正弦定理和余弦定理
正弦定理和余弦定理

正弦定理和余弦定理在△ABC中,若角A,B,C所对的边分别是a,b,c,R为△ABC外接圆半径,则有正弦定理和余弦定理:正弦定理:a/sinA = b/sinB = c/sinC = 2R余弦定理:a^2 = b^2 + c^2 - 2bccosA;b^2 = c^2 + a^2 - 2cacosB;c^2 = a^2 + b^2 - 2abcosC可以通过变形得到以下公式:cosA = (b^2 + c^2 - a^2) / 2bc;cosB = (c^2 + a^2 - b^2) / 2ac;cosC = (a^2 + b^2 - c^2) / 2ab同时还有以下关系:a = 2RsinA;b = 2RsinB;c = 2RsinCa:b:c =asinB = bsinA;bsinC = csinB;asinC = csinAABC的面积S = absinC = bcsinA = acsinB = r其中r为三角形内切圆半径,可以通过S = (a + b + c)r得到。
选择题:1.在△ABC中,已知a = 2,b = 6,A = 45°,则满足条件的三角形有2个。
2.在△ABC中,A = 60°,AB = 2,且△ABC的面积为3,则BC的长为3.3.已知在△ABC中,a = x,b = 2,B = 45°,若三角形有两解,则x的取值范围是2<x<22.4.已知锐角三角形的边长分别为1,3,x,则x的取值范围是(8,10)。
注:原文中存在格式错误,已经进行修正。
整理得2c=b+bc,因为c≠0,所以等式两边同时除以c,得到2=c+b,解得c=2/(b+1)。
在△ABC中,已知内角A、B、C所对的边分别为a、b、c,且△ABC的面积为315,b-c=2,cosA=1/4,求a的值。
解析:由cosA=1/4,得到sinA=√15/4,S△ABC=bcsinA=bc*√15/4=315,因此bc=24.又因为b-c=2,所以b^2-2bc+c^2=4,联立解得b^2+c^2=52.由余弦定理得,a=b+c-2bccosA=52-2*24*(1/4)=64,因此a=8.在△ABC中,已知内角A、B、C所对的边分别为a、b、c,且A=π/4,b^2-a^2=c^2/2.1)求tanC的值;2)若△ABC的面积为3,求b的值。
三角形中的正弦定理与余弦定理

三角形中的正弦定理与余弦定理正文:三角形中的正弦定理与余弦定理三角形是几何学中最基本的图形之一,它包含了很多重要的定理和公式。
在三角形的研究中,正弦定理和余弦定理是两个非常重要且常用的公式。
它们可以帮助我们计算三角形的各种属性,如边长、角度等。
本文将详细介绍这两个定理的含义、推导过程,并给出实际应用的一些例子。
一、正弦定理正弦定理是指在一个三角形中,三条边与三个对应的正弦值之间存在一定的关系。
设三角形的三条边分别为a、b、c,对应的角度为A、B、C,则正弦定理可以表达为:a/sinA = b/sinB = c/sinC其中,sinA、sinB、sinC分别为三个角的正弦值。
这个定理实际上是在说明了三角形的三个边的长度与对应的角度之间存在一定的比例关系。
如果我们已知了三角形的一个角度和两个对应的边长,就可以利用正弦定理来计算第三个边的长度。
例如,已知三角形ABC中,角A的度数为30°,边AB的长度为3,边AC的长度为4,我们可以利用正弦定理求解边BC的长度。
根据正弦定理,我们有:BC/sinA = AC/sinC代入已知条件,得到:BC/sin30° = 4/sinC进一步计算可得:BC = 4*sin30°/sinC ≈ 4*0.5/sinC = 2/sinC通过这个简单的计算过程,我们可以求解出BC的长度。
正弦定理在实际应用中非常有用,可以帮助我们解决各种与三角形边长相关的问题。
二、余弦定理余弦定理是指在一个三角形中,三条边与一个对应的角度之间存在一定的关系。
设三角形的三条边分别为a、b、c,对应的角度为A、B、C,则余弦定理可以表示为:c^2 = a^2 + b^2 - 2ab*cosC这个定理实际上是在说明了三角形的三个边的长度与对应的角度之间存在一定的关系。
利用余弦定理,我们可以计算三角形的一个边长,当已知该边的两个对应角度和另一边的长度时。
例如,已知三角形ABC中,边AB的长度为3,边AC的长度为4,角C的度数为60°,我们可以利用余弦定理来计算边BC的长度。
正弦定理和余弦定理

正弦定理和余弦定理1.正弦定理和余弦定理定理正弦定理余弦定理内容a sin A =b sin B =c sin C =2R (R 为△ABC 外接圆半径)a 2=b 2+c 2-2bc cos A ; b 2=c 2+a 2-2ac cos B ; c 2=a 2+b 2-2ab cos C 常见变形a =2R sin A ,b =2R sin B ,c =2R sin C ; sin A =a 2R ,sin B =b 2R ,sin C =c2R;a ∶b ∶c =sin A ∶sin B ∶sin C ; a +b +c sin A +sin B +sin C =asin Acos A =b 2+c 2-a 22bc ;cos B =a 2+c 2-b 22ac ;cos C =a 2+b 2-c 22ab2.三角形中常用的面积公式 (1)S =12ah (h 表示边a 上的高);(2)S =12bc sin A =12ac sin B =12ab sin C ;(3)S =12r (a +b +c )(r 为三角形的内切圆半径).3.三角形解的判断A 为锐角A 为钝角或直角 图形关系式 a =b sin A b sin A <a <b a ≥b a >b 解的个数 一解两解一解一解| 微 点 提 醒 |1.三角形中的三角函数关系 (1)sin(A +B )=sin C ; (2)cos(A +B )=-cos C ; (3)sin A +B 2=cos C 2;(4)cos A +B 2=sin C 2.2.三角形中的射影定理 在△ABC 中,a =b cos C +c cos B ; b =a cos C +c cos A ;c =b cos A +a cos B .3.