空间向量及其运算知识总结
空间向量知识点总结公式

空间向量知识点总结公式一、空间向量的定义在三维空间中,空间向量通常用坐标表示,其中一个点P的坐标为(x,y,z),另一个点Q的坐标为(a,b,c),那么PQ的空间向量为向量(a-x,b-y,c-z)。
二、空间向量的运算1. 空间向量的加法运算若有两个向量A(a1,b1,c1)和B(a2,b2,c2),则它们的和为C(a1+a2,b1+b2,c1+c2)。
2. 空间向量的减法运算若有两个向量A(a1,b1,c1)和B(a2,b2,c2),则它们的差为C(a1-a2,b1-b2,c1-c2)。
3. 空间向量的数乘运算若有一个向量A(a,b,c),一个实数k,则kA为(ka,kb,kc)。
4. 空间向量的数量积数量积指两个向量的数量乘积,设A(a1,b1,c1)和B(a2,b2,c2),则它们的数量积为a1a2+b1b2+c1c2。
5. 空间向量的向量积向量积又称为叉积,设A(a1,b1,c1)和B(a2,b2,c2),则它们的向量积为(b1c2-c1b2,c1a2-a1c2,a1b2-b1a2)。
6. 空间向量的混合积定义为A·(B×C),其中A、B、C分别为三个向量,其中A·表示数量积,B×C表示向量积。
三、空间向量的坐标表示空间向量通常有两种常见的表示方法,即点坐标表示和参数方程表示。
1. 点坐标表示点坐标表示指的是根据两个点的坐标来表示一条向量。
设两点P(x1,y1,z1)和Q(x2,y2,z2),则以P为起点Q为终点的向量为(x2-x1,y2-y1,z2-z1)。
2. 参数方程表示参数方程表示指的是以一个点为起点,以一个方向向量为方向,通过参数t来表示。
设点P(x0,y0,z0)是向量的起点,向量v=(a,b,c)是方向向量,那么向量的参数方程为X=x0+at,Y=y0+bt,Z=z0+ct。
四、空间向量的应用1. 物理学中的运动学在物理学中,空间向量常常用于描述物体在三维空间中的运动和位置,如速度、加速度等。
空间向量知识点归纳总结

空间向量知识点归纳总结空间向量是高中数学中的一个重要概念,出现在向量代数、几何问题、解析几何以及线性代数等多个数学分支中。
下面是空间向量知识点的归纳总结:1.空间向量的定义:空间向量是具有大小和方向的量,它可以用有序三元数组表示,例如(a,b,c)。
2.空间向量的运算:(1)向量加法:两个向量相加得到一个新的向量,加法满足交换律和结合律。
(2)向量数乘:一个向量与一个实数相乘得到一个新的向量,数乘满足分配律。
(3)内积:两个向量的内积是一个实数,可以用数量积的公式计算。
(4)外积:两个向量的外积是一个向量,可以用矢量积的公式计算。
3.空间向量的基本性质:(1)零向量:长度为零的向量,与任何向量的加法的结果都是原向量本身。
(2)单位向量:长度为1的向量,可以用一个非零向量除以其长度得到。
(3)向量的长度:向量的长度定义为该向量的模。
(4)向量的方向:向量的方向可以用与该向量共线的单位向量表示。
4.空间向量的共线与异面:(1)两个向量共线意味着它们的方向相同或者相反。
(2)三个向量共面意味着它们位于同一个平面上。
(3)两个向量异面意味着它们不共线,且它们所在的直线与另外一个直线垂直。
5.空间向量的投影:(1)向量在一些方向上的投影是一个标量,可以用点积的公式计算。
(2)向量在一些方向上的单位向量是该方向的基向量。
(3)向量在一些方向上的分量是该方向的基向量的数乘。
6.空间向量的表示:(1)分解:一个向量可以表示为它在不同方向上的分量的和。
(2)基底:一个空间中的向量可以表示为基底向量的线性组合。
(3)坐标:一个向量可以用它在基底向量上的投影的值表示。
7.空间向量的几何意义:(1)位移向量:两点之间的位移可以用一个向量表示。
(2)向量的数量积:两个向量的数量积等于一个向量在另一个向量的方向上的投影乘以另一个向量的长度。
(3)向量的矢量积:两个向量的矢量积的大小等于这两个向量张成的平行四边形的面积,方向垂直于这两个向量所在平面。
空间向量的知识点总结

空间向量的知识点总结空间向量是指空间中的一条具有方向和大小的有向线段,在数学上通常表示为箭头上有一个加粗的字母来表示。
一、空间向量的概念空间向量是指具有方向和大小的有向线段,它是向量的一种特殊形式。
它与平面向量类似,但是空间向量不仅有大小和方向,而且还有位置。
空间向量可以用某个点P到另一个点Q的有向线段来表示,表示为PQ→。
空间向量的大小可以通过计算两点之间的距离来得到,而它的方向可以通过计算两个点之间的夹角来得到。
二、空间向量的基本运算1、空间向量的加法设空间向量a=(x1,y1,z1)和 b=(x2,y2,z2),那么 a+b = (x1+x2, y1+y2, z1+z2)。
这表示a+b等于a与b的x、y、z分量分别相加得到的结果。
2、空间向量的数乘设空间向量a=(x,y,z),k为实数,则ka=(kx,ky,kz)。
这表示空间向量a的每个分量都乘以k得到的结果。
3、空间向量的减法空间向量的减法定义为a-b=a+(-b),即对b取反再进行加法操作。
4、空间向量的数量积设空间向量a=(x1,y1,z1)和 b=(x2,y2,z2),则a·b = x1x2+y1y2+z1z2。
这表示a·b等于a与b的x、y、z分量分别相乘并求和的结果。
5、空间向量的向量积设空间向量a=(x1,y1,z1)和 b=(x2,y2,z2),则a×b = (y1z2-z1y2, z1x2-x1z2, x1y2-y1x2)。
这表示a×b等于a与b按照右手定则进行叉乘得到的结果。
三、空间向量的坐标表示空间向量可以用坐标表示。
