第四章 化学气相沉积
化学气相沉积法的原理和材料制备

化学气相沉积法的原理和材料制备化学气相沉积法(Chemical Vapor Deposition,简称CVD)是一种常用于材料制备的技术方法。
它利用气体化学反应,在高温下生成固态材料,并将其沉积在基底表面上形成薄膜或纳米结构。
CVD方法广泛应用于半导体、纳米材料、涂层等领域,并在电子、光学、能源等产业中发挥重要作用。
CVD的原理是利用气体在高温下分解反应,生成高纯度材料。
首先,将所需材料的前体化合物(一种或多种)以气体形式引入反应室。
然后,通过加热反应室使其达到适宜的温度,并在此温度下维持一定时间。
在高温下,前体分子会分解为活性物种(如原子、离子或自由基),这些活性物种与基底表面发生反应,生成所需材料的沉积物。
反应过程中,通常还会加入载气(如氢气)以稀释和传递反应物质。
CVD方法提供了一种有效的材料制备手段,其优势在于能够实现高纯度、均匀性好的材料生长,并且可以控制沉积速率和沉积形貌。
其适用范围广泛,不仅可以制备块体材料,也可以制备薄膜、纳米颗粒等纳米结构材料。
此外,CVD还可以在不同的温度下进行,因此能够适应多种材料的生长需求。
CVD方法主要分为热分解CVD、化学气相沉积CVD和物理气相沉积CVD等几种类型。
在热分解CVD中,通过加热气体源使之分解,产生所需材料的沉积物。
这种方法常用于制备碳纳米管、金属纳米线等纳米结构材料。
在化学气相沉积CVD中,主要利用气体的化学反应生成沉积物。
通过选用合适的前体化合物及反应条件,可以实现对材料成分和结构的控制。
物理气相沉积CVD则是通过物理过程实现材料的沉积,如物理吸附或辐射捕捉。
CVD方法可以制备多种材料,例如二氧化硅、氮化硅、氮化铝、碳化硅等。
其中,二氧化硅是一种广泛应用于微电子器件中的重要材料。
通过CVD方法可以在硅基底上沉积高纯度、均匀性好的二氧化硅薄膜,用于制备晶体管、电容器等器件。
同样,氮化硅和氮化铝等氮化物材料也可以通过CVD方法制备,用于制备高能效LED、功率器件等光电子器件。
化学气相沉积

集成电路芯片工艺化学气相沉积(CVD)化学汽相淀积(CVD)化学汽相淀积是指通过气态物质的化学反应在衬底上淀积一层薄膜材料的过程。
CVD膜的结构可以是单晶、多晶或非晶态,淀积单晶硅薄膜的CVD过程通常被称为外延。
CVD技术具有淀积温度低、薄膜成分和厚度易于控制、均匀性和重复性好、台阶覆盖优良、适用范围广、设备简单等一系列优点。
利用CVD方这几乎可以淀积集成电路工艺中所需要的各种薄膜,例如掺杂或不掺杂的SiO:、多晶硅、非晶硅、氮化硅、金属(钨、钼)等。
一:化学气相沉积方法常用的CVD方法主要有三种:常压化学汽相淀积(APCVD)、低压化学汽相淀积(LPCVIi~)和等离子增强化学汽相淀积(PECVD).APCVD反应器的结构与氧化炉类似,如图1-1所示,该系统中的压强约为一个大气压,因此被称为常压CVD。
气相外延单晶硅所采用的方法就是APCVD。
图1-1APCVD反应器的结构示意图,LPCVD反应器的结构如图1-2所示,石英管采用三温区管状炉加热,气体由一端引入,另一端抽出,半导体晶片垂直插在石英舟上。
由于石英管壁靠近炉管,温度很高,因此也称它为热壁CVD装置,这与利用射频加热的冷壁反应器如卧式外延炉不同.这种反应器的最大特点就是薄膜厚度的均匀性非常好、装片量大,一炉可以加工几百片,但淀积速度较慢.它与APCVD的最大区别是压强由原来的1X10SPa降低到1X102Pa左右。
图1-2LPCVD反应器的结构示意图图1-3平行板型PECVD反应器的结构示意图PECVD是一种能量增强的CVD方法,这是因为在通常CVD系统中热能的基础上又增加了等离子体的能量.图1-3给出了平行板型等离子体增强CVD反应器,反应室由两块平行的金属电极板组成,射频电压施加在上电极上,下电极接地。
射频电压使平板电极之间的气体发生等离子放电。
工作气体由位于下电极附近的进气口进入,并流过放电区。
半导体片放在下电极上,并被加热到100—400;C左右.这种反应器的最大优点是淀积温度低。
化学气相沉积法

