DCE的周长=CD+CE+DE=CD+AD=8cm.故选C.点评:此题主要考查平行四边形的性质和中垂线的性质.7.(2分)如果小强将飞镖随意投中如图所示的正方形木板,那么飞镖落在阴影部分的概率为( ) A.B.C.D.考点:几何概率.分析:根据几何概率的求法:镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.解答:解:观察这个图可知:阴影部分占四个小正方形,占总数36个的,故其概率是.故选C.点评:本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.8.(2分)(2006•曲靖)如图,CD是Rt△ABC斜边AB上的高,将△BCD沿CD折叠,B点恰好落在AB的中点E处,则∠A等于( ) A.25°B.30°C.45°D.60°考点:等边三角形的判定与性质.分析:先根据图形折叠的性质得出BC=CE,再由直角三角形斜边的中线等于斜边的一半即可得出CE=AE,进而可判断出△BEC是等边三角形,由等边三角形的性质及直角三角形两锐角互补的性质即可得出结论.解答:解:△ABC沿CD折叠B与E重合,则BC=CE,∵E为AB中点,△ABC是直角三角形,∴CE=BE=AE,∴△BEC是等边三角形.∴∠B=60°,∴∠A=30°,故选B.点评:考查直角三角形的性质,等边三角形的判定及图形折叠等知识的综合应用能力及推理能力.9.(2分)(2006•兰州)如图,在直角坐标系中,将矩形OABC沿OB对折,使点A落在A1处,已知OA=,AB=1,则点A1的坐标是( ) A.()B.()C.()D.()考点:翻折变换(折叠问题);坐标与图形性质;解直角三角形.专题:计算题.分析:根据折叠的性质,OA=OA1,∠AOB=∠A1OB,从而求出∠A1OD,利用三角函数求出OD、A1D即可解答.解答:解:在Rt△AOB中,tan∠AOB=,∴∠AOB=30°.而Rt△AOB≌Rt△A1OB,∴∠A1OB=∠AOB=30°.作A1D⊥OA,垂足为D,如图所示.在Rt△A1OD中,OA1=OA=,∠A1OD=60°,∵sin∠A1OD=,∴A1D=OA1•sin∠A1OD=.又cos∠A1OD=,∴OD=OA1•cos∠A1OD=.∴点A1的坐标是.故选A.点评:此题主要考查图形对折的特征及点的坐标的求法.10.(2分)(2007•黔东南州)已知正比例函数y=k1x(k1≠0)与反比例函数y=(k2≠0)的图象有一个交点的坐标为(﹣2,﹣1),则它的另一个交点的坐标是( ) A.(2,1)B.(﹣2,﹣1)C.(﹣2,1)D.(2,﹣1)考点:反比例函数图象的对称性.专题:计算题.分析:根据关于原点对称的两点横坐标,纵坐标都互为相反数即可解答.解答:解:∵反比例函数的图象是中心对称图形,则与经过原点的直线的两个交点一定关于原点对称,∴它的另一个交点的坐标是(2,1).故选A.点评:此题考查了反比例函数图象的对称性,同学们要熟记才能灵活运用.11.(2分)(2005•湘潭)如图,它们是一个物体的三视图,该物体的形状是( ) A.圆柱B.正方体C.圆锥D.长方体考点:由三视图判断几何体.分析:根据题意,正视图与左视图均为三角形,俯视图为圆形故可以看出该几何体为圆锥.解答:解:本题中,圆柱的三视图不可能由三角形,正方体的三视图均为正方形,长方体的三视图不可能由圆和三角形,因此只有圆锥符合条件.故选C.点评:本题考查由三视图确定几何体的形状,主要考查学生空间想象能力以及对立体图形的认识.12.(2分)(2007•黔东南州)如图,小亮拿一张矩形纸图(1),沿虚线对折一次得图(2),下将对角两顶点重合折叠得图(3),按图(4)沿折痕中点与重合顶点的连线剪开,得到三个图形,这三个图形分别是( ) A.都是等腰梯形B.都是等边三角形 C.两个直角三角形,一个等腰三角形D.两个直角三角形,一个等腰梯形考点:剪纸问题.分析:对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.解答:解:严格按照图中的顺序向上对折,对角顶点对折,沿折痕中点与重合顶点的连线剪开展开可得到两个直角三角形,一个等腰三角形.故选C.点评:本题是剪纸问题,主要考查学生的动手能力及空间想象能力,进行动手操作是正确解答本题的最简单办法. 二、填空题(每空2分,共14分)13.(2分)(2005•大连)若点(2,1)在双曲线y=上,则k的值为 2 .考点:待定系数法求反比例函数解析式.专题:计算题;待定系数法.分析:函数经过一定点,将此点坐标代入函数解析式(k≠0)即可求得k的值.解答:解:把点(2,1)代入y=得k=2×1=2.故答案为:2.点评:本题比较简单,考查的是用待定系数法求反比例函数的比例系数,是中学阶段的重点内容.14.(2分)请写出一个根为x=1,另一根满足﹣1<x<1的一元二次方程 x2﹣x=0 .考点:根与系数的关系.专题:开放型.分析:首先在﹣1<x<1的范围内选取x的一个值,作为方程的另一根,再根据因式分解法确定一元二次方程.本题答案不唯一.解答:解:由题意知,另一根为0时,满足﹣1<x<1,∴方程可以为:x(x﹣1)=0,化简,得x2﹣x=0.故答案为x2﹣x=0.点评:本题考查的是已知方程的两根,写出方程的方法.这是需要熟练掌握的一种基本题型,解法不唯一,答案也不唯一.15.(2分)(2005•威海)已知双曲线y=经过点(﹣1,3),如果A(a1,b1),B(a2,b2)两点在该双曲线上,且a1<a2<0,那么b1 < b2(选填“>”、“=”、“<”).考点:反比例函数图象上点的坐标特征;反比例函数的性质.分析:根据反比例函数的增减性解答.解答:解:把点(﹣1,3)代入双曲线y=得k=﹣3<0,故反比例函数图象的两个分支在第二、四象限,且在每个象限内y随x的增大而增大,∵A(a1,b1),B(a2,b2)两点在该双曲线上,且a1<a2<0,∴A、B在同一象限,∴b1<b2.故答案为<.点评:本题考查利用反比例函数的增减性质判断图象上点的坐标特征.16.(2分)(2006•曲靖)一质点P从距原点1个单位的A点处向原点方向跳动,第一次跳动到OA的中点A1处,第二次从A1点跳动到O A1的中点A2处,第三次从A2点跳动到OA2的中点A3处,如此不断跳动下去,则第n次跳动后,该质点到原点O的距离为 .考点:规律型:图形的变化类.分析:根据题意,得第一次跳动到OA的中点A1处,即在离原点的处,第二次从A1点跳动到A2处,即在离原点的()2处,则跳动n次后,即跳到了离原点的处.解答:解:第n次跳动后,该质点到原点O的距离为.故答案为:.点评:本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.本题注意根据题意表示出各个点跳动的规律.17.(2分)某养鱼专业户为了估计鱼塘中鱼的总条数,他先从鱼塘中捞出100条,将每条鱼作了记号后放回水中,当它们完全混合于鱼群后,再从鱼塘中捞出100条鱼,发现其中带记号的鱼有10条,估计该鱼塘里约有 1000 条鱼.考点:利用频率估计概率.专题:应用题.分析:先得到鱼塘中带记号的鱼的频率为=,由此可估计鱼塘中带记号的鱼的概率为,然后根据鱼塘中带记号的鱼有100条可计算出鱼塘里约有鱼的条数.解答:解:∵100条鱼,带记号的鱼有10条,∴估计鱼塘中带记号的鱼的概率==,而鱼塘中带记号的鱼有100条,∴估计该鱼塘里约有鱼的条数=100÷=1000.故答案为1000.点评:本题考查了利用频率估计概率:当事件的概率不易求出时,可根据其中的某事件发生的频率来估计这个事件的概率.18.