设点A(a1,a2,a3)和点B(b1,b2,b3),则AB向量可以表示为AB=(b1-a1,b2-a2,b3-a3)。
四、空间向量的运算律1、给定三个空间向量a,b,c,则有以下运算律:(1)加法交换律:a+b = b+a(2)加法结合律:(a+b)+c = a+(b+c)(3)数乘结合律:k(la) = (kl)a(4)分配律:k(a+b) = ka+kb2、空间向量的数量积定理给定三个空间向量a,b,c以及实数k,则有以下数量积定理:(1)数量积交换律:a·b = b·a(2)数量积结合律:a·(b+c) = a·b+a·c(3)数量积与数乘结合律:k(a·b) = (ka)·b = a·(kb)(4)对于a≠0,b≠0,有a·b=|a|·|b|·cosθ,其中|a|表示a的大小,θ表示a与b的夹角。
空间向量及其运算

空间向量及其运算知识梳理1.空间向量在空间中,具有大小和方向的量叫做空间向量,其大小叫做向量的长度或模.2.空间向量中的有关定理(1)共线向量定理:对空间任意两个向量a,b(b≠0),a∥b⇔存在λ∈R,使a=λb.(2)共面向量定理:若两个向量a,b不共线,则向量p与向量a,b共面⇔存在唯一的有序实数对(x,y),使p=x a+y b.(3)空间向量基本定理:如果三个向量a,b,c不共面,那么对空间任一向量p,存在一个唯一的有序实数组{x,y,z}使得p=x a+y b+z c.3.两个向量的数量积(1)非零向量a,b的数量积a·b=|a||b|cos<a,b>.(2)空间向量数量积的运算律①结合律:(λa)·b=λ(a·b).②交换律:a·b=b·a.③分配律:a·(b+c)=a·b+a·c.4.空间向量的坐标表示及其应用设a=(a1,a2,a3),b=(b1,b2,b3).例题精讲例1、下面向量中,与向量=(0,1,1),=(1,0,1)共面的向量是(B)A.=(1,1,0)B.=(1,﹣1,0)C.=(1,0,0)D.=(1,0,﹣1)例2、已知=(1,m,2),=(n,1,﹣2),若=λ,则实数m,n的值分别为(A)A.﹣1,﹣1B.1,﹣1C.﹣1,1D.1,1例3、如图,在棱长均相等的四面体O﹣ABC中,点D为AB的中点,,设,,,则向量用向量表示为(D)A.B.C.D.例4、长方体ABCD﹣A1B1C1D1的底面是边长为1的正方形,高为2,M,N分别是四边形BB1C1C和正方形A1B1C1D1的中心,则向量与的夹角的余弦值是(B)A.B.C.D.例5、如图,正四面体ABCD的棱长为1,点E是棱CD的中点,则•=练习:1、已知空间向量=(0,1,﹣1),=(1,﹣3,1),则|+|等于()A.B.2C.D.12、已知=(2,﹣1,2),=(﹣4,2,x),且∥,则x=()A.5B.4C.﹣4D.﹣53、已知A(﹣4,2,3)关于xOz平面的对称点为A1,若B(6,﹣4,﹣1),线段AB的中点为M,则|A1M|等于()A.B.3C.2D.64、如图,M,N分别是四面体OABC的边OA,BC的中点,P是MN的中点,设=,=,=,用,,表示,则()A.=++B.=++C.=++D.=++5、如图,M,N分别是四面体OABC的边OA,BC的中点,P,Q是MN的三等分点(Q靠近点M),则用向量,,表示,正确的是()A.=B.=+C.=+D.=+6、若向量=(3,2,x),=(1,0,2),=(1,﹣1,4)满足条件(﹣)⊥,则实数x的值为()A.﹣1B.2C.3D.47、对于空间任意一点O和不共线得三点A、B、C,有如下关系:=,则()A.四点O、A、B、C必共面B.四点P、A、B、C必共面C.四点O、P、B、C必共面D.五点O、P、A、B,C必共面8、若向量,,,则实数z的值为()A.B.2C.D.±29、已知向量=(2,4,5),=(3,x,y),分别是直线l1、l2的方向向量,若l1∥l2,则()A.x=6,y=15B.x=3,y=15C.x=,y=D.x=6,y=10、如图:在平行六面体ABCD﹣A1B1C1D1中,M为A1C1,B1D1的交点.若=,=,=,则向量=()A.﹣++B.C.﹣﹣+D.﹣+ 11、已知空间向量,如=(2x+1,3x,0),=(1,y,y﹣3)(x,y∈R)果存在实数λ使得=λ成立,则x+y=.12、已知=(,﹣1,0),=(k,0,1),,的夹角为60°,则k=.13、在空间直角坐标系中,已知点A(1,2,0),B(x,3,﹣1),C(4,y,2),若A,B,C三点共线,则x+y=.14、已知向量=(1,1,0),=(﹣1,0,2),=(x,﹣1,2),若,,是共面向量,则x=.15、在正方体ABCD﹣A1B1C1D1中,若点O是底面正方形A1B1C1D1的中心,且,则x+y+z=.16、点A(1,2,1),B(3,3,2),C(λ+1,4,3),若的夹角为锐角,则λ的取值范围为.答案:1、A 2、C 3、A 4、D 5、A 6、C 7、B 8、C 9、D 10、A 11、2 12、﹣14、-2 15、2 16、(﹣2,4)13、∪(4,+∞)。
空间向量相关知识点总结

空间向量相关知识点总结一、空间向量的定义和基本概念1. 空间向量的定义空间向量是指在三维空间中的一种特殊的向量,它可以用有向线段表示,也可以用坐标表示。
空间向量具有大小和方向,是空间中的一个几何概念。
2. 空间向量的基本概念(1)长度:空间向量的长度也称为模,它表示向量的大小,一般用|AB|表示,其中A和B分别表示向量的起点和终点。
(2)方向:空间向量的方向是指向量的指向,可以用一组坐标表示,也可以用夹角表示。
(3)共线:如果两个向量的方向相同或者相反,则它们是共线的。
(4)共面:如果三个向量在同一个平面内,则它们是共面的。