时间与速率
要点一
总结词
时间和沉积速率在化学气相沉积过程中具有重要影响,它 们决定了薄膜的厚度和均匀性。
要点二
详细描述
时间和沉积速率决定了化学气相沉积过程中气体分子在反 应器中的停留时间和沉积时间。较长的停留时间和较慢的 沉积速率有利于气体分子充分反应和形成高质量的薄膜。 然而,过长的停留时间和过慢的沉积速率可能导致副反应 或降低沉积速率。因此,选择合适的时间和沉积速率是实 现均匀、高质量薄膜的关键。
05
化学气相沉积法优 缺点
优点
适用性广
涂层性能优良
化学气相沉积法适用于各种材料表面改性 和涂层制备,如金属、陶瓷、玻璃等。
通过控制化学气相沉积的条件,可以制备 出具有高硬度、高耐磨性、高抗氧化性的 涂层。
环保
高效
化学气相沉积法使用的原料在高温下分解 ,不会对环境造成污染。
化学气相沉积法具有较高的沉积速率,可 实现快速涂层制备。
应用领域
半导体产业
用于制造集成电路、微 电子器件和光电子器件
等。
陶瓷工业
制备高性能陶瓷材料, 如氧化铝、氮化硅等。
金属表面处理
在金属表面形成耐磨、 防腐、装饰等功能的涂
层。
其他领域
在航空航天、能源、环 保等领域也有广泛应用
。
02
化学气相沉积法分 类
热化学气相沉积法
原理
在较高的温度下,使气态的化 学反应剂与固态表面接触,通 过气相反应生成固态沉积物。
缺点
高温要求
化学气相沉积法需要在高温下进行,这可能会对 基材产生热损伤或变形。
操作难度大
化学气相沉积法需要精确控制反应条件,操作难 度较大。
ABCD
设备成本高
第四章CVD工艺优质获奖课件

CVD反应是指反应物为气体而生成物之一为固体旳
化学反应。
CVD完全不同于物理气相沉积(PVD)
一、化学气相沉积旳基本原理
☞化学气相沉积旳基本原理
➢ CVD
CVD法实际上很早就有应用,用于材料精制、装
饰涂层、耐氧化涂层、耐腐蚀涂层等。
在电子学方面PVD法用于制作半导体电极等。
CVD法一开始用于硅、锗精制上,随即用于适合
➢ CVD法制备薄膜过程描述
(1)反应气体向基片表面扩散;
(2)反应气体吸附于基片表面;
(3)在基片表面发生化学反应;
(4)在基片表面产生旳气相副产物脱离表面,向空间扩
散或被抽气系统抽走;
(5)基片表面留下不挥发旳固相反应产物——薄膜。
CVD基本原理涉及:反应化学、热力学、动力学、输
运过程、薄膜成核与生长、反应器工程等学科领域。
化学气相沉积工艺(CVD)
一、化学气相沉积旳基本原理
二、化学气相沉积旳特点
三、CVD措施简介
一、化学气相沉积旳基本原理
☞化学气相沉积旳基本原理
➢化学气相沉积旳定义
化学气相沉积是利用气态物质经过化学反应在基片
表面形成固态薄膜旳一种成膜技术。
化学气相沉积(CVD)
——Chemical Vapor Deposition
外延生长法制作旳材料上。
表面保护膜一开始只限于氧化膜、氮化膜等,之
后添加了由Ⅲ、Ⅴ族元素构成旳新旳氧化膜,近来还
开发了金属膜、硅化物膜等。
以上这些薄膜旳CVD制备法为人们所注意。CVD
法制备旳多晶硅膜在器件上得到广泛应用,这是CVD
法最有效旳应用场合。
一、化学气相沉积旳基本原理
☞化学气相沉积旳基本原理
化学气相沉积法PPT课件