(2分)有一对酷爱运动的年轻夫妇给他们12个月大的婴儿拼3块分别写有“20”、“08”和“北京”的字块.如果婴儿能拼出“2008北京”和“北京2008”,他们就给婴儿奖励.假设该婴儿能将字块横着正排,那么这个婴儿能得到奖励的概率为 .考点:概率公式.分析:列举出所有情况,让拼出“2008北京”和“北京2008”的情况数除以总情况数即为所求的概率.解答:解:将3块分别写有“20”、“08”和“北京”的字块,随机排列共3×2=6种情况,能拼出“2008北京”和“北京2008”两种情况即有奖,故婴儿能得到奖励的概率为.点评:明确概率的意义是解答的关键,用到的知识点为:概率=所求情况数与总情况数之比.19.(2分)如图,将边长为2cm的两个互相重合的正方形纸片按住其中一个不动,另一个绕点B顺时针旋转一个角度α(0°<α<90°),若两正方形重叠部分的面积为,则这个旋转角度为 30 度.考点:旋转的性质;三角形的面积;全等三角形的性质;全等三角形的判定;正方形的性质;解直角三角形.分析:设A′D′与CD的交点为E,连接BE;由于A′B=BC,易证得△A′BE≌△CBE,因此两者的面积相等,即可根据△CBE的面积求得CE的值,从而通过解直角三角形求出∠CBE、∠CBA′的度数,进而可求得旋转角的度数.解答:解:设A′D′与CD的交点为E,连接BE.∵A′B=BC,BE=BE,∴Rt△A′BE≌Rt△CBE.(HL)∴∠A′BE=∠EBC,且S△BA′E=S△BCE=.在Rt△BCE中,BC=2,则:S△BCE=×2×CE=,∴CE=.∴tan∠EBC==,即∠EBC=30°.∴∠A′BC=2∠EBC=60°,∠ABA′=90°﹣∠A′BC=30°.故旋转的角度为30°.点评:此题主要考查了旋转的性质、正方形的性质、全等三角形的判定和性质以及三角形的面积、解直角三角形等相关知识,综合性较强.三、解答题(第20、21每题4分,第22题5分,共13分)20.(4分)解方程:x2﹣2x﹣3=0考点:解一元二次方程-因式分解法.专题:计算题.分析:通过观察方程形式,本题可用因式分解法进行解答.解答:解:原方程可以变形为(x﹣3)(x+1)=0x﹣3=0,x+1=0∴x1=3,x2=﹣1.点评:熟练运用因式分解法解一元二次方程.注意:常数项应分解成两个数的积,且这两个的和应等于一次项系数.21.(4分)补全右图的三视图:考点:简单组合体的三视图.分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形;认真观察实物图,按照三视图的要求画图即可,注意看得到的棱长用实线表示,看不到的棱长用虚线的表示.解答:解:主视图正确,俯视图与左视图如图所示:点评:此题主要考查了三视图的画法,注意实线和虚线在三视图的用法.22.(5分)如图,路灯下一墙墩(用线段AB表示)的影子是BC,小明(用线段DE表示)的影子是EF,在M 处有一颗大树,它的影子是MN.(1)指定路灯的位置(用点P表示);(2)在图中画出表示大树高的线段;(3)若小明的眼睛近似地看成是点D,试画图分析小明能否看见大树.考点:中心投影.专题:作图题.分析:根据中心投影的特点可知,连接物体和它影子的顶端所形成的直线必定经过点光源.所以分别把AB和DE 的顶端和影子的顶端连接并延长可交于一点,即点光源的位置,再由点光源出发连接MN顶部N的直线与地面相交即可找到MN影子的顶端.线段MN是大树的高.若小明的眼睛近似地看成是点D,则看不到大树,MN处于视点的盲区.解答:解:(1)点P是灯泡的位置;(2)线段MG是大树的高.(3)视点D看不到大树,MN处于视点的盲区.(叙述不清,只要抓住要点,酌情给分)点评:本题考查中心投影的作图,难度不大,体现了学数学要注重基础知识的新课标理念.解题的关键是要知道:连接物体和它影子的顶端所形成的直线必定经过点光源.四、(第23题6分,第24题6分,共12分)23.(6分)学了一元二次方程后,学生小刚和小明都想出个问题考考对方.下面是他们俩的一段对话:聪明的你能替小刚或小明解决问题吗?(要求任选一人回答)考点:一元二次方程的解;根与系数的关系.分析:首先选出要解答的问题:小刚.然后根据一元二次方程的解的定义,将x=0代入方程,然后解关于m的方程即可.解答:解:我替小刚解答问题;根据题意,得x=0满足关于x的方程x2+2(m+1)x+m2=0,∴0+0+m2=0,解得m=0;∴0+x2=2(m+1),即x2=2.故小刚的问题中m的值为0,另一个根为2.点评:本题考查了一元二次方程的解、根与系数的关系.一元二次方程的解,即方程的根,一定满足该方程.24.(6分)我们在探索平面图形性质时,往往通过剪拼的方式帮助我们寻找解题思路.例如,在证明三角形中位线性质定理时,就可以采用下图①的剪拼方式:将三角形转化为平行四边形,使问题得以解决.请你依照图①的方法,在图②和图③中,分别只剪一次,实现下列转化:(1)将平行四边形转化为矩形;(2)将梯形转化为三角形.(要求:作出剪切线,不写作法,画出拼补图形,工具不限.)考点:作图—应用与设计作图.专题:作图题.分析:(1)过点D垂直于AB边剪下,然后把△ADE向左右移至点A与点B重合即可;(2)取BC的中点E,沿DE剪下,把△DCE绕点E顺时针旋转180°即可.解答:解:如图所示进行剪切并拼接即可.点评:本题考查了应用于设计作图,读懂题目①的信息,并熟练掌握平行四边形与矩形的联系,梯形的问题转化为三角形进行解答的技巧与方法是解题的关键.五、(每题6分,共12分)25.(6分)(2005•江西)将一张矩形纸片沿对角线剪开,得到两张三角形纸片,再将这两张三角形纸片摆放成如下图的形式,使点B、F、C、D在同一条直线上.(1)求证:AB⊥ED;(2)若PB=BC,请找出图中与此条件有关的一对全等三角形,并给予证明.考点:翻折变换(折叠问题);直角三角形全等的判定.专题:几何综合题.分析:做此题要理解翻折变换后相等的条件,同时利用常用的全等三角形的判定方法来判定其全等.解答:证明:(1)由题意得,∠A+∠B=90°,∠A=∠D,∴∠D+∠B=90°,∴AB⊥DE.(3分)(2)∵AB⊥DE,AC⊥BD∴∠BPD=∠ACB=90°∴在△ABC和△DBP,,∴△ABC≌△DBP(AAS).(8分)说明:图中与此条件有关的全等三角形还有如下几对:。
20112012学年度第一学期期末试卷

2011—2012学年度第一学期期末试卷九年级数学(满分:150分 测试时间:120分钟)一、选择题(本大题共8小题,每小题3分,共24分,每小题仅有一个答案正确,请把你认为正确的答案前的字母填 入下表相应的空格 )1.下列各组二次根式中,可化为同类二次根式的是A.5和3 B.32和23 C.2和8 D.8和12 2.用配方法解方程2250x x --=时,原方程应变形为A .2(1)6x +=B .2(1)6x -=C .2(2)9x +=D .2(2)9x -= 3. 如果一个等腰三角形的两边长分别是5cm 和6cm ,那么此三角形的周长是 A .15cm B .16cm C .17cm D .16cm 或17cm 4.已知⊙O 1、⊙O 2的半径分别是方程0782=+-x x 的两个根,且O 1O 2=7,则 ⊙O 1、⊙O 2的位置关系是 A .相交B .外切C .外离D .内切5.由二次函数1)3(22+-=x y ,可知A .其图象的开口向下B .其图象的对称轴为直线3-=xC .当3<x 时,y 随x 的增大而增大D .其最小值为1 6.已知四边形ABCD 是平行四边形,则下列结论中不正确的是A .当AB=BC 时,它是菱形B .当AC ⊥BD 时,它是菱形 C .当AC=BD 时,它是正方形 D .当∠ABC=90°时,它是矩形 7.若圆锥侧面积与底面积之比为8:3,则这个圆锥的侧面展开图的圆心角是 A .120˚ B .135˚ C .150˚ D .180˚8.如图,在矩形ABCD 中,AB=6cm ,BC=3cm 。