二、空间向量的运算1. 空间向量的加减法(1)几何法:向量的加法就是将两个向量的起点相接,然后将两个向量的终点相连,新的向量就是两个向量的和向量;向量的减法就是将减数的起点和被减数的终点相接,然后将减数的终点和被减数的起点相连,新的向量就是两个向量的差向量。
(2)坐标法:向量的加减法也可以用坐标表示,对应坐标相加或者相减即可。
2. 数乘向量的数乘即将向量与一个常数相乘,结果是一个新的向量,其大小是原向量的模与常数的乘积,方向与原向量的方向一致(如果是负数,则方向相反)。
3. 空间向量的数量积和向量积(1)数量积:也称为点积或内积,即将两个向量的对应坐标相乘再相加,结果是一个标量。
(2)向量积:也称为叉积或外积,即将两个向量的叉乘结果是一个新的向量,其大小是原向量所构成的平行四边形的面积,方向垂直于原向量所构成的平面。
三、空间向量的几何应用1. 向量的方向余弦(1)定义:设向量a=(x, y, z),则a的方向余弦分别为l=x/|a|,m=y/|a|,n=z/|a|,它们互为方向余弦。
(2)性质:方向余弦l、m、n满足l²+m²+n²=1。
(3)应用:方向余弦可用于求向量的夹角、判断向量的共线性等。
2. 向量的投影(1)定义:设向量a和b不共线,a在b上的投影为向量a在b方向上的分量,记为prj_b a。
空间向量知识点总结

空间向量知识点总结空间向量是三维空间中表示物体位置、方向和大小的一种向量形式。
它利用向量的数学概念和运算规则,将物体的位置和方向抽象为有序数组,使得在三维空间中进行运算和分析更加简便。
在几何学、物理学、工程学等领域中,空间向量被广泛应用。
本文将对空间向量的基本概念、运算法则以及应用进行总结。
一、空间向量的定义与表示空间向量是指在三维空间中有长度和方向的向量。
它可以用有序的三个数表示,分别表示向量在x、y、z轴上的分量。
通常表示为:A = xi + yj + zk其中,A为向量名称,xi、yj、zk分别为向量的x、y、z轴分量。
二、空间向量的运算法则1. 加法和减法:两个空间向量的加法和减法运算由各个分量相加或相减得到,分别表示为:A +B = (Ax + Bx)i + (Ay + By)j + (Az + Bz)kA -B = (Ax - Bx)i + (Ay - By)j + (Az - Bz)k2. 数量积:数量积也称为点积或内积,表示为A·B,计算公式为:A·B = |A||B|cosθ其中,|A|和|B|分别为A和B的模长,θ为A和B之间的夹角。
3. 向量积:向量积也称为叉积或外积,表示为A×B,计算公式为:A×B = (AyBz - AzBy)i + (AzBx - AxBz)j + (AxBy - AyBx)k向量积的结果是一个新的向量,其方向垂直于A和B所在平面。
三、空间向量的应用1. 几何关系分析:空间向量可以用于分析几何关系,如判断两个向量的夹角、判断两个向量是否平行或垂直等。
通过计算向量的点积和模长,可以快速判断向量之间的关系。
2. 力学问题:空间向量在力学中有着广泛的应用,可以用于计算力的合成、分解,求解物体的平衡条件等。
通过将力向量进行分解和合成,可以简化力学问题的计算。
3. 电磁学问题:空间向量在电磁学中也有重要的应用。
电场和磁场可以用向量形式表示,通过计算向量积和数量积,可以求解场强、电流、电压等物理量。
空间向量及其运算知识总结

空间向量及其运算1.空间向量的概念:在空间,我们把具有大小和方向的量叫做向量注:⑴空间的一个平移就是一个向量⑵向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量 ⑶空间的两个向量可用同一平面内的两条有向线段来表示 2.空间向量的运算定义:与平面向量运算一样,空间向量的加法、减法与数乘向量运算如下b a AB OA OB +=+=;b a OB OA BA -=-=;)(R a OP ∈=λλ运算律:⑴加法交换律:a b b a+=+⑵加法结合律:)()(c b a c b a++=++⑶数乘分配律:b a b aλλλ+=+)(3.平行六面体: 平行四边形ABCD 平移向量a 到D C B A ''''的轨迹所形成的几何体,叫做平行六面体,并记作:ABCD -D C B A '''它的六个面都是平行四边形,每个面的边叫做平行六面体的棱 4. 平面向量共线定理方向相同或者相反的非零向量叫做平行向量.由于任何一组平行向量都可以平移到同一条直线上,所以平行向量也叫做共线向量.向量b 与非零向量a 共线的充要条件是有且只有一个实数λ,使b =λa .要注意其中对向量a的非零要求. 5 共线向量如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量.a平行于b 记作b a//.当我们说向量a 、b 共线(或a //b )时,表示a、b 的有向线段所在的直线可能是同一直线,也可能是平行直线.6. 共线向量定理:空间任意两个向量a 、b (b ≠0 ),a //b 的充要条件是存在实数λ,使a=λb .推论:如果l 为经过已知点A 且平行于已知非零向量a的直线,那么对于任意一点O ,点P 在直线l 上的充要条件是存在实数t 满足等式t OA OP +=a .其中向量a叫做直线l 的方向向量. 空间直线的向量参数表示式:t OA OP +=a或)(OA OB t OA OP -+=OB t OA t +-=)1(,中点公式.)(21OB OA OP +=7.向量与平面平行:已知平面α和向量a ,作O A a = ,如果直线O A 平行于α或在α内,那么我们说向量a平行于平面α,记作://a α.