利用正、余弦定理解三角形时,要注意三角形内角和定理对角的范围的限制.‖易错辨析‖判断下列结论是否正确(请在括号中打”√”或“×”)(1)在△ABC 中,已知a ,b 和角B ,能用正弦定理求角A ;已知a ,b 和角C ,能用余弦定理求边c .(√)(2)在三角形中,已知两角和一边或已知两边和一角都能解三角形.(√) (3)在△ABC 中,sin A >sin B 的充分不必要条件是A >B .(×)(4)在△ABC 中,“a 2+b 2<c 2”是“△ABC 为钝角三角形”的充分不必要条件.(√) (5)在△ABC 的角A ,B ,C ,边长a ,b ,c 中,已知任意三个可求其他三个.(×)‖自主测评‖1.(教材改编题)在△ABC 中,已知a =5,b =7,c =8,则A +C =( ) A .90° B .120° C .135°D .150°解析:选B cos B =a 2+c 2-b 22ac =25+64-492×5×8=12.所以B =60°,所以A +C =120°.2.(教材改编题)在非钝角△ABC 中,2b sin A =3a ,则角B 为( ) A.π6 B.π4 C.π3D.π2解析:选C 由正弦定理得b sin A =a sin B , 所以2a sin B =3a ,即sin B =32,又B 为非钝角,所以B =π3,故选C. 3.在△ABC 中,若a =18,b =24,A =45°,则此三角形( ) A .无解 B .有两解C .有一解D .解的个数不确定解析:选B 因为a sin A =b sin B,所以sin B =b a ·sin A =2418×sin45°=223.又因为a <b ,所以B 有两解.4.(教材改编题)已知△ABC 的三边之比为3∶5∶7,则最大角为( ) A.2π3 B.3π4C.5π6D.7π12解析:选A 由三边之比为a ∶b ∶c =3∶5∶7,可设a =3k ,b =5k ,c =7k (k >0),由余弦定理得cos C =a 2+b 2-c 22ab =(3k 2)+(5k )2-(7k )22×3k ×5k=-12,又0<C <π,所以C =2π3.5.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,cos2A =sin A ,bc =2,则△ABC 的面积为________.解析:由cos2A =sin A ,得1-2sin 2A =sin A ,解得sin A =12(负值舍去),由bc =2,可得△ABC的面积S =12bc sin A =12×2×12=12.答案:12………………考点一 利用正、余弦定理解三角形……|多维探究型|……………|多角探明|角度一 求三角形的边长【例1】 (2018届贵阳模拟)在△ABC 中,内角A ,B ,C 的对边a ,b ,c 成公差为2的等差数列,C =120°. (1)求边长a ;(2)(一题多解)求AB 边上的高CD 的长. [解] (1)由题意得b =a +2,c =a +4,由余弦定理cos C =a 2+b 2-c 22ab 得cos120°=a 2+(a +2)2-(a +4)22a (a +2),即a 2-a -6=0,∴a =3或a =-2(舍去),∴a =3.(2)解法一:由(1)知a =3,b =5,c =7,由三角形的面积公式得12ab sin ∠ACB =12c ×CD ,∴CD =ab sin ∠ACBc=3×5×327=15314,即AB 边上的高CD =15314. 解法二:由(1)知a =3,b =5,c =7,由正弦定理得3sin A =7sin ∠ACB =7sin120°,即sin A =3314,在Rt △ACD 中,CD =AC sin A =5×3314=15314,即AB 边上的高CD =15314.角度二 求三角形的角或角的三角函数值【例2】 (1)在△ABC 中,B =π4,BC 边上的高等于13BC ,则cos A =( )A.31010B.1010C .-1010D .-31010(2)(2018届河北“五个一名校联盟”模拟)已知a ,b ,c 分别是△ABC 的内角A ,B ,C 所对的边,且c =2,C =π3,若sin C +sin(B -A )=2sin2A ,则A =________.[解析] (1)设△ABC 中角A ,B ,C 的对边分别是a ,b ,c ,由题意可得13a =c sin π4=22c ,则a =322c .在△ABC 中,由余弦定理可得b 2=a 2+c 2-2ac =92c 2+c 2-3c 2=52c 2,则b =102c .由余弦定理,可得cos A =b 2+c 2-a 22bc=52c 2+c 2-92c 22×102c ×c=-1010,故选C.(2)在△ABC 中,由sin C +sin(B -A )=2sin2A 可得sin(A +B )+sin(B -A )=2sin2A ,即sin A cos B +cos A sin B +cos A sin B -sin A cos B =4sin A cos A ,∴cos A sin B =2sin A cos A ,即cos A (sin B -2sin A )=0,即cos A =0或sin B =2sin A , ①当cos A =0时,A =π2;②当sin B =2sin A 时,根据正弦定理得b =2a ,由余弦定理c 2=b 2+a 2-2ab cos C ,结合c =2,C =π3,得a 2+b 2-ab =4,∴a =233,b =433,∴b 2=a 2+c 2,∴B =π2,∴A =π6.综上可得,A =π2或π6.[答案] (1)C (2)π2或π6『名师点津』………………………………………………|品名师指点迷津|应用正弦、余弦定理的解题技巧(1)求边:利用公式a =b sin A sin B ,b =a sin B sin A ,c =a sin Csin A或其他相应变形公式求解.(2)求角:先求出正弦值,再求角,即利用公式sin A =a sin B b ,sin B =b sin A a ,sin C =c sin Aa 或其他相应变形公式求解.