点P 沿边AB 从A 开始向点B 以1cm/s 的速度移动,同时点Q 沿矩形ABCD 的边按A —D —C —B 顺序以2cm/s 的速度移动,当P 、Q 到达B 点时都停止移动。
下列图象能大致反映△QAP 面积y (cm 2)与移动时间x (s )之间函数关系的是2012.1cm 2)cm 2)O cm 2)O cm 2))54)(54()523(2-+-+二、填空题(本大题共10小题,每小题3分,共30分,把答案填在题目中的横线上)9.一组数据:-2,5,8,13,7的极差是.10.若2)1(-a =1-a ,则a 的取值范围是 .11.抛物线322++-=x x y 的顶点坐标是 。
2011-2012学年度九年级第一学期期末质量检测(含答案)_

ADEBC(第3题图)1)1(21=-+a xa 2011—2012学年度第一学期期末质量检测九年级数学试题(时间:120分钟 满分:120分)成绩统计栏题号 一 二 三总分 25 26 27 28 29 得分一、选择题(本题包括20个题,每题3分,共60分。
每题只有一个正确答案,请将选项填入答题框内。
)1.下列方程: ①x 2=0,②21x-2=0, ③22x +3x=(1+2x)(2+x), ④32x-x =0, ⑤32x x-8x+ 1=0中, 一元二次方程的个数是( )A.1个B.2个C.3个D.4个2.用两个全等的直角三角形拼下列图形:①矩形;②菱形;③正方形;④平行四边形; ⑤等腰三角形;⑥等腰梯形.其中一定能拼成的图形是( ). A.①②③ B.①④⑤ C.①②⑤ D.②⑤⑥3. 如图,四边形ABCD 是菱形,过点A 作BD 的平行线交CD 的延长线 于点E ,则下列式子不成立...的是( )A. DE DA = B. CE BD =C. 90=∠EAC °D. EABC ∠=∠24.如图,四边形ABCD 是正方形,延长BC 至点E ,使CE=CA ,连结AE 交CD•于点F ,•则∠AFC的度数是( ).A.150°B.125°C.135°D.112.5°5.如图,△ABC 内接于⊙O ,若∠OAB=28°则∠C 的大小为( ) A. 62° B.56° C.60° D.28°6.若关于x 的方程是一元二次方程,则a 的值是()A.0B.-1C. ±1D.17.方程(1)(3)1x x --=的两个根是 ( )A.121,3x x == B.122,4x x ==C.1222,22x x =+=-D.1222,22x x =--=-+8. 一个多边形有9条对角线,则这个多边形有多少条边( )A. 6B. 7C. 8D. 99.如图,在矩形ABCD 中,DE ⊥AC 于E ,设∠ADE=α,且cos α=0.6,AB=4,则AD 的长为( ) A.320 B.310 C.3 D.31610.点A 、B 、C 都在⊙O 上,若∠AOB=680,则∠ACB 的度数为( ) A 、340 B 、680 C 、1460 D 、340或146011. 如图,菱形ABCD 中,60=∠B °,2=AB ,E 、F 分别是BC 、CD 的中点,连接AE 、EF 、AF ,则△AEF 的周长为( )A.32B.33C.34D.3题号 1 2 3 4 5 6 7 8 9 10 选项 题号 11 12 13 14 15 16 17 18 19 20 选项九年级数学试题 共8页 第1页九年级数学试题 共8页 第2页得 分 评卷人A(第11题图)BECF D第9题图第4题图第5题图学校__________________ 班级____________ 姓名_____________ 考场_____________ 准考证号______________密 封 线 内 不 要 答 题12.如图,一块含有30°角的直角三角板ABC ,在水平桌面上绕点C 按顺时针方向旋转到A B C '''的位置.若AC=15cm ,那么顶点A 从开始到结束所经过的路径长为( )A.10πcmB.103πcmC.15πcmD.20πcm13.如图,□ABCD 中,对角线AC 和BD 相交于点O ,如果AC=12, BD=10,AB=m ,那么m 的取值范围是( ).A 、1<m <11B 、2<m <22C 、10<m <12D 、5<m <614.如图,将边长为8㎝的正方形ABCD 折叠,使点D 落在BC 边的中点E 处,点A 落在F 处,折痕为MN ,则线段CN 的长是( )A .3cmB .4cmC .5cmD .6cm15.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x 名同学,根据题意列出方程为 ( ) A.x(x +1)=1035 B.x(x -1)=1035×2 C.x(x -1)=1035 D.2x(x +1)=103516.如图,已知EF 是⊙O 的直径,把A ∠为60的直角三角板ABC 的一条直角边BC 放在直线EF 上,斜边与AB ⊙O 交于点P ,点B 与点O 重合。
2011-2012北京市怀柔区2012届九年级上学期期末考试数学试卷

7题图6题图5题图4题图怀柔区2011——2012学年度第一学期期末九年级教学质量检测数 学 试 卷 2012.1一、选择题(共8道小题,每小题4分,共32分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.13-的相反数是 ( ) A .3- B .3 C .13- D .132.已知,ABC △中,∠C=90°,sin ∠A 的度数是 ( ) A .30°B .45°C .60°D . 90° 3.若反比例函数2k y x+=的图象位于第二、四象限内,则k 的取值范围是 ( ) A .2k >- B .2k <- C .0k > D .0k <4.如图,⊙O 的半径为5,AB 为弦,OC ⊥AB ,垂足为C ,若OC =3,则弦AB 的长为( ). A . 8 B .6C .4D .105.如图,D 是ABC △边AB 上一点,则下列四个条件不.能单独判定.....ABC ACD △∽△的是( ) A .B ACD ∠=∠ B .ADC ACB ∠=∠ C .AC AB CD BC= D .2AC AD AB =⋅6.如图,若将飞镖投中一个被平均分成6份的圆形靶子,则落在阴影部分的概率是 ( ) A .12 B .56 C .13 D .237.如图,BC 是⊙O 的直径,A 、D 是⊙O 上两点,若∠D = 35°,则∠OAC 的度数是 ( )A .35°B .55°C .65°D .70°8.如图,在Rt △ABC 中,∠ACB =90°,∠BAC =30°,AB =2,D 是AB 边上的一个动点(不与点A 、B 重合),过点D 作CD 的垂线交射线CA 于点E .设AD=x ,CE=y ,则下列图象中,能表示y 与x 的函数关系的图象大致是 ( )二、填空题(共4道小题,每小题4分,共16分)9.如图,在△ABC 中,DE ∥BC ,若DE=1,BC =3,那么△ADE 与△ABC 面积的比为 . 10.如图,点A 、B 、C 是半径为3cm 的⊙O 上三个点,且︒=∠30ABC , 则劣弧 AC 的长 是 .11.如图所示,边长为1的小正方形构成的网格中,半径为1的⊙O 的圆心O 在格点上, 则∠AED 的正弦值等于 .12.