通常我们把平行于同一平面的向量,叫做共面向量 说明:空间任意的两向量都是共面的8.共面向量定理:如果两个向量,a b 不共线,p与向量,a b 共面的充要条件是存在实数,x y 使p xa yb =+推论:空间一点P 位于平面M A B 内的充分必要条件是存在有序实数对,x y ,使M P x M A y M B =+①或对空间任一点O ,有O P O M x M A y M B =++②或,(1)O P xO A yO B zO M x y z =++++=③上面①式叫做平面M A B 的向量表达式9 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数,,x y z ,使O P xO A yO B zO C =++10 空间向量的夹角及其表示:已知两非零向量,a b,在空间任取一点O ,作,OA a OB b ==,则AOB ∠叫做向量a 与b 的夹角,记作,a b <> ;且规定0,a b π≤<>≤ ,显然有,,a b b a <>=<>;若,2a b π<>= ,则称a 与b 互相垂直,记作:a b ⊥.11.向量的模:设O A a = ,则有向线段O A 的长度叫做向量a 的长度或模,记作:||a.12.向量的数量积:已知向量,a b ,则||||c o s ,a b a b ⋅⋅<> 叫做,a b的数量积,记作a b ⋅ ,即a b ⋅= ||||c o s ,a b a b ⋅⋅<>.已知向量AB a = 和轴l ,e是l 上与l 同方向的单位向量,作点A 在l 上的射影A ',作点B 在l 上的射影B ',则A B '' 叫做向量AB 在轴l 上或在e上的正射影. 可以证明A B '' 的长度||||c o s ,|A B A B a e a e''=<>=⋅. 13.空间向量数量积的性质:(1)||cos ,a e a a e ⋅=<>.(2)0a b a b ⊥⇔⋅= . (3) 2||a a a =⋅.14.空间向量数量积运算律:(1)()()()a b a b a b λλλ⋅=⋅=⋅.(2)a b b a ⋅=⋅ (交换律).(3)()a b c a b a c ⋅+=⋅+⋅(分配律)空间向量的直角坐标及其运算1 空间直角坐标系:(1)若空间的一个基底的三个基向量互相垂直,且长为1基底,用{,,}i j k表示;(2)在空间选定一点O 和一个单位正交基底{,,}i j k ,以点O 为原点,分别以,,i j k 的方向为正方向建立三条数轴:x 轴、y 轴、z 轴,它们都叫坐标轴.我们称建立了一个空间直角坐标系O xyz -,点O 叫原点,向量 ,,i j k都叫坐标向量.通过每两个坐标轴的平面叫坐标平面,分别称为xOy 平面,yOz 平面,zO x 平面;2.空间直角坐标系中的坐标:在空间直角坐标系O xyz -中,对空间任一点A ,存在唯一的有序实数组(,,)x y z ,使O A xi yj z k =++,有序实数组(,,)x y z 叫作向量A 在空间直角坐标系O xyz -中的坐标,记作(,,)A x y z ,x 叫横坐标,y 叫纵坐标,z 叫竖坐标.常见坐标系①正方体如图所示,正方体''''A B C D A B C D -的棱长为a ,一般选择点D 为原点,D A 、D C 、'D D 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系D xyz -,则各点坐标为亦可选A 点为原点.在长方体中建立空间直角坐标系与之类似. ②正四面体如图所示,正四面体A B C D -的棱长为a ,一般选择A 在B C D ∆上的射影为原点,O C 、O D (或O B )、O A 所在直线分别为x 轴、y轴、z 轴建立C空间直角坐标系O xyz -,则各点坐标为③正四棱锥如图所示,正四棱锥P A B C D -的棱长为a ,一般选择点P 在平面A B C D 的射影为原点,O A (或O C )、O B (或O D )、O P 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系O xyz -,则各点坐标为④正三棱柱如图所示,正三棱柱 '''A B C A B C -的底面边长为a ,高为h ,一般选择A C 中点为原点,O C (或O A )、O B 、O E (E 为O 在''A C 上的射影)所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系O xyz -,则各点坐标为3.空间向量的直角坐标运算律:(1)若123(,,)a a a a = ,123(,,)b b b b =,则 112233(,,)a b a b a b a b +=+++ , 112233(,,)a b a b a b a b -=--- ,123(,,)()a a a a R λλλλλ=∈,112233a b a b a b a b ⋅=++ , 112233//,,()a b a b a b a b R λλλλ⇔===∈ , 1122330a b a b a b a b ⊥⇔++=.(2)若111(,,)A x y z ,222(,,)B x y z ,则212121(,,)AB x x y y z z =---.一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标4 模长公式:若123(,,)a a a a = ,123(,,)b b b b =,则||a ==||b == .5.夹角公式:cos ||||a ba b a b ⋅⋅==⋅ .6.