(3)已知两边和夹角或已知三边可利用余弦定理求解.(4)灵活利用式子的特点转化;如出现a 2+b 2-c 2=λab 形式用余弦定理,等式两边是关于边或角的正弦的齐次式用正弦定理.|变式训练|1.(2018届福建莆田联考)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a sin B cos C +c sin B cos A =12b ,且a >b ,则B =( )A.π6B.π3C.2π3D.5π6解析:选A ∵a sin B cos C +c sin B cos A =12b ,∴根据正弦定理可得sin A sin B cos C +sin C sin B cos A=12sin B ,即sin B (sin A cos C +sin C cos A )=12sin B .∵sin B ≠0,∴sin(A +C )=12,即sin B =12.∵a >b ,∴A >B ,即B 为锐角,∴B =π6,故选A.2.(2019届黄冈模拟)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c . (1)若23cos 2A +cos2A =0,且△ABC 为锐角三角形,a =7,c =6,求b 的值; (2)若a =3,A =π3,求b +c 的取值范围.解:(1)∵23cos 2A +cos2A =23cos 2A +2cos 2A -1=0, ∴cos 2A =125,又A 为锐角,∴cos A =15,a 2=b 2+c 2-2bc cos A ,即b 2-125b -13=0, 得b =5(负值舍去),∴b =5.(2)解法一:由正弦定理可得b +c =2(sin B +sin C )=2⎣⎡⎦⎤sin B +sin ⎝⎛⎭⎫2π3-B =23sin ⎝⎛⎭⎫B +π6, 又0<B <2π3,∴π6<B +π6<5π6,∴12<sin ⎝⎛⎭⎫B +π6≤1,∴b +c ∈(3,23]. 解法二:由余弦定理a 2=b 2+c 2-2bc cos A 可得b 2+c 2-3=bc , ∴(b +c )2-3=3bc ≤34(b +c )2,当且仅当b =c 时取等号,∴b +c ≤23,又由两边之和大于第三边可得b +c >3, ∴b +c ∈ (3,23].………………考点二 判断三角形的形状…………|重点保分型|……………|研透典例|【典例】 (一题多解)在△ABC 中,若a 2+b 2-c 2=ab ,且2cos A sin B =sin C ,试判断△ABC 的形状.[解] 解法一:利用边的关系来判断 由正弦定理得sin C sin B =cb,由2cos A sin B =sin C ,有cos A =sin C 2sin B =c2b .又由余弦定理得cos A =b 2+c 2-a 22bc ,所以c 2b =b 2+c 2-a 22bc,即c 2=b 2+c 2-a 2,所以a 2=b 2,所以a =b . 又因为a 2+b 2-c 2=ab .所以2b 2-c 2=b 2,所以b 2=c 2, 所以b =c ,所以a =b =c . 所以△ABC 为等边三角形. 解法二:利用角的关系来判断 因为A +B +C =180°, 所以sin C =sin(A +B ), 又因为2cos A sin B =sin C ,所以2cos A sin B =sin A cos B +cos A sin B , 所以sin(A -B )=0.又因为A 与B 均为△ABC 的内角,所以A =B , 又由a 2+b 2-c 2=ab ,由余弦定理,得cos C =a 2+b 2-c 22ab =ab 2ab =12,又0°<C <180°, 所以C =60°,所以△ABC 为等边三角形.『名师点津』………………………………………………|品名师指点迷津|判定三角形形状的两种常用途径[提醒]“角化边”后要注意用因式分解、配方等方法得出边的相应关系;“边化角”后要注意用三角恒等变换公式、三角形内角和定理及诱导公式推出角的关系.|变式训练|在△ABC 中,若(a 2+b 2)sin(A -B )=(a 2-b 2)sin(A +B ),则△ABC 的形状是( ) A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形 解析:选D 因为(a 2+b 2)sin(A -B )=(a 2-b 2)sin(A +B ),所以b 2[sin(A +B )+sin(A -B )]=a 2[sin(A +B )-sin(A -B )], 所以2sin A cos B ·b 2=2cos A sin B ·a 2, 即a 2cos A sin B =b 2sin A cos B .解法一:由正弦定理知a =2R sin A ,b =2R sin B , 所以sin 2A cos A sin B =sin 2B sin A cos B , 又sin A ·sin B ≠0,所以sin A cos A =sin B cos B ,所以sin2A =sin2B . 在△ABC 中,0<2A <2π,0<2B <2π,所以2A =2B 或2A =π-2B .所以A =B 或A +B =π2.所以△ABC 为等腰三角形或直角三角形,故选D. 解法二:由正弦定理、余弦定理得: a 2bb 2+c 2-a 22bc =b 2a a 2+c 2-b 22ac, 所以a 2(b 2+c 2-a 2)=b 2(a 2+c 2-b 2),所以(a 2-b 2)(a 2+b 2-c 2)=0, 所以a 2-b 2=0或a 2+b 2-c 2=0, 即a =b 或a 2+b 2=c 2.所以△ABC 为等腰三角形或直角三角形.故选D.………………考点三 三角形面积的计算………………|多维探究型|……………|多角探明|角度一 求三角形的面积【例1】 (2018届武汉调研)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且2b cos C =2a +c . (1)求B ;(2)若b =2,a +c =5,求△ABC 的面积. [解] (1)由正弦定理,知2sin B cos C =2sin A +sin C , 由A +B +C =π,得2sin B cos C =2sin(B +C )+sin C , 化简,得2sin B cos C =2(sin B cos C +cos B sin C )+sin C , 即2cos B sin C +sin C =0. 