如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填 整数之和都相等,则第99个格子中的数为 ,2012个格子中的数为 .三、解答题(本题共30分,每小题5分) 13.计算:2sin 452cos60︒+︒ 14.已知抛物线228y x x =--.(1)用配方法把228y x x =--化为2()y x h k =-+形式;(2)并指出:抛物线的顶点坐标是 ,抛物线的对称轴方程是 ,抛物线与x 轴交点坐标是 ,当x 时,y 随x 的增大而增大. 解15.解不等式: 4(x +1)≤5x +8,并把它的解集在数轴上表示出来.解:16.如图:已知,梯形ABCD 中,∠B =90°,AD ∥BC ,AB ⊥BC ,AB=AD =3,BC =7. 求cos ∠C. 解:17. 以直线1x =为对称轴的抛物线过点A (3,0)和点B(0,3),求此抛物线的解析式. 解:18.如图,在ABC △中,90C =∠,在AB 边上取一点D ,使BD BC =,过D 作DE AB ⊥交AC于E ,AC=8,BC=6.求DE 的长.解:四、解答题(本题共20分,每小题5分)19.如图,小明在十月一日到公园放风筝,风筝飞到C 处时的线长为20米, 此时小明正好站在A 处,并测得60CBD ∠=,牵引底端B 离地面1.5米, 求此时风筝离地面的高度. 解:20.甲、乙两大型超市为了吸引顾客,都举行有奖酬宾活动,凡购物满200元,均可得到一次抽奖的机会,在一个纸盒里装有2个红球和2个白球,除颜色外其它都相同,抽奖者一次从中摸出两个球,根据球的颜色决定送礼金券(在他们超市使用时,与人民币等值)的多少(如下表).甲超市.乙超市:(1)用树状图表示得到一次摸奖机会时中礼金券的所有情况; (2)如果只考虑中奖因素,你将会选择去哪个超市购物?请说明理由. 解:21. 如图,AB 是⊙O 的直径,AD 是弦,22.5A ∠=,延长=45°. (1)求证:CD 是⊙O 的切线; (2)若AB =OC 的长. 证明:A22.在△ABC 中,∠C=120°,AC=BC ,AB=4,半圆的圆心O 在AB 上,且与AC ,BC 分别相切于点D ,E .(1)求半圆O 的半径;(2)求图中阴影部分的面积.解:五、解答题(本题共22分,23题7分,24题7分,25题8分) 23.如图所示,在直角坐标系中,点A 是反比例函数1ky x=的图象上一点,AB x ⊥轴的正半轴于B 点,C 是OB 的中点;一次函数2y ax b =+的图象经过A 、C 两点,并交y 轴于点()02D -,,若4AOD S =△. (1)求反比例函数和一次函数的解析式;(2)观察图象,请指出在y 轴的右侧,当12y y >时x 的取值范围,当1y <2y 时x 的取值范围.解:24. 把边长分别为4和6的矩形ABCO 如图放在平面直角坐标系中,将它绕点C 顺时针旋转α角, 旋转后的矩形记为矩形EDCF .在旋转过程中,(1)如图①,当点E 在射线CB 上时,E 点坐标为 ;(2)当CBD ∆是等边三角形时,旋转角α的度数是 (α为锐角时); (3)如图②,设EF 与BC 交于点G ,当EG =CG 时,求点G 的坐标.(4) 如图③,当旋转角90α=时,请判断矩形EDCF 的对称中心H 是否在以C 为顶点,且经过点A 的抛物线上.图①图② 图③解:x25.如图,在平面直角坐标系中,顶点为(4,1-)的抛物线交y 轴于A 点,交x 轴于B ,C 两点(点B 在点C 的左侧). 已知A 点坐标为(0,3).(1)求此抛物线的解析式;(2)过点B 作线段AB 的垂线交抛物线于点D , 如果以点C 为圆心的圆与直线BD 相切,请判断抛物线的对称轴l 与⊙C 有怎样的位置关系,并给出证明;(3)已知点P 是抛物线上的一个动点,且位于A ,C 两点之间,问:当点P 运动到什么位置时,PAC ∆的面积最大?并求出此时P 点的坐标和PAC ∆的最大面积. 解:怀柔区2011——2012学年度第一学期期末九年级教学质量检测数学试题评分标准及参考答案 2012.1一、选择题(共8道小题,每小题4分,共32分)下面各题均有四个选项,其中只有一个..是符合题意的.二、填空题(本题共16分,每小题4分)题号9 10 1112 答案91π55 2; -1三、解答题(本题共30分,每小题5分) 13.计算:2sin 452cos60︒+︒解: 原式=12⋅分 =………………………………………………5分14.已知抛物线228y x x =--.(1)用配方法把228y x x =--化为2()y x h k =-+形式;(2)并指出:抛物线的顶点坐标是 ,抛物线的对称轴方程是 ,抛物线与x 轴交点坐标是 ,当x 时,y 随x 的增大而增大. 解(1)228y x x =--=x 2-2x+1-1-8=(x -1)2 -9.………………………………………………3分(2)抛物线的顶点坐标是 (1,-9)抛物线的对称轴方程是 x =1 ……………………………4分 抛物线与x 轴交点坐标是(-2,0)(4,0);当x >1 时,y 随x 的增大而增大. ………………………………5分 15.解不等式: 4(x +1)≤5x +8,并把它的解集在数轴上表示出来. 解: 去括号,得 4x +4≤5x +8 ……………………………… 1分 移项、合并同类项,得-x ≤4……………………………… 3分系数化为1,得 x ≥4- ……………………………… 4分不等式的解集在数轴上表示如下:………………… 5分16.如图:已知,梯形ABCD 中,∠B =90°,AD ∥BC ,AB ⊥BC ,AB=AD =3,BC =7. 求cos ∠C.解:方法一、作DE ⊥BC ,如图1所示,…………1分 ∵AD ∥BC ,AB ⊥BC ,AB=AD =3,∴四边形ABED 是正方形.…………………2分 ∴DE=BE=AB =3. 又∵BC =7,∴EC =4,……………………………………3分 由勾股定理得CD =5.…………………………4分 ∴ cos ∠C=45EC CD =.…………………………5分 方法二、作AE ∥CD ,如图2所示,……………1分 ∴∠1=∠C ,∵AD ∥BC ,∴四边形AECD 是平行四边形.………………2分 ∵A B=AD=3,∴EC=AD =3, 又∵BC =7,∴BE=4,……………………………………3分∵ AB ⊥BC ,由勾股定理得AE=5. ………………4分 ∴ cos ∠C= cos ∠1=45BE AE =. …………………………5分 17. 以直线1x =为对称轴的抛物线过点A (3,0)和点B(0,3),求此抛物线的解析式. 解:设抛物线的解析式为2(1)y a x b =-+, ………………………………………1分抛物线过点A (3,0)和B(0,3). ∴40,3.a b a b +=⎧⎨+=⎩ 解得1,4.a b =-⎧⎨=⎩ … ………4分 ∴抛物线的解析式为223y x x =-++. ……………………………………5分18.如图,在ABC △中,90C =∠,在AB 边上取一点D ,使B D B C =,过D 作DE AB ⊥交AC 于E ,86AC BC ==,.求DE 的长.解:在ABC △中,9086C AC BC ===,,∠, 10AB ∴==.…………………2分又6BD BC == ,4A D A B B D∴=-=. D E A B ⊥ ,90ADE C ∴==∠∠.又A A = ∠∠,A E D ABC ∴△∽△.