两点间的距离公式:若111(,,)A x y z ,222(,,)B x y z ,则||AB ==,或,A B d = 空间向量应用一、直线的方向向量把直线上任意两点的向量或与它平行的向量都称为直线的方向向量.在空间直角坐标系中,由111(,,)A x y z 与222(,,)B x y z 确定直线A B 的方向向量是212121(,,)AB x x y y z z =---.平面法向量 如果a α⊥ ,那么向量a叫做平面α的法向量. 二、证明平行问题1.证明线线平行:证明两直线平行可用112233//,,()a b a b a b a b R λλλλ⇔===∈或312123//a a aa b b b b ⇔== .2.证明线面平行直线l 的方向向量为a ,平面α的法向量为n ,且l α⊄,若a n ⊥ 即0a n ⋅= 则//a α. 3.证明面面平行平面α的法向量为1n ,平面β的法向量为2n ,若12//n n 即12n n λ=则//αβ.三、证明垂直问题 1.证明线线垂直 证明两直线垂直可用1122330a b a b a b a b a b ⊥⇔⋅=++=2.证明线面垂直x y直线l 的方向向量为a ,平面α的法向量为n ,且l α⊄,若//a n 即a n λ= 则a α⊥. 3.证明面面垂直平面α的法向量为1n ,平面β的法向量为2n ,若12n n ⊥ 即120n n ⋅= 则αβ⊥.四、夹角1.求线线夹角设123(,,)a a a a = ,123(,,)b b b b =,(0,90]θ∈︒︒为一面直线所成角,则:||||cos ,a b a b a b ⋅=⋅⋅<>;cos ,||||a ba b a b ⋅<>==⋅;cos |cos ,|a b θ=<> . 2.求线面夹角如图,已知P A 为平面α的一条斜线,n为平面α的一个法向量,过P 作平面α的垂线P O ,连结O A 则P A O ∠为斜线P A 和平面α所成的角,记为θ易得sin |sin(,)|2O P A P πθ=-<> |cos ,|O P A P =<>|cos ,|n A P =<> |cos ,|n PA =<> ||||||n P A n P A ⋅=. 3.求面面夹角设1n 、2n 分别是二面角两个半平面α、β的法向量,当法向量1n 、2n同时指向二面角内或二面角外时,二面角θ的大小为12,n n π-<>;当法向量1n 、2n 一个指向二面角内,另一外指向二面角外时,二面角θ的大小为12,n n <>.五、距离1.求点点距离设111(,,)A x y z ,222(,,)B x y z,,A B d =||AB ==2.求点面距离如图,A 为平面α任一点,已知P A 为平面α的一条斜线,n为平面α的一个法向量,过P 作平面α的垂线P O ,连结O A 则P A O ∠为斜线P A 和平面α所成的角,记为θ易得||||sin |||cos ,|PO PA PA PA n θ=⋅=⋅<> ||||||||PA n PA PA n ⋅=⋅⋅||||P A n n ⋅= . 3.求线线距离求异面直线间的距离可以利用向量的正射影性质直接计算.如图,设两条异面直线a 、b 的公垂线的方向向量为n , 这时分别在a 、b 上任取A 、B 两点,则向量在n上的正射影长就是两条异面直线a 、b 的距离.即两异面直线间的距离等于两异面直线上分别任取两点的向量和公垂线方向向量的数量积的绝对值与公垂线的方向向量模的比值.直线a 、b 的距离||||||||n AB n d AB n n ⋅=⋅= .4.求线面距离一条直线和一个平面平行时,这条直线上任意一点到这个平面的距离叫做这条直线到这个平面的距离.直线到平面的距离可转化为求点到平面的距离. 5.求面面距离和两个平行平面同时垂直的直线叫做两个平行平面的公垂线.公垂线夹在这两个平行平面间的部分叫做两个平行平面的公垂线段.公垂线段的长度叫做两个平行平面间的距离. 平面和平面间的距离可转化为求点到平面的距离.。
空间向量(知识点梳理)

-@>% )一空间向量的概念1.空间向量的有关概念及线性运算(1)空间向量的定义:在空间内具有大小和方向的量叫作空间向量.(2)空间向量的表示:空间向量可用有向线段来表示.(3)零向量:起点与终点重合的向量叫作零向量.(4)空间向量的模(或长度):表示空间向量的有向线段的长度叫作向量的模(或长度).(5)共线向量(或平行向量):基线互相平行或重合的向量叫作共线向量(或平行向量).(6)共面向量:向量所在的直线与平面平行或在平面内,称向量与平面平行,平行于同一平面的向量叫作共面向量.(7)空间向量的加法㊁减法㊁数乘向量运算的定义㊁92.空间向量的有关定理(1)共线向量定理:对空间向量aң,bң(bңʂ0ң),aңʊbң的充要条件是存在实数k,使aң=k bң.推论:①对于空间任一点O,点P在直线A B上的充要条件是存在实数t,使O Pң=(1-t)O Aң+t O Bң或O Pң=xO Aң+y O Bң(其中x+y=1).②如果l为经过已知点A且平行于已知非零向量aң的直线,那么对任一点O,点P在直线l上的充要条件是存在实数t,满足关系式O Pң=O Aң+t aң,该方程称为直线方程的向量表达式.(2)共面向量定理:如果两个向量aң,bң不共线,则向量cң与向量aң,bң共面的充要条件是存在唯一的一对实数x,y,使cң=x aң+y bң.推论:空间一点P位于平面A B C内的充要条件是:存在有序实数对x,y,使C Pң=xC Aң+y C Bң,或对空间任一定点O,有O Pң=O Cң+xC Aң+y C Bң,该式称为平面C A B的向量表示式.