CVD法是一种化学反应法,应用非常广泛,可制备多种物 质的薄膜,如单晶、多晶或非晶态无机薄膜,金刚石薄膜, 高Tc超导薄膜、透明导电薄膜以及某些敏感功能的薄膜。
2020/10/13
3
化学气相沉积薄膜的特点:
• 由于CVD法是利用各种气体反应来组成薄膜,所以可 以任意控制薄膜的组成,从而制得许多新的膜材。
化学气相沉积法
2020/10/13
姓名:尤凤霞 08材成
1
• 一.化学气相沉积的概念 • 二.化学气相沉积薄模的特点 • 三.化学气相沉积的分类 • 四.化学气相沉积的基本工艺流程 • 五.化学气相沉积的工艺方法
2020/10/13
2
ห้องสมุดไป่ตู้ 化学气相沉积的概念:
化学气相沉积(英文:Chemical Vapor Deposition,简称 CVD)是通过气相物质的化学反应的基材表面上沉积固态薄 膜的一种工艺方法。是一种用来产生纯度高、性能好的固 态材料的化学技术。各种化学反应,如分解、化合、还原、 置换等都可以用来沉积于基片的固体薄膜,而反应多余物 (气体)可以从反应室排出。
1.气溶胶辅助气相沉积 (AACVD):使用液体/气体的气溶胶的 前驱物成长在基底上,成长速非常快。此种技术适合使用 非挥发的前驱物。
2.直接液体注入化学气相沉积 (DLICVD):使用液体 (液体或固 体溶解在合适的溶液中) 形式的前驱物。
等离子技术分类
20203/1.0/微13 波等离子辅助化学气相沉积, (MPCVD)
6
4.等离子增强化学气相沉积 (PlECVD):利用等离 子增加前驱物的反应速率。PECVD技术允在低 温的环境下成长,这是半导体制造中广泛使用 PECVD的最重要原因。
化学气相沉积

化学气相沉积作为一种非常有效的材料表 面改性方法,具有十分广阔的发展应用前景。 随着工业生产要求的不断提高, CVD 的工艺 及设备得到不断改进, 现已获得了更多新的 膜层, 并大大提高了膜层的性能和质量,它 对于提高材料的使用寿命、改善材料的性 能、节省材料的用量等方面起到了重要的 作用,下一步将向着沉积温度更低、有害生 成物更少、规模更大等方向发展。随着各 个应用领域要求的不断提高, 对化学气相沉 积的研究也将进一步深化,CVD 技术的发展 和应用也将跨上一个新的台阶。
2、CVD过程 反应气体向基体表面扩散
反应气体吸附于基体表面
在基体表面上产生的气相副产物脱离表面
留下的反应产物形成覆层
3、CVD几种典型化学反应
1)热分解
SiH4 >500℃ Si + 2H2 (在900-1000℃成膜) CH3SiCl3 1400℃ SiC + 3HCl
2)还原
WF6 +3H2 SiCl4 + 2Zn WF6 + 3 Si 2 W + 6HF (氢还原) Si + 2ZnCl2 (金属还原) SiF4 (基体材料还原) W+3 2
反应沉积成膜 反应沉积成膜
3、PCVD的特点
成膜温度低
沉积速率高 膜层结合力高
膜层质量好 能进行根据热力学规律难以发生的反应
4、PCVD与CVD装置结构相近, 只是需要增加能产生等离子体 的反应器。用于激发CVD反应 的等离子体有: 直流等离子体 射频等离子体 微波等离子体 脉冲等离子体
直流等离子体法(DCPCVD)
2、PCVD的成膜步骤 等离子体产生 等离子体产生
辉光放电的压力较低,加 速了等离子体的质量 输送和扩散
化学气相沉积法ppt课件

优点:可以在热敏感的基体上进行沉积;
缺点:沉积速率低,晶体缺陷密度高,膜中杂质 多。
原料输送要求:把欲沉积膜层的一种或几种组分 以金属烷基化合物的形式输送到反应区,其他 的组分可以氢化物的形式输送。
精选ppt
(A)CVD的原理
CVD的机理是复杂的,那是由于反应气体中不同 化学物质之间的化学反应和向基片的析出是同 时发生的缘故。
基本过程:通过赋予原料气体以不同的能量使其 产生各种化学反应,在基片上析出非挥发性的 反应产物。
图3.14表示从TiCl4+CH4+H2的混合气体析出 TiC过程的模式图。如图所示,在CVD中的析出 过程可以理解如下:
精选ppt
7
⑥绕镀性好:可在复杂形状的基体上及颗粒材 料上沉积。
⑦气流条件:层流,在基体表面形成厚的边界 层。
⑧沉积层结构:柱状晶,不耐弯曲。通过各种 技术对化学反应进行气相扰动,可以得到细晶 粒的等轴沉积层。
⑨应用广泛:可以形成多种金属、合金、