………………………………4分D EA D BC A C∴=..3684=⨯=⋅=BC AC AD DE ………………………5分 四、解答题(本题共20分,每小题5分)19.如图,小明在十月一日到公园放风筝,风筝飞到C 处时的线长为20米,此时小明正好站在A 处,并测得60CBD ∠=,牵引底端B 离地面1.5米, 求此时风筝离地面的高度.解:依题意得,90CDB BAE ABD AED ∠=∠=∠=∠=︒, ∴四边形ABDE 是矩形 ,…………1分1.5.DE AB ∴== ……………2分在Rt BCD △中,sin ,CD CBD BC∠=……………3分又∵ 20BC = ,60CBD ∠=,由BCCD=60sin∴ sin 6020CD BC =⋅︒== .……………4分1.5CE ∴= .………………………………………5分即此时风筝离地面的高度为()1.5米 .20.甲、乙两大型超市为了吸引顾客,都举行有奖酬宾活动,凡购物满200元,均可得到一次抽奖的机会,在一个纸盒里装有2个红球和2个白球,除颜色外其它都相同,抽奖者一次从中摸出两个球,根据球的颜色决定送礼金券(在他们超市使用时,与人民币等值)的多少(如下表).甲超市.乙超市:(1)用树状图表示得到一次摸奖机会时中礼金券的所有情况; (2)如果只考虑中奖因素,你将会选择去哪个超市购物?请说明理由. 解:(1)树状图为:…………2分 (2)∵去甲超市购物摸一次奖获50元礼金券的概率是P (甲)=64=32,…………3分 去乙超市购物摸一次奖获50元礼金券的概率是P (乙)=62=31……………………4分 ∴我选择去甲超市购物……………………………………………………………………5分21. 如图,AB 是⊙O 的直径,AD 是弦,22.5A ∠=,延长AB 到点C ,使得∠ACD =45°. (1)求证:CD 是⊙O 的切线; (2)若AB =OC 的长. (1)证明:连接OD .∵OA OD =,22.5A ∠=, 22.5ODA A ∴∠=∠=︒,45DOC ∴∠=︒ . ……………………1分∵45ACD ∠=,90ODC ∴∠=︒ ,OD CD ∴⊥ . ……………………2分又∵点D 在⊙O 上,∴CD 是⊙O 的切线 .……………………3分 (2)∵直径AB =12OD AB ∴==. …………… 4分 在Rt OCD △中,sin ODC OC= ,∴sin 45︒= ,∵sin 45︒=,2OC ∴= .……………………5分22.在△ABC 中,∠C=120°,AC=BC ,AB=4,半圆的圆心O 在AB 上,且与AC ,BC 分别相切于点D ,E .(1)求半圆O 的半径;(2)求图中阴影部分的面积. 解:(1)解:连结OD ,OC ,∵半圆与AC ,BC 分别相切于点D ,E .∴DCO ECO ∠=∠,且OD AC ⊥.…………………1分∵AC BC =, ∴CO AB ⊥且O 是AB 的中点.∴122AO AB ==. ∵120C ∠=︒,∴60DCO ∠=︒. ∴30A ∠=︒. ∴在R t AOD △中,112OD AO ==. 即半圆的半径为1. ……………………………………….3分(2)设CO =x ,则在R t AOC △中,因为30A ∠=︒,所以AC =2x ,由勾股定理得: 222AC OC AO -= 即 222(2)2x x -=AC解得 x =(x =舍去)∴ 11422ABC S AB OC =⋅=⨯=△ …………………….4分 ∵ 半圆的半径为1, ∴ 半圆的面积为2π,∴ 2S π=-=阴影….…………………………….5分五、解答题(本题共22分,23题7分,24题7分,25题8分) 23.如图所示,在直角坐标系中,点A 是反比例函数1ky x=的图象上一点,AB x ⊥轴的正半轴于B 点,C 是OB 的中点;一次函数2y ax b =+的图象经过A 、C 两点,并交y 轴于点()02D -,,若4AOD S =△. (1)求反比例函数和一次函数的解析式;(2)观察图象,请指出在y 轴的右侧,当12y y >时x 的取值范围,当1y <2y 时x 的取值范围.解:作AE y ⊥轴于E ∵42AOD S OD ==△,∴.421=⋅AE OD ∴4AE =. ………………………………………1分∵AB OB C ⊥,为OB 的中点,∴90DOC ABC OC BC OCD BCA ==︒==∠∠,,∠∠. ∴Rt Rt DOC ABC △≌△.…………………………………3分 ∴2AB OD ==. ∴A (4,2). 将A (4,2)代入1k y x =中,得8k =. 18y x∴=. ……………4分 将()42A ,和()02D ,-代入2y ax b =+,得422a b b +=⎧⎨=-⎩解之得:12a b =⎧⎨=-⎩∴22y x =-.…………………………………………………………………5分 (2)在y 轴的右侧,当12y y >时,04x <<. ………………………6分当1y <2y 时x >4. ……………………………………………………7分24. 把边长分别为4和6的矩形ABCO 如图放在平面直角坐标系中,将它绕点C 顺时针旋转α角,旋转后的矩形记为矩形EDCF .在旋转过程中,(1)如图①,当点E 在射线CB 上时,E 点坐标为 ;(2)当CBD ∆是等边三角形时,旋转角α的度数是 (α为锐角时); (3)如图②,设EF 与BC 交于点G ,当EG =CG 时,求点G 的坐标.(4) 如图③,当旋转角90α=时,请判断矩形EDCF 的对称中心H 是否在以C 为顶点,且经过点A 的抛物线上.图① 图② 图③解:(1)E (4,132) ………………………………………………1分(2)︒60 …………………………………………………………………2分 (3)设x CG =,则x EG =,x FG -=6,在Rt △FGC 中,∵222CG FG CF =+,∴222)6(4x x =-+,解得 313=x ,即313=CG . ∴G (4,313). …………………………………………………………4分(4)设以点C 为顶点的抛物线的解析式为2)4(-=x a y . 把A (0,6)代入得,2)40(6-=a . 解得, 83=a . ∴此抛物线的解析式为2)4(83-=x y .……………………………………6分 ∵矩形EDCF 的对称中心为对角线FD 、CE 的交点H ,∴由题意可知H 的坐标为(7,2). 当7=x 时,2827)47(832≠=-=y , ∴点H 不在此抛物线上. ………………………………………………7分25.如图,在平面直角坐标系中,顶点为(4,1-)的抛物线交y 轴于A 点,交x 轴于B ,C 两点(点B 在点C 的左侧). 已知A 点坐标为(0,3).(1)求此抛物线的解析式;xy (第25题)x(2)过点B 作线段AB 的垂线交抛物线于点D , 如果以点C 为圆心的圆与直线BD 相切,请判断抛物线的对称轴l 与⊙C 有怎样的位置关系,并给出证明;(3)已知点P 是抛物线上的一个动点,且位于A ,C 两点之间,问:当点P 运动到什么位置时,PAC ∆的面积最大?并求出此时P 点的坐标和PAC ∆的最大面积. 解:(1)设抛物线为2(4)1y a x =--.∵抛物线经过点A (0,3),∴23(04)1a =--.∴14a =. ∴抛物线为2211(4)12344y x x x =--=-+. …………2 (2) 答:l 与⊙C 相交. ……………………………………3证明:当21(4)104x --=时,12x=,26x =.∴B 为(2,0),C 为(6,0). ∴AB =设⊙C 与BD 相切于点E ,连接CE , 则90BEC AOB ∠=︒=∠.