(3)空间向量分解定理:如果三个向量aң,bң,cң不共面,那么对于空间任意一个向量pң,存在唯一的有序实数组x,y,z,使pң=x aң+y bң+z cң.其中不共面的三个向量aң,bң,cң叫作空间的一个基底,每一个向量aң,bң,cң叫8作基向量.3.空间向量的数量积(1)两个向量的夹角:对于两个非零向量aң,bң,在空间任取一点O,作O Aң=aң,O Bң=bң,则øA O B叫作向量aң,bң的夹角,记作<aң,bң>.注意:两个向量的夹角的取值范围是:0ɤ<aң,bң>ɤπ.(2)两个向量的数量积的定义:aң㊃bң=|aң||bң|㊃c o s<aң,bң>.二空间向量的坐标运算若向量aң=(a1,a2,a3),bң=(b1,b2,b3),则有:(1)aң+bң=(a1+b1,a2+b2,a3+b3);(2)aң-bң=(a1-b1,a2-b2,a3-b3);(3)λaң=(λa1,λa2,λa3);(4)aң㊃bң=a1b1+a2b2+a3b3;(5)距离公式:|aң|=aң2=a21+a22+a23;(6)夹角公式:c o s<aң,bң>=a1b1+a2b2+a3b3a21+a22+a23㊃b21+b22+b23;9(7)aңʊbң(bңʂ0ң)⇔a1=λb1,a2=λb2,a3=λb3(λɪR)或aңʊbң(bң与三条坐标轴都不平行)⇔a1b1=a2b2=a3b3;(8)aңʅbң⇔a1b1+a2b2+a3b3=0.三利用空间向量证明空间中的位置关系1.直线的方向向量与平面的法向量(1)直线的方向向量:基线和直线平行的向量叫作这条直线的方向向量.(2)平面的法向量:基线和平面垂直的向量叫作这个平面的法向量.2.利用空间向量证明空间中的位置关系(1)证明直线与直线平行的方法是:若直线l1和l2的方向向量分别为vң1和vң2,则l1ʊl2⇔vң1ʊvң2.(2)证明直线与平面平行的方法有两种:若直线l 的方向向量为vң,平面α内的两个不共线向量是vң1和vң2,平面α的法向量为nң,则有:①lʊα⇔存在实数x,y,使vң=x vң1+y vң2;②lʊα⇔vңʅnң.(3)证明平面与平面平行的方法是将其转化为直线与直线平行或直线与平面平行,然后利用向量方法证明.也可以用如下方法:若平面α和β的法向量分别为nң1和0010 n ң2,则αʊβ⇔n ң1ʊn ң2.(4)证明直线与直线垂直的方法是:若直线l 1和l 2的方向向量分别为v ң1和v ң2,则l 1ʅl 2⇔v ң1ʅv ң2.(5)证明直线与平面垂直的方法是:若直线l 的方向向量为v ң,平面α的法向量为n ң,则l ʅα⇔v ңʊn ң.(6)证明平面与平面垂直的方法是:若平面α和β的法向量分别为n ң1和n ң2,则αʅβ⇔n ң1ʅn ң2.四利用空间向量求空间角1.有关角的概念(1)空间角主要包括两条异面直线所成的角㊁直线与平面所成的角㊁二面角.(2)斜线与平面所成的角:平面的一条斜线和它在这个平面内的射影的夹角叫作斜线和平面所成的角.规定:若一条直线与一个平面平行或在平面内,则这条直线和平面所成的角为0;若一条直线与一个平面垂直,则这条直线和平面所成的角为π2.因此,斜线和平面所成的角的范围是0,π2();直线和平面所成的角的范围是0,π2[].(3)二面角的定义:从一条直线出发的两个半平面二面角的平面角:在二面角α-l-β的棱l上任取一点O,在两个半平面内分别作射线O Aʅl,O Bʅl,则øA O B叫作二面角α-l-β的平面角.直二面角:平面角是直角的二面角叫作直二面角,互相垂直的两个平面相交所形成的二面角就是直二面角.二面角的取值范围是[0,π].(4)最小角原理:斜线和平面所成的角,是斜线和这个平面所有直线所成角中的最小的角.(5)从角的顶点出发的一条直线,如果它和这个角的两条边所成的角相等,那么它在这个角所在平面内的射影是这个角的平分线.这个结论常用于确定一条直线在一个平面内的射影.(6)利用射影面积公式:S'=S㊃c o sθ,也可以求一些二面角的大小.2.利用空间向量求空间角的方法(1)若异面直线l1和l2的方向向量分别为vң1和vң2,它们所成的角为θ,则c o sθ=|c o s<vң1,vң2>|.(2)利用空间向量求直线与平面所成的角,可以有两种办法:一是分别求出直线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补02(3)利用空间向量方法求二面角,也有两种办法:一是分别在二面角的两个面内找到一个与棱垂直且从垂足出发的两个向量,则这两个向量的夹角的大小就是二面角的平面角的大小;二是通过平面的法向量来求:设二面角的两个面的法向量分别为nң1和nң2,则二面角的大小等于<nң1,nң2>(或π-<nң1,nң2>).五利用空间向量求点到平面的距离1.定义一个点到它在一个平面内的正射影的距离叫作这个点到平面的距离.2.求法一是根据定义,按照作(或找) 证 求的步骤求解;二是利用空间向量,首先求出平面的单位法向量nң0,再任意找一个从该点出发的平面的斜线段对应的向量vң,则点到平面的距离为d=|nң0㊃vң|.10。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空间向量及其运算1.空间向量的概念:在空间,我们把具有大小和方向的量叫做向量 注:⑴空间的一个平移就是一个向量 ⑵向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量 ⑶空间的两个向量可用同一平面内的两条有向线段来表示2.