因为sin C ≠0,所以cos B =-12.因为0<B <π,所以B =2π3.(2)由余弦正理b 2=a 2+c 2-2ac cos B ,可知b 2=(a +c )2-2ac -2ac cos B , 因为b =2,a +c =5,所以22=(5)2-2ac -2ac cos 2π3,得ac =1.所以S △ABC =12ac sin B =12×1×32=34.角度二 已知三角形的面积解三角形【例2】 (2018届沈阳教学质量监测(一))在△ABC 中,已知内角A ,B ,C 的对边分别是a ,b ,c ,且2c cos B =2a +b . (1)求C ;(2)若a +b =6,△ABC 的面积为23,求c . [解] (1)由正弦定理得2sin C cos B =2sin A +sin B , 又sin A =sin(B +C ),∴2sin C cos B =2sin(B +C )+sin B ,∴2sin C cos B =2sin B cos C +2cos B sin C +sin B , ∴2sin B cos C +sin B =0, ∵sin B ≠0,∴cos C =-12.又C ∈(0,π),∴C =2π3.(2)∵S △ABC =12ab sin C =23,∴ab =8,由余弦定理,得c 2=a 2+b 2-2ab cos C =a 2+ab +b 2=(a +b )2-ab =28, ∴c =27.角度三 求有关三角形面积或周长的最值(范围)问题【例3】 (2018届沈阳市教学质量检测(一)) 已知△ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,面积为S ,且满足4S =a 2-(b -c )2,b +c =8,则S 的最大值为________. [解析] 由题意得:4×12bc sin A =a 2-b 2-c 2+2bc ,又a 2=b 2+c 2-2bc cos A ,代入上式得:2bc sin A =-2bc cos A +2bc ,即sin A +cos A =1,2sin ⎝⎛⎭⎫A +π4=1,又0<A <π,所以π4<A +π4<5π4,所以A +π4=3π4,所以A =π2,S =12bc sin A =12bc ,又b +c =8≥2bc ,当且仅当b =c 时取“=”,所以bc ≤16,所以S 的最大值为8. [答案] 8『名师点津』………………………………………………|品名师指点迷津|与三角形面积有关问题的解题策略(1)求三角形的面积.对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用含哪个角的公式.(2)已知三角形的面积解三角形.与面积有关的问题,一般要利用正弦定理或余弦定理进行边和角的互化.(3)求有关三角形面积或周长的最值(范围)问题.一般转化为一个角的一个三角函数,利用三角函数的有界性求解,或利用余弦定理转化为边的关系,再应用基本不等式求解.|变式训练|1.(2018年全国卷Ⅲ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若△ABC 的面积为a 2+b 2-c 24,则C =( )A.π2B.π3C.π4D.π6解析:选C 根据题意及三角形的面积公式知12ab sin C =a 2+b 2-c 24,所以sin C =a 2+b 2-c 22ab =cos C ,所以在△ABC 中,C =π4.2.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知△ABC 的面积为a 23sin A .(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长. 解:(1)由题设得12ac sin B =a 23sin A ,即12c sin B =a3sin A .由正弦定理得12sin C sin B =sin A3sin A .故sin B sin C =23.(2)由题设及(1)得cos B cos C -sin B sin C =-12,即cos(B +C )=-12.所以B +C =2π3,故A =π3.由题设得12bc sin A =a 23sin A,即bc =8.由余弦定理得b 2+c 2-bc =9,即(b +c )2-3bc =9,得b +c =33. 故△ABC 的周长为3+33.。
正弦定理和余弦定理

正弦定理和余弦定理知识要点归纳:一、 正弦定理(其中R 表示三角形的外接圆半径):R Cc B b A a 2sin sin sin === 2sin ,2sin ,2sin ;a R A b R B c R C ⇔===sin ,sin ,sin ;222a b c A B C R R R⇔=== ::sin :sin :sin .a b c A B C ⇔=用途:⑴已知三角形两角和任一边,求其它元素;⑵已知三角形两边和其中一边的对角,求其它元素。
二、余弦定理第一形式,2b =B ac c a cos 222-+余弦定理第二形式,cosB = acb c a 2222-+ 用途:⑴已知三角形两边及其夹角,求其它元素;⑵已知三角形三边,求其它元素。
(3)已知三角形两边和其中一边的对角,求第三边。