∵90ABD ∠=︒,∴∠ABO +∠CBE =90°. 又∵∠ABO +∠BAO =90°,∴BAO CBE ∠=∠.∴AOB ∆∽BEC ∆. ∴CE BCOB AB =.∴2CE =.∴2CE =>.…………4分 ∵抛物线的对称轴l 为4x =,∴C 点到l 的距离为2. ∴抛物线的对称轴l 与⊙C 相交. …………………5分 (3) 解:如图,过点P 作平行于y 轴的直线交AC 于点Q .由点A (0,3)点C (6,0)可求出直线AC 的解析式为132y x =-+.………………6分 设P 点的坐标为(m ,21234m m -+),则Q 点的坐标为(m ,132m -+).∴2211133(23)2442PQ m m m m m =-+--+=-+.∵22113327()6(3)24244PAC PAQ PCQ S S S m m m ∆∆∆=+=⨯-+⨯=--+,∴当3m =时,PAC ∆的面积最大为274.此时,P 点的坐标为(3,34-). …………………8分 解答(3)的关键是作PQ ∥y 轴交AC 于Q ,以PQ 为公共底,OC 就是高,用抛物线、直线解析式表示P 、Q 两点的纵坐标,利用三角形的面积推导出面积与P 点横坐标m 的函数关系式, 即:2327(3)44PAC S m ∆=--+.评分说明:部分解答题有多种解法,以上各题只给出了部分解法,学生的其他解法可参照评分标准给分.。
2011-2012上学期期末九年级期末试卷(修改)

2011-2012学年度上学期期末考试九年级数学试题一、选择题(每小题3分,满分36分)下面每小题给出的四个选项中,只有一个是符合1.下列图形中,既是中心对称图形又是轴对称图形的有A .1个B .2个C .3个D .4个 2.下列根式中属最简二次根式的是A .12+aB .21C .32aD .27 3.两圆的半径分别为3和5,圆心距为7,则两圆的位置关系是A .内切B .相交C .外切D .外离4.下列事件中,必然事件是A .同时掷两枚均匀的骰子,朝上一面的点数和为6B .某彩票中奖率为0036,说明买100张彩票,有36张中奖C .打开电视,中央一套正在播放新闻联播D .从1,2,3,4,5中随机取一个数,取得奇数的可能性较大5. 若3是关于x 的方程260x cx ++=的一个根,则c 的值是A .3B . 6C . 5-D .6- 6.下列二次函数中,图象以直线x = 2为对称轴,且经过点(0,1)的是A .1)2(2+-=x yB .1)2(2++=x yC .3)2(2--=x yD .3)2(2-+=x y7.如图,为了测量一池塘的宽DE ,在岸边找一点C ,测得m CD 30=,在DC 的延长线上找一点A .测得m AC 5=,过点A 作AB ∥DE 交EC 的延长线于B ,测得m AB 6=,则池塘的宽DE 为A .m 25B .m 30C .m 36D .m 408.如图,一圆形人工湖如图所示,弦AB 是湖上的一座桥,已知桥AB 长为100m ,测得圆周角︒=∠45ACB ,则这个人工湖的直径AD 为A .m 250B .m 2100C .m 2150D .m 22009.如图,已知以直角梯形ABCD 的腰CD 为直径的半圆O 与梯形的上底AD 、下底BC 以及腰AB 均相切,切点分别是D 、C 、E .若半圆O 的半径为2,梯形的腰AB 为5,则该梯形的周长是A .14B .12C .10D .9 10.如图,点F 是平行四边形ABCD 的边CD 上一点,直线BF 交AD 的延长线于点E ,则下列结论错误..的是 A .AB DF EA ED = B .FB EF BC ED = C .BE BF DE BC = D .AEBCBE BF =11.如图,在中,,将绕点按逆时针方向旋转︒15后得到11C AB ∆,11C B 交AC 于点D ,如果22=AD ,则A B C ∆的周长等于(第7题图) (第8题图) (第9题图)A .6B .C .246+D .326+12.如图所示的二次函数2y ax bx c =++的图象中,小明同学观察得出了下面四条信息:(1)042>-ac b ;(2)1>c ;(3)02<-b a ; (4)0<++c b a . 你认为其中错误..的有 A .1个 B .2个 C .3个 D .4个二、填空题(每小题3分,共21分)请将答案直接写在题中横线上. 13.化简:18=_________.14.若n 12是整数,则正整数n 的最小值是_______________.15.如图,从⊙O 外一点A 引圆的切线AB ,切点为B ,连接AO 并延长交圆于点C ,连 接BC .若∠A =26°,则∠ACB 的度数为 ____________.16.如图,△ABC 中,DE ∥BC ,DE 分别交边AB 、AC 于D 、E 两点,若AD :BD = 1:2,则△ADE 与△ABC 的面积比为 .17.如图,已知二次函数c bx x y ++=2的图象经过点(-1,0),(1,-2),当y 随x 的 增大而增大时,x 的取值范围是 .18.为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设力度.2011 年市政府共投资2亿元人民币建设了廉租房8万平方米,预计到2013年底三年共累计投 资9.5亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.若设每年市政府投 资的增长率为x ,则根据题意得方程为_____________________________________. 19.如图为抛物线2y ax bx c =++的图象,A 、B 、C 为抛物线与坐标轴的交点,且 OA =OC =1,则a 、b 之间满足的关系是 . 三、解答题(本大题共6小题,共63分解答要求写出文字说 明,证明过程或计算步骤) 20.(本题满分7分)已知关于x 的方程0122=-+kx x .(1)求证:方程有两个不相等的实数根;(2)若方程的一个根是1-,求方程的另一根和k 的值. 21.(本题满分10分)在复习《反比例函数》一课时,同桌的小丽和小芳有一个问题观点不一致.小丽认为如果两次分别从1~6六个整数中任取一个数,第一个数作为点(),P m n 的横坐标,第二个数作为点(),P m n 的纵坐标,则点(),P m n 在反比例函数12y x =的图象上的概率一定大于在反比例函数6y x=的图象上的概率,而小芳却认为两者的概率相同.你赞成谁的观点?(1)试用列表或画树状图的方法列举出所有点(),P m n 的情形;(2)分别求出点(),P m n 在两个反比例函数的图象上的概率,并说明谁的观点正确.22.(本小题满分10分)如图所示,E 是正方形ABCD 的边AB 上的一点,EF ⊥DE 交BC 于点F .(1)求证:ADE ∆∽BEF ∆;(2)若AE ∶EB =1∶2,求DE ∶EF 的值.AD F(第22题图)手工课上,小明准备做一个形状是菱形的风筝,这个菱形的两条对角线长度之和恰好为60cm,菱形的面积S(单位:cm2)随其中一条对角线的长x (单位:cm)的变化而变化.(1)请直接写出S与x之间的函数关系式(不要求写出自变量x的取值范围);(2)当x是多少时,菱形风筝面积S最大? 最大面积是多少?24.(本题满分13分)如图,在单位长度为1的正方形网格中,一段圆弧经过网格的交点A、B、C.(1)请完成如下操作:①以点O为原点、竖直和水平方向所在的直线为坐标轴、网格边长为单位长,建立平面直角坐标系;②用直尺和圆规画出该圆弧所在圆的圆心D的位置(不用写作法,保留作图痕迹),并连接AD、CD.(2)请在(1)的基础上,完成下列问题:①写出点的坐标:C__________、D_________________;②⊙D的半径=_____________________(结果保留根号);③求ADC∠的度数(写出解答过程);④若扇形ADC是一个圆锥的侧面展开图,则该圆锥的底面面积为________(结果保留π);⑤若)07(,E,试判断直线EC与⊙D的位置关系并说明你的理由.25.(本题满分13分)如图,直线33+=x y 交x 轴于A 点,交y 轴于B 点,过A 、B 两点的抛物线交x 轴于另一点C (3,0). ⑴ 求抛物线的解析式;⑵ 在抛物线的对称轴上是否存在点Q ,使△ABQ 是等腰三角形?若存在,求出符合条件的Q 点坐标;若不存在,请说明理由.。