空间向量的运算定义:与平面向量运算一样,空间向量的加法、减法与数乘向量运算如下 b a +=+=;b a -=-=;)(R a ∈=λλ 运算律:⑴加法交换律:a b b a +=+ ⑵加法结合律:)()(c b a c b a ++=++ ⑶数乘分配律:b a b a λλλ+=+)( 3.平行六面体: 平行四边形ABCD 平移向量a 到D C B A ''''的轨迹所形成的几何体,叫做平行六面体,并记作:ABCD -D C B A '''形,每个面的边叫做平行六面体的棱 4. 平面向量共线定理方向相同或者相反的非零向量叫做平行向量.由于任何一组平行向量都可以平移到同一条直线上,所以平行向量也叫做共线向量. 向量b 与非零向量a 共线的充要条件是有且只有一个实数λ,使b =λa . 要注意其中对向量a 的非零要求.5 共线向量如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量.a 平行于b 记作b a //. 当我们说向量a 、b 共线(或a //b )时,表示a 、b 的有向线段所在的直线可能是同一直线,也可能是平行直线. 6. 共线向量定理:空间任意两个向量a 、b (b ≠0 ),a //b 的充要条件是存在实数λ,使a =λb . 推论:如果l 为经过已知点A 且平行于已知非零向量a 的直线,那么对于任意一点O ,点P 在直线l 上的充要条件是存在实数t 满足等式 t +=a .其中向量a 叫做直线l 的方向向量.空间直线的向量参数表示式:t OA OP +=a 或)(OA OB t OA OP -+=OB t OA t +-=)1(,中点公式.)(21OB OA OP += 7.向量与平面平行:已知平面α和向量a ,作OA a =,如果直线OA 平行于α或在α内,那么我们说向量a 平行于平面α,记作://a α.通常我们把平行于同一平面的向量,叫做共面向量 说明:空间任意的两向量都是共面的 8.共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的充要条件是存在实数,x y 使p xa =+推论:空间一点P 位于平面M A B 内的充分必要条件是存在有序实数对,x y ,使M P x M A y MB =+ ①或对空间任一点O ,有OP OM xMA yMB =++② 或,(1)OP xOA yOB zOM x y z =++++= ③上面①式叫做平面MAB 的向量表达式 9 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数,,x y z ,使OP xOA yOB =++ 10 空间向量的夹角及其表示:已知两非零向量,a b ,在空间任取一点O ,作,OA a OB b ==,则AOB ∠叫做向量a 与b 的夹角,记作,a b <>;且规定0,a b π≤<>≤,显然有,,a b b a <>=<>;若,2a b π<>=,则称a 与b 互相垂直,记作:a b ⊥. 11.向量的模:设OA a =,则有向线段OA 的长度叫做向量a 的长度或模,记作:||a .12.向量的数量积:已知向量,a b ,则||||cos ,a b a b ⋅⋅<>叫做,a b 的数量积,记作a b ⋅,即a b ⋅=||||cos ,a b a b ⋅⋅<>.已知向量AB a =和轴l ,e 是l 上与l 同方向的单位向量,作点A 在l 上的射影A ',作点B 在l 上的射影B ',则A B ''叫做向量AB 在轴l 上或在e 上的正射影. 可以证明A B ''的长度||||cos ,||A B AB a e a e ''=<>=⋅. 13.空间向量数量积的性质:(1)||cos ,a e a a e ⋅=<>.(2)0a b a b ⊥⇔⋅=.(3)2||a a a =⋅.14.空间向量数量积运算律:(1)()()()a b a b a b λλλ⋅=⋅=⋅.(2)a b b a ⋅=⋅(交换律).(3)()a b c a b a c ⋅+=⋅+⋅(分配律) 空间向量的直角坐标及其运算 1 空间直角坐标系:(1)若空间的一个基底的三个基向量互相垂直,且长为1位正交基底,用{,,}i j k 表示; (2)在空间选定一点O 和一个单位正交基底{,,}i j k ,以点O 为原点, 分别以,,i j k 的方向为正方向建立三条数轴:x 轴、y 轴、z 轴,它们都叫坐标轴.我们称建立了一个空间直角坐标系O xyz -,点O 叫原点,向量 ,,i j k 都叫坐标向量.通过每两个坐标轴的平面叫坐标平面,分别称为xOy 平面,yOz 平面,zOx 平面;2.空间直角坐标系中的坐标:在空间直角坐标系O xyz -中,对空间任一点A ,存在唯一的有序实数组(,,)x y z ,使OA xi yj zk=++,有序实数组(,,)x y z 叫作向量A 在空间直角坐标系O xyz -中的坐标,记作(,,)A x y z ,x 叫横坐标,y 叫纵坐标,z 叫竖坐标.常见坐标系①正方体:如图所示,正方体''''ABCD A B C D -的棱长为a ,一般选择点D 为原点,DA 、DC 、'DD 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系D xyz -,则各点坐标为亦可选A 点为原点.在长方体中建立空间直角坐标系与之类似.