三、△ABC 的面积用S 表示 ① =⋅=a h a S 21;② ==A bc S sin 21; 四、在△ABC 中: ()A B C C A B ππ++=⇔=-+222C A B π+⇔=-222()C A B π⇔=-+. △ABC 是锐角三角形0,,,,2A B C A B B C C A ππ⇔<<<+++<sin sin ;a b A B A B >⇔>⇔> 若sin 2sin 2,.2A B A B A B π==+=则或sin(A+B)=sinC ,cos(A+B) -cosC ,tan(A+B) -tanC ==2cos 2sinC B A =+,2sin 2cos C B A =+典型例题精析:考点五:正弦定理、余弦定理例1设ABC ∆的内角C B A 、、所对的边分别为c b a 、、.已知1=a ,2=b ,41cos =C . (Ⅰ)求ABC ∆的周长;(Ⅱ)求()C A -cos 的值.例2 在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c.已知. (Ⅰ)求的值;(Ⅱ)若cosB=,,求的面积.cos A-2cos C 2c-a =cos B bsin sin C A142b =ABC ∆例3(15年江苏)在ABC ∆中,已知 60,3,2===A AC AB .(1)求BC 的长;(2)求C 2sin 的值.例4(15年天津文科)△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知△ABC 的面积为12,cos ,4b c A -==- (I )求a 和sin C 的值;(II )求cos 26A π⎛⎫+⎪⎝⎭的值.。
正弦定理余弦定理知识点

正弦定理余弦定理知识点正弦定理和余弦定理是三角学中两个重要的定理。
它们在解决三角形问题时起着重要的作用。
在本文中,我们将详细介绍这两个定理的定义、推导过程以及应用场景。
首先,我们来看正弦定理。
正弦定理描述了三角形中各边与其对应角度之间的关系。
设三角形的三个边长为a、b、c,对应的夹角为A、B、C,则正弦定理可以表述为以下公式:a / sin(A) =b / sin(B) =c / sin(C) = 2R其中R是三角形外接圆的半径。
接下来,我们来推导正弦定理。
设三角形的三个顶点为A、B、C,对应的边长为a、b、c。
以边长a为底边,作角A的高,垂足为D。
则有以下关系:sin(B) = BD / csin(C) = CD / b再设三角形的外接圆半径为R,即OD=R,其中O为三角形外接圆心。
那么,我们可以推导得出以下关系:sin(B) = BD / c = 2R / csin(C) = CD / b = 2R / b。
由于三角形的三个内角之和为180度,所以有角A=180度-B-C。
将以上关系带入得到以下公式:sin(A) = sin(180度 - B - C) = sin(B + C) = sin(B)cos(C) + cos(B)sin(C) =(2R / c)cos(C) + (2R / b)sin(C)。
化简以上公式,得到sin(A) = (2R / c)cos(C) + (2R / b)sin(C) = (2R / bc)(bcos(C) + csin(C))a / sin(A) = 2R / (bc)(bcos(C) + csin(C)) = 2R。
可见,我们得到了正弦定理。
正弦定理可以用来计算三角形中的未知边长或角度,同时也可以用来证明一些三角形的性质。
接下来,我们来看余弦定理。
余弦定理描述了三角形中各边与角度之间的关系。
设三角形的三个边长为a、b、c,对应的夹角为A、B、C,则余弦定理可以表述为以下公式:c² = a² + b² - 2abcos(C)。
高中数学必修五-正弦定理与余弦定理

正弦定理与余弦定理知识集结知识元正弦定理公式知识讲解1.正弦定理【知识点的知识】1.正弦定理和余弦定理定理正弦定理余弦定理内容=2R(R是△ABC外接圆半径)a2=b2+c2﹣2bc cos A,b2=a2+c2﹣2ac cos B,c2=a2+b2﹣2ab cos C变形形式①a=2R sin A,b=2R sin B,c=2R sin C;②sin A=,sin B=,sin C=;③a:b:c=sin A:sin B:sin C;④a sin B=b sin A,b sin C=c sin B,a sin C=c sin A cos A=,cos B=,cos C=解决三角形的问题①已知两角和任一边,求另一角和其他两条边;②已知两边和其中一边的对角,求另一边和其他两角①已知三边,求各角;②已知两边和它们的夹角,求第三边和其他两角在△ABC中,已知a,b和角A时,解的情况A为锐角A为钝角或直角图形关系式a=b sin A b sin A<a<b a≥b a>b一解两解一解一解解的个数由上表可知,当A为锐角时,a<b sin A,无解.当A为钝角或直角时,a≤b,无解.2、三角形常用面积公式1.S=a•h a(h a表示边a上的高);2.S=ab sin C=ac sin B=bc sin A.3.S=r(a+b+c)(r为内切圆半径).【正余弦定理的应用】1、解直角三角形的基本元素.2、判断三角形的形状.3、解决与面积有关的问题.4、利用正余弦定理解斜三角形,在实际应用中有着广泛的应用,如测量、航海、几何等方面都要用到解三角形的知识(1)测距离问题:测量一个可到达的点到一个不可到达的点之间的距离问题,用正弦定理就可解决.解题关键在于明确:①测量从一个可到达的点到一个不可到达的点之间的距离问题,一般可转化为已知三角形两个角和一边解三角形的问题,再运用正弦定理解决;②测量两个不可到达的点之间的距离问题,首先把求不可到达的两点之间的距离转化为应用正弦定理求三角形的边长问题,然后再把未知的边长问题转化为测量可到达的一点与不可到达的一点之间的距离问题.(2)测量高度问题:解题思路:①测量底部不可到达的建筑物的高度问题,由于底部不可到达,因此不能直接用解直角三角形的方法解决,但常用正弦定理计算出建筑物顶部或底部到一个可到达的点之间的距离,然后转化为解直角三角形的问题.②对于顶部不可到达的建筑物高度的测量问题,我们可选择另一建筑物作为研究的桥梁,然后找到可测建筑物的相关长度和仰、俯角等构成三角形,在此三角形中利用正弦定理或余弦定理求解即可.点拨:在测量高度时,要理解仰角、俯角的概念.仰角和俯角都是在同一铅锤面内,视线与水平线的夹角.当视线在水平线之上时,成为仰角;当视线在水平线之下时,称为俯角.例题精讲正弦定理公式例1.已知△ABC中,角A,B,C所对的边分别是a,b,c.若A=45°,B=30°,a=,则b=()A.B.1 C.2 D.例2.