2011-2012学年度第一学期九年级期末数学

2011-2012学年度第一学期九年级期末数学试卷一、单项选择题:1.如果a a 2-1)1-22=(,则 A .21<a B .21≤a C .21>a D .21≥a2.已知x =1是方程x 2+b x -2=0的一个根,则方程的另一个根是 A .1 B .2 C .-2 D .-l3.如图是一个旋转对称图形,要使它旋转后能与自身重合,至少应将它绕中心点旋转A .30°B .60°C .120°D .180°4.下列说法中,正确的是 A .到圆心的距离大于半径的点在圆内 B .圆的半径垂直于圆的切线C .圆周角等于圆心角的一半D .等弧所对的圆心角相等5.在平面直角坐标系xoy 中,以点(-3,4)为圆心,4为半径的圆 A .与x 轴相交,与y 轴相切 B .与x 轴相离,与y 轴相交C .与x 轴相切,与y 轴相交D .与x 轴相切,与y 轴相离6.已知相交两圆的半径分别为4和7,则它们的圆心距可能是 A .2 B .3 C .6 D .11 7.下列事件中属于随机事件的是 A .抛出的篮球会落下B .从装有黑球、白球的袋里摸出红球C .367人中有2人是同月同日出生D .买l 张彩票,中500万大奖8.在一个不透明的布袋中装有红色,白色玻璃球共40个,除颜色外其他完全相同,小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在15%左右,则口袋中红色球可能有A .4个 B .6个 C .34个 D .36个9.下列函数关系中,可以看做二次函数c bx ax y ++=2(a ≠0)模型的是A .在一定的距离内汽车的行驶速度与行驶时间的关系B .我国人口年自然增长率l %,这样我国人口总数随年份的关系C .竖直向上发射的信号弹,从发射到落回地面,信号弹的高度与时间的关系(不计空气阻力)D .圆的周长与圆的半径之间的关系10.二次函数3-2-2x x y =的图象如下图所示.当y <0时,自变量x 的取值范围是A .-l<x <3B .x <-1C .x >3D .x <-1或x >311.已知:如下图,在∆ABC 中,∠AED=∠B ,则下列等式成立的是 A .DEAD BCDE =B .BDAD BCAE =C .ABAE CEDE =D .ACAE ABAD =12.由二次函数1)3-(22+=x y 可知 A .其图象的开口向下 B .其图象的对称轴为直线x =-3C .其最小值为lD .当x <3时,y 随x 的增大而增大13.如下图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC 相似的是14.如下图,在矩形ABCD 中,AB=3,BC=4,点P 在BC 边上运动,连接DP ,过点A 作AE ⊥DP ,垂足为E ,设DP=x ,AE=y ,则能反映y 与x 之间函数关系的大致图象是二、填空题 15.1-)21(24-8+=_________________16.∆ABC 的3个顶点都在5×5的网格(每个小正方形的边长均为1个单位长度)的格点上,将∆ABC 绕点B 顺时针旋转到△A′B′C′的位置,且点A′、C′仍落在格点上,则线段AB 扫过的图形面积是__________平方单位(结果保留π)17.如下图,有三个同心圆,由里向外的半径依次是2cm ,4cm ,6cm 将圆盘分为三部分,飞镖可以落在任何一部分内,那么飞镖落在阴影圆环内的概率是_______________18.点A (2,1y )、B (3,2y )是二次函数=y 12-2+x x 的图象上两点,则1y 与2y 的大小关系为1y __________2y (填“>”“<”“=”)19.已知圆锥底面半径为5cm ,母线长为15cm ,那么它的侧面积为_________(结果保留π)20.如下图,在正方形网格中,点A 、B 、C 、D 都是格点,点E 是线段AC 上任意一点.如果AD=1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011—2012学年度第一学期期末考试九年级数学试卷命题人:王一峰 审核人:肖双花说明:1.本试卷共4页,满分120分,考试时间120分钟。
2.考生必须在答卷纸上指定区域内作答,在本试卷上和其他位置作答一律无效。
一、选择题(本大题共8小题,每小题3分,共24分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填写在答题纸...相应位置上) 1a 的取值范围是-----------------------------( ) A .a >-2 B .a ≥-2 C .a ≠-2 D .a ≤-2 2.已知两圆的半径分别为3和4,若圆心距为7,则这两圆的位置关系是------( ) A .外离 B .外切 C .相交 D .内切3. 抛物线y =x 2+4x +5是由抛物线y =x 2+1经过某种平移得到,-----------( )则这个平移可以表述为A .向左平移1个单位B .向左平移2个单位C .向右平移1个单位D .向右平移2个单位4.如图,⊙O 中,∠AOB =110°,点C 、D 是 AmB⌒上任两点,则∠C +∠D 的度数是( ) A .110° B .55° C .70° D .不确定5. 如图,圆锥的底面半径为3cm ,母线长为5cm ,则它的侧面积为------------( ) A. 15πcm 2B. 30πcm 2C . 45πcm 2D .60πcm 26.如图,AB 是⊙O 的弦, OC ⊥AB 于点D ,交⊙O 于点C ,若⊙O 的半径为5,CD =2,那么AB 的长为-------------------------------------------------------( ) A .4 B .6 C .8 D .107. 关于x 的一元二次方程22(1)2m x x m m +++-30-=有一个根是0,则m 的值为( )A .m=3或m=-1 B.m=-3或m= 1 C .m=-1 D .m=38. 如图,⊙O 过点B 、C ,圆心O 在等腰Rt △ABC 的内部,∠BAC=90°,OA=1,BC=6。
则⊙O 的半径为-----------------------------------------------------------( )A .6B .13CD.二、填空题(每空2分,共30分,请把答案直接填写在答题纸相应位置.......上) 9.若0)3(12=++-+y y x ,则y x -的值为10.12a -,则a 的范围是11.“惠农”超市1月份的营业额为16万元,3月份的营业额为36万元,则每月的平均增长率为 。