②正四面体:如图所示,正四面体A BCD -的棱长为a ,一般选择A 在BCD ∆上的射影为原点,OC 、OD (或OB )、OA 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系O xyz -,则各点坐标为③正四棱锥:如图所示,正四棱锥P ABCD -的棱长为a ,一般选择点P 在平面ABCD 的射影为原点,OA (或OC )、OB (或OD )、OP所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系O xyz -,则各点坐标为④正三棱柱:如图所示,正三棱柱 '''ABC A B C -的底面边长为a ,高为h ,一般选择AC 中点为原点,OC (或OA )、OB 、OE (E 为O在''A C 上的射影)所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系O xyz -,则各点坐标为3.空间向量的直角坐标运算律:(1)若123(,,)a a a a =,123(,,)b b b b =,则 112233(,,)a b a b a b a b +=+++, 112233(,,)a b a b a b a b -=---,123(,,)()a a a a R λλλλλ=∈,112233a b a b a b a b ⋅=++, 112233//,,()a b a b a b a b R λλλλ⇔===∈, 1122330a b a b a b a b ⊥⇔++=.(2)若111(,,)A x y z ,222(,,)B x y z ,则212121(,,)AB x x y y z z =---. 一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标 4 模长公式:若123(,,)a a a a =,123(,,)b b b b =, 则23||a a a a a =⋅=+,2||b b b b =⋅=+ 5.夹角公式:2cos ||||a b a b a b a ⋅⋅==⋅+ 6.两点间的距离公式:若111(,,)A x y z ,222(,,)B x y z , 则2||(AB AB x ==,或,A B d = 空间向量应用一、直线的方向向量把直线上任意两点的向量或与它平行的向量都称为直线的方向向量.在空间直角坐标系中,由111(,,)A x y z 与222(,,)B x y z 确定直线AB 的方向向量是212121(,,)AB x x y y z z =---. 平面法向量 如果a α⊥,那么向量a 叫做平面α的法向量.x二、证明平行问题1.线线平行:证明两直线平行可用112233//,,()a b a b a b a b R λλλλ⇔===∈或312123//a a a a b b b b ⇔==. 2.线面平行:直线l 的方向向量为a ,平面α的法向量为n ,且l α⊄,若a n ⊥即0a n ⋅=则//a α.3.面面平行:平面α的法向量为1n ,平面β的法向量为2n ,若12//n n 即12n n λ=则//αβ.三、证明垂直问题1.线线垂直:证明两直线垂直可用1122330a b a b a b a b a b ⊥⇔⋅=++=2.线面垂直:直线l 的方向向量为a ,平面α的法向量为n ,且l α⊄,若//a n 即a n λ=则a α⊥.3.面面垂直:平面α的法向量为1n ,平面β的法向量为2n ,若12n n ⊥即120n n ⋅=则αβ⊥.四、求夹角1.线线夹角:设123(,,)a a a a =123(,,)b b b b =(0,90]θ∈︒︒为一面直线所成角,则:||||cos ,a b a b a b ⋅=⋅⋅<>; 2cos ,||||a b a b a b a ⋅<>==⋅+;cos |cos ,|a b θ=<>. 2.线面夹角:如图,已知PA 为平面α的一条斜线,n 为平面α的一个法向量,过P 作平面α的垂线PO ,连结OA 则PAO ∠为斜线PA 和平面α所成的角,记为θ易得sin |sin(,)|2OP AP πθ=-<>|cos ,|OP AP =<> |cos ,|n AP =<>|cos ,|n PA =<>||||||n PA n PA ⋅=. 3. 面面夹角:设1n 、2n 分别是二面角两个半平面α、β的法向量, 当法向量1n 、2n 同时指向二面角内或二面角外时,二面角θ的大小为12,n n π-<>;当法向量1n 、2n 一个指向二面角内,另一外指向二面角外时,二面角θ的大小为12,n n <>.五、距离1.点点距离:设111(,,)A x y z ,222(,,)B x y z ,,A B d =||(AB AB AB x =⋅=2.点面距离:A 为平面α任一点,已知PA 为平面α的一条斜线,n 为平面α的一个法向量,过P 作平面α的垂线PO ,连结OA 则PAO ∠为斜线PA 和平面α所成的角,记为θ易得||||sin |||cos ,|PO PA PA PA n θ=⋅=⋅<>||||||||PA n PA PA n ⋅=⋅⋅||||PA n n ⋅=. 3.线线距离:求异面直线间的距离可以利用向量的正射影性质直接计算.设两条异面直线a 、b 的公垂线的方向向量为n , 这时分别在a 、b 上任取A 、B 两点,则向量在n 上的正射影长就是两条异面直线a 、b 的距离.即两异面直线间的距离等于两异面直线上分别任取两点的向量和公垂线方向向量的数量积的绝对值与公垂线的方向向量模的比值.直线a 、b 的距离||||||||n AB n d AB n n ⋅=⋅=. 4.线面距离:一条直线和一个平面平行时,这条直线上任意一点到这个平面的距离叫做这条直线到这个平面的距离.直线到平面的距离可转化为求点到平面的距离.5.面面距离:和两个平行平面同时垂直的直线叫做两个平行平面的公垂线.公垂线夹在这两个平行平面间的部分叫做两个平行平面的公垂线段.公垂线段的长度叫做两个平行平面间的距离.。