在△ABC中,角A,B,C的对边分别为a,b,c,若,则B=()A.B.C.D.或例3.在△ABC中,已知三个内角为A,B,C满足sin A:sin B:sin C=3:5:7,则C=()A.90°B.120°C.135°D.150°利用正弦定理解三角形知识讲解【正余弦定理的应用】1、解直角三角形的基本元素.2、判断三角形的形状.3、解决与面积有关的问题.4、利用正余弦定理解斜三角形,在实际应用中有着广泛的应用,如测量、航海、几何等方面都要用到解三角形的知识例题精讲利用正弦定理解三角形例1.在△ABC中,a,b,c是内角A,B,C所对的边.若a>b,则下列结论不一定成立的()A.A>B B.sin A>sin BC.cos A<cos B D.sin2A>sin2B例2.在△ABC中,角A,B,C的对边分别是a,b,c,且,则角A的大小为()A.B.C.D.例3.在△ABC中,三内角A,B,C的对边分别为a,b,c,若sin B =b sin A,则a=()A .B .C.1 D.三角形面积公式的简单应用知识讲解1.余弦定理【知识点的知识】1.正弦定理和余弦定理定理正弦定理余弦定理内容=2R(R是△ABC外接圆半径)a2=b2+c2﹣2bc cos A,b2=a2+c2﹣2ac cos B,c2=a2+b2﹣2ab cos C变形形式①a=2R sin A,b=2R sin B,c=2R sin C;②sin A=,sin B=,sin C=;③a:b:c=sin A:sin B:sin C;④a sin B=b sin A,b sin C=c sin B,a sin C=c sin A cos A=,cos B=,cos C=解决三角形的问题①已知两角和任一边,求另一角和其他两条边;②已知两边和其中一边的对角,求另一边和其他两角①已知三边,求各角;②已知两边和它们的夹角,求第三边和其他两角A为锐角A为钝角或直角图形关系式a=b sin A b sin A<a<b a≥b a>b 解的个数一解两解一解一解由上表可知,当A为锐角时,a<b sin A,无解.当A为钝角或直角时,a≤b,无解.例题精讲三角形面积公式的简单应用例1.已知△ABC的内角A,B,C的对边分别为a,b,c,且(a+b)2=c2+ab,B=30°,a=4,则△ABC的面积为()A.4 B.3C.4D.6例2.设△ABC的三个内角A,B,C成等差数列,其外接圆半径为2,且有,则三角形的面积为()A.B.C.或D.或例3.在△ABC中角ABC的对边分别为a、b、c,cos C=,且a cos B+b cos A=2,则△ABC面积的最大值为()A.B.C.D.利用余弦定理解三角形当堂练习填空题练习1.如图,O在△ABC的内部,且++3=,则△ABC的面积与△AOC的面积的比值为_____.练习2.锐角△ABC的内角A,B,C的对边分别为a,b,c,已知c2-8=(a-b)2,a=2c sin A,则△ABC的面积为____.练习3.在△ABC中,内角A,B,C的对边分别为a,b,c,已知,则的最大值是____.解答题练习1.'在△ABC中,角A,B,C所对的边分别为a,b,c,且满足.(1)求角B的大小;(2)若D为AC的中点,且BD=1,求S△ABC的最大值.'练习2.'在△ABC中,角A、B、C的对边分别是a、b、c,若(a+c)sin B-b sin C=b cos A.(1)求角A;(2)若△ABC的面积为4,a=6,求△ABC的周长.'练习3.'△ABC内角A,B,C所对的边分别为a,b,c.若。
正弦定理余弦定理

03
正弦定理与余弦定理的关 联
正弦定理与余弦定理的相似之处
01
两者都是关于三角形边角关系的定理,是三角学中 的基本定理之一。
02
它们都可以用来解决与三角形相关的问题,如求角 度、边长等。
03
正弦定理和余弦定理在形式上具有一定的对称性, 反映了三角形的内在规律。
正弦定理与余弦定理的不同之处
01
02
03
正弦定理主要应用于求解三角形 的角度,特别是当已知两边及其 夹角时;而余弦定理则更常用于 求解三角形的边长,特别是当已 知两角及一边时。
正弦定理中的角度是通过正弦函 数来表达的,而余弦定理中的角 度则是通过余弦函数来表达的。
正弦定理和余弦定理在应用上有 一定的互补性,可以根据具体问 题选择使用。
总结词
余弦定理是三角形中一个重要的定理,它描述了三角形各边与其对应角余弦值之间的关系。
详细描述
余弦定理是三角学的基本定理之一,它指出在任意三角形ABC中,任意一边的平方等于其他两边的平 方和减去两倍的另一边的长度与相邻两边的乘积。数学公式表示为:a^2 = b^2 + c^2 - 2bc cos(A) 。
交流电
交流电的电压和电流是时间的正 弦函数,这使得正弦定理在电力 系统中有着广泛的应用。
声学
声音的传播和反射可以用正弦和 余弦函数来描述,这使得余弦定 理在声学中有重要应用。
三角函数在工程中的应用
1 2
结构设计
在建筑和机械设计中,正弦和余弦定理常被用来 计算角度、长度等参数,以确保结构的稳定性和 安全性。
余弦定理的应用
总结词
余弦定理在解决三角形问题中具有广泛 的应用,包括求解角度、判断三角形的 形状以及解决实际问题等。
正弦定理和余弦定理-PPT课件

22
类型一
正弦定理和余弦定理的应用
解题准备:
1.正弦定理和余弦定理揭示的都是三角形的边角关系,根据题 目的实际情况,我们可以选择其中一种使用,也可以综合起 来运用.
2.在求角时,能用余弦定理的尽量用余弦定理,因为用正弦定 理虽然运算量较小,但容易产生增解或漏解.
23
3.综合运用正、余弦定理解三角形问题时,要注意以下关系式
32
∵0<A<π,0<B<π,∴sin2A=sin2B
∴2A=2B或2A=π-2B,即A=B或A+B= .
2
∴△ABC是等腰三角形或直角三角形.
33
解法二:同解法一可得2a2cosAsinB=2b2cosBsinA,
由正、余弦定理得
a2b•
b2
c2
a
2
=b2a•
a2 c2 b2
2bc
2ac
1 2 3 2 1 3.
2
2
(2)当|BC|=4时,S△=
1 2
|AB|·|BC|·sinB
1 2 3 4 1 2 3.
2
2
∴△ABC的面积为 2 3 或 3.