12用配方法将二次函数y =2x 2+4x+5化成()k h x a y +-=2的形式是 .13.函数y=x 2+2x -8与x 轴的交点坐标是_________ 14.二次函数y=-4x 2+2x+3的对称轴是直线__________.第6题图第5题O35(第4题)A BCO(第8题)15.102,99,101,100,98的极差是________ __ ,方差是16.如图,PA、PB分别与⊙O相切于点A、B,⊙O的切线EF分别交PA、PB于点E、F,切点C在AB上,若PA 长为2,则△PEF的周长是.17.如图,量角器外缘上有A、B、C三点,其中A、B两点所表示的读数分别是80°、50°,则∠ACB等于°.18.如图,PA,PB是⊙O是切线,A,B为切点, AC是⊙O的直径,若∠BAC=25°,则∠P= __________度.19. 当x1时,代数式x2+2x-6的值是.20.中新网4月26日电据法新社26日最新消息,墨西哥卫生部长称,可能已有81人死于猪流感(又称甲型H1N1流感)。
若有一人患某种流感,经过两轮传染后共有81人患流感,则每轮传染中平均一人传染了_____人,若不加以控制,以这样的速度传播下去,经n轮传播,将有_____人被感染。
21.一个直角三角形的两条直角边分别长3cm,4cm,则它的内心和外心之间的距离为三、解答题22.(10分)计算:(1(2)÷23.(10分)解方程:(1)x2-2x-2=0;(2)(x-2)2-3(x-2)=0.24.已知,如图,在Rt△ABC中,∠C=90º,∠BAC的角平分线AD交BC边于D。
(1)以AB边上一点O为圆心作⊙O,使它过A,D两点(不写作法,保留作图痕迹),再判断直线BC与⊙O的位置关系,并说明理由;(5分)(2)若(1)中的⊙O与AB边的另一个交点为E,AB=6,BD=32, 求线段BD、BE与劣弧DE所围成的图形面积。
(结果保留根号和π)(4分)25. 某中学学生为了解该校学生喜欢球类活动的情况,随机抽取了若干名学生进行问卷调查(要求每位学生只能填写一种自己喜欢的球类),并将调查的结果绘制成如下的两幅不完整的统计图.请根据图中提供的信息,解答下面的问题:8050AB第17题第16题P(1)参加调查的学生共有 人,在扇形图中,表示“其他球类”的扇形的圆心角为 度;(每空2分)(2)将条形图补充完整;(2分)(3)若该校有2000名学生,则估计喜欢“篮球”的学生共有 人.(2分)26.如图AB 为⊙O 的直径,AE 平分∠BAF ,交⊙O 于点E ,过点E 作直线ED ⊥AF ,交AF 的延长线于点D ,交AB 的延长线于点C(1)求证:CD 是⊙O 的切线(4分)(2)若CB=2,CE=4,求AE 的长(4分)27.如图,二次函数的图像与x 轴相交于A (-3,0)、B (1,0)两点,与y 轴相交于点C (0,3),点C 、D 是二次函数图像上的一对对称点,一次函数的图像过点B 、D 。
(1)求D 点的坐标;(2分) (2)求一次函数的表达式;(3分)(3)根据图像写出使一次函数值大于二次函数值的x 的取值范围。
(4分)28.已知△ABC 是边长为4的等边三角形,BC 在x 轴上,点D 为BC 的中点,点A 在第一象限内,AB 与y 轴的正半轴相交于点E ,点B (-1,0),P 是AC 上的一个动点(P 与点A 、C 不重合) (1)求点A 、E 的坐标;(4分)(2)若y=c bx x 7362++-过点A 、E ,求抛物线的解析式。
(4分) (3)连结PB 、PD ,设L 为△PBD 的周长,当L 取最小值时,求点P 的坐标及L 的最小值,并判断此时点P 是否在(2)中所求的抛物线上,请充分说明你的判断理由(6分)2011—2012学年度第一学期期末考试九年级数学答卷纸二.填空题(每题2分,2×15=30分)9. 。
10. 。
11. 。
12. 。
13. 。
14. 。
15. ,。
16.。
17. 。
18. 。
19.。
20. ,。
21. 。
三,解答题22.(10分)计算:(1 (2)4÷23.(10分)解方程:(1)x 2-2x -2=0; (2)(x -2)2-3(x -2)=0.24. 已知,如图,在Rt △ABC 中,∠C=90º,∠BAC 的角平分线AD 交BC 边于D 。
(1)以AB 边上一点O 为圆心作⊙O ,使它过A ,D 两点(不写作法,保留作图痕迹),再判断直线BC 与⊙O 的位置关系,并说明理由;(作图2分,说理3分)(2)若(1)中的⊙O 与AB 边的另一个交点为E ,AB=6,BD=32, 求线段BD 、BE 与劣弧DE 所围成的图形面积。
(结果保留根号和π)(4分)25(1)参加调查的学生共有 人,在扇形图中,表示“其他球类”的扇形的圆心角为 度;(每空2分)(2)将条形图补充完整;(2分)(3)若该校有2000名学生,则估计喜欢“篮球”的学生共有 人.(2分) 26. 如图AB 为⊙O 的直径,AE 平分∠BAF ,交⊙O 于点E ,过点E 作直线 ED ⊥AF ,交AF 的延长线于点D ,交AB 的延长线于点C (1)求证:CD 是⊙O 的切线(4分) (2)若CB=2,CE=4,求AE 的长(4分)27. 如图,二次函数的图像与x 轴相交于A (-3,0)、B (1,0)两点,与y 轴相交于点C (0,3),点C 、D 是二次函数图像上的一对对称点,一次函数的图像过点B 、D 。
(1)求D 点的坐标;(2分) (2)求一次函数的表达式;(3分)(3)根据图像写出使一次函数值大于二次函数值的x 的取值范围。
(4分)乒乓球 20%足球其他球类篮球28. 已知△ABC 是边长为4的等边三角形,BC 在x 轴上,点D 为BC 的中点,点A 在第一象限内,AB 与y 轴的正半轴相交于点E ,点B (-1,0),P 是AC 上的一个动点(P 与点A 、C 不重合) (1)求点A 、E 的坐标;(4分) (2)若y=c bx x 7362++-过点A 、E ,求抛物线的解析式。
(4分) (3)连结PB 、PD ,设L 为△PBD 的周长,当L 取最小值时,求点P 的坐标及L 的最小值,并判断此时点P 是否在(2)中所求的抛物线上,请充分说明你的判断理由(6分)九年级第一学期期末考试数学参考答案一、选择题:1.B 2.B 3.B 4.A 5.A 6.C 7.D 8.C二、填空题:9.7 10.a≤0.5 11. 50% 12.y=2(x+1)2 +3 13. (-4,0) ,(2,0) 14.直线x=1/4 15. 2, 2 16.4 17.15 18.5019.-2 20. 8 ,n9三、解答题:22. 解:(1)原式==0.(2)原式==2.23.解:(1)x2-2x+1=3(x-1)2x-1∴x1=1x2=1(2)(x-2)( x-2-3) =0.x-2=0或x-5=0∴x1=2,x2=5.24. (1)如图,作AD的垂直平分线交AB于点O,O为圆心,OA为半径作圆。
判断结果:BC是⊙O的切线。
连结OD。
∵AD平分∠BAC ∴∠DAC=∠DAB∵OA=OD ∴∠ODA=∠DAB∴∠DAC=∠ODA ∴OD∥AC ∴∠ODB=∠C∵∠C=90º∴∠ODB=90º即:OD⊥BC∵OD是⊙O的半径∴ BC是⊙O的切线。
(2) 如图,连结DE。
设⊙O的半径为r,则OB=6-r,在Rt△ODB中,∠ODB=90º,∴ 0B2=OD2+BD2 即:(6-r)2= r2+(32)2∴r=2 ∴OB=4 ∴∠OBD=30º,∠DOB=60º∵△ODB的面积为3223221=⨯⨯,扇形ODE的面积为ππ322360602=⨯⨯∴阴影部分的面积为32—π32。