27
[反思感悟]本题主要考查正弦定理、三角形面积公式及分类 讨论的数学思想,同时也考查了三角函数的运算能力及推 理能力.
28
40
设云高CM x m,则CE x h,
DE x h, AE x h .
tan
又AE x h , x h x h
tan tan tan
解得x tan tan gh hgsin( ) m.
tan tan
sin( )
41
[反思感悟]在测量高度时,要理解仰角、俯角的概念.仰角和俯 角都是在同一铅垂面内,视线与水平线的夹角,当视线在水 平线之上时,称为仰角;当视线在水平线之下时,称为俯角.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章解三角形本章概览三维目标1.掌握正、余弦定理,能初步利用这两个定理解斜三角形。
能利用计算器解决有关解斜三角形的计算问题,能够利用正、余弦定理等知识、方法解决一些与测量以及与几何计算的有关的实际问题。
2.通过对三角形的边角关系的探究学习,体验数学探究活动的过程,培养探索精神和创新意识;在运用正、余弦定理解决一些实际问题的过程中,逐步养成实事求是、扎实严谨的科学态度,学会用数学的思维方式解决问题、认识世界;通过实习作业,体会“解三角形在测量中的应用”,提高应用数学知识解决实际问题的能力和实际操作能力;通过学习和应用,进一步体会数学的科学价值、应用价值,进而领会数学的人文价值、美学价值,不断提高自身的文化素养,并且由正、余弦定理的形式能感受到数学的美。
3.通过对正、余弦定理的学习,要求对于三角形的的相关问题的解决能灵活地根据具体问题去恰当处理。
总之,有了正、余弦定理之后,又给解决三角形的问题提供了一种新的思路,对于具体问题的解决都要具体分析,灵活地运用所学知识去应对实际生活中的各种可能的问题。
4.本章中的有关三角形的一些实际问题,往往动笔计算比较复杂,象这样的问题的计算就要求大家能用计算器或电脑来帮助计算,能根据精确度的需要保留相应的位数。
尽管科学技术发展很快,但必要的计算能力对于一个现代人还是有必要的,所以平时大家还要注意训练自己的运算速度与准确性,时刻注意锻炼自己的意志力。
5.本章学习了正、余弦定理后,对于以后遇到相关三角形的问题时,应当时时注意考虑运用这两个定理去解决相关问题,但与此同时也不能忽视其它方面的知识的应用,否则可能问题不能顺利解决,时时注意前后知识的关联。
本章知识网络1.1 正弦定理和余弦定理第一版块三点剖析一、正弦定理及其证明正弦定理 在一个三角形中,各边和它所对角的正弦的比相等,即sin sin sin a b c A B C== 正弦定理揭示的是一般三角形中的重要边角关系,它们是解三角形的两个重要定理之一。
对于正弦定理,课本首先引导学生回忆任意三角形中有大边对大角,小边对小角的边角关系,引导学生思考是否能得到这个边、角关系准确量化表示的问题。
由于涉及边角之间的数量关系,就比较自然地引导到三角函数。
在直角三角形中,边之间的比就是锐角的三角函数。
研究特殊的直角三角形中的正弦,就很快证明了直角三角形中的正弦定理。
分析直角三角形中的正弦定理,考察结论是否适用于锐角三角形,可以发现asinB 和bsinA 实际上表示了锐角三角形边AB 上的高。
这样,利用高的两个不同表示,就容易证明锐角三角形中的正弦定理。
钝角三角形中定理的证明要应用正弦函数的诱导钝角三角形中定理的证明要应用正弦函数的诱导公式,教科书要求学生自己通过探究来加以证明。
可以考虑采用向量的知识来证明。
二、余弦定理及其证明余弦定理 在一个三角形中,任一边的平方都等于其它两边的平方和减去这两边与其夹角的余弦的积的2倍,即2222cos a b c bc A =+-;2222cos b a c ac B =+-;2222cos c a b ab C =+-;余弦定理同样揭示的是一般三角形中的重要边角关系,它们是解三角形的两个重要定理之一。
由直角三角形三边间的关系,归纳猜想任意三角形的边角间的关系。
自己学会探索、并试着去从理论上去解决。
通过这个定理的探索并去从理论上证明,作为一个现代中学生,要掌握一些研究事物的方法、要学会学习,善于提出问题,并且试着去解决问题。
同样这个定理的证明也是采用了向量的相关知识很容易得到解决,向量知识在数学上的一个具体应用,这也体现了数学科学的特点之一:前后知识间联系紧密。
这也要求大家能够将前后知识联系起来,而不应该是孤立地来学习某部分知识,而不善于将所学恰当地应用,这也要求大家能够活学活用。
当然这两个定理的证明证明方法,自己还可以考虑采用比如平面几何知识等其它的方法,以锻炼自己的能力。
三、正弦定理和余弦定理的应用正弦定理的应用:1.用正弦定理解三角形是正弦定理的一个直接应用,正弦定理可以用于两类解三角形的问题:(1)已知三角形的任意两个角与一边,求其他两边和另一角。
(2) 已知三角形的两边与其中一边的对角,计算另一边的对角,进而计算出其他的边和角.2.三角形解的个数一般地,已知两边和其中一边的对角解斜三角形(已知a, b 和A ),用正弦定理求B 时的各种情况:⑴若A 为锐角时:sin sin ()sin (, )³()a b A a b A b A a b a b <=<<⎧⎪⎪⎨⎪⎪⎩无解一解直角二解一锐一钝一解锐角,如下图所示:已知边a,b 和∠A有两个解仅有一个解无解CH=bsinA<a<b a=CH=bsinA a<CH=bsinA⑵若A 为直角或钝角时: a b ()a b ≤>⎧⎨⎩无解一解锐角余弦定理的应用:利用余弦定理可以解决两类解斜三角形问题:(1) 已知三边,求各角;(2) 已知两边和它们的夹角,求第三边和其它两个角。
问题与探究【问题1】正、余弦定理都揭示的是同一个三角形的边角间的关系,有了这两个重要定理后,对于三角形的问题好似有了两把“宝剑”,那么这两把“宝剑”如何恰当地使用呢?【探究】就这个问题,通常须具体问题而定、视题中所给的条件而定。
一般说来,正弦定理常宜解决下列问题:(1)已知两角及一边,求其它元素;(2)已知两边及其中一边的对角,求其它元素。
而余弦定理常宜解决下列问题:(3)已知三边,求各角;(4)已知两边及其夹角,求其它元素。
由于三角形全等的判定定理有“角角边”、“角边角”、“边边边”、“边角边”,所以以上的(1)、(3)、(4)情形都只有一解,而(2)这样的情形可能有一解、两解或无解。
当然这也不是绝对的,有关解三角形的问题,在具体的问题中如何恰当地使用这两个定理,这的确必须视具体问题而定,有时在同一个问题中可能这两个定理要同时使用才能达到目的或者使用其中的任何一个定理都可以达到目的。
另外还应当注意使用方式,是利用定理的原始形式还是使用相应的某种变形形式,这都是要在具体问题中去具体地分析才行。
【问题2】除了正、余弦定理所给出的同一个三角形的边角间的关系外,是否还有其它的一些边角关系呢?通过进一步地思考,由这两个定理还可以得到在三角形中的怎样一些结论?【探究】其实这两个定理本身仅揭示的是同一个三角形的基本的边角关系,还有很多其它的边角关系。
比如,由正弦定理及其它相关知识还可以有这样的一些边角关系:::sin :sin :sin a b c A B C =,2sin sin sin sin sin sin a b c a b c R A B C A B C ++====++, sin sin sin A B C +>等。
同样由余弦定理也可得到另外一些边角关系,以及把正、余弦定理结合在一起还可以得到一些新的结论,如:222sin sin sin 2sin sin cos A B C A B C =+-,222a b c C +>⇔是锐角等。
(注:注意这些结论在解决相关问题时可以考虑恰当地选用。
)精题精讲【例1】 在ABC ∆中,若30B =,2AB AC ==,求ABC ∆的周长。
思路解析:本题是是已知两边及其一边所对的角,要求其周长,自然要考虑去寻求第三边BC ,容易想到由正弦定理去考虑,先找出其中某个内角的大小或其正弦的大小,通过分析发现可以先将角C 给找出,进而把问题解决。
解:由正弦定理得 sin sin 2AB B C AC ==。
,AB AC C B >∴>,60C =或120。
(1) 当60C =时,90A =,4BC =,ABC ∆的周长为6+;(2) 当120C =时,30A =,,2A B BC AC ===,ABC ∆的周长为4+。
综上,ABC ∆的周长是6+4+。
黑色陷阱:此类问题容易漏解。
在以上的解题目过程中,由sin 2C =容易简单地得到 60C =,从而造成问题解答不全面, 产生这样的错误的原因是对于相关三角函数的知识模糊。
【例2】在ABC ∆中,,,a b c 分别是,,A B C ∠∠∠的对边长,且cos 3cos C a c B b -=。
(1)求sin B ;(2)若b =,且a c =,求ABC ∆的面积。
思路解析:本题所给已知条件中,即有边又有角,第一个问题是求其中一内角的正弦,由此容易想到把已知条件中的边转化为相应的角,利用正弦定理、余弦定理可知,把已知条件中的边角之间的关系全部转化为角之间的关系,从而将问题解决。
第二个问题容易想到利用三角形相应的面积公式,从而围绕着公式去考虑需要些什么条件,决定去寻找相应的条件,把问题解决。
解:(1)由正弦定理得 sin sin a A b B =,sin sin c C b B =,又c o s 3c o sC a c B b -=,cos 3sin sin cos sin C A C B B -∴=,即s i n c o s 3B C A B C B =-,sin()3sin cos B C A B +=。
又()()s i n s i n s iB C A A π+=-=>,sin 3sin cos A A B ∴=,1cos 3B ∴=。
又0B π<<,sin 3B ∴==;(2)在ABC ∆中,由余弦定理得 222323a c ac +-=,又a c =,22432,243a a ∴==,12ABC S ∆∴==。
绿色通道:对于此类三角形中的问题解决,通常已知条件中既涉及到边又涉及到角,通常考虑问题有两个方向:一是将所有的边之间的关系转化为角之间的关系;二是将所有的角之间的转化为边之间的关系从而将问题解决。
当然这样的问题究竟是将边全部转化为角好还是将角全部转化为边好,这要视具体问题而定,只有对于此类问题作了一定的练习之后,逐渐就会对于此类问题有所办法。
【例3】在ABC ∆中,,,a b c 分别是,,A B C ∠∠∠的对边长,若cos ,sin b a C c a B ==,试判断ABC ∆的形状。
思路解析:本题是根据已知条件判断三角形的形状问题,而已知条件中既涉及到边又涉及角,所以容易想到借助于正、余弦定理将边、角互化,从而将问题解决。
解:由c o s b a C =得,22222222a b c a b c b a ab b +-+-==,即22222b a b c =+-,222b c a +=,90A =,∴sin b c a B a b a===,故ABC ∆为等腰直角三角形。
绿色通道:类似本题这样的的问题,判断三角形的形状,常常有两种方式去考虑,一是从边的角度去加以判断,从而可以考虑将已知条件转化为边间的关系;二是从角的角度去判断,从而可以考虑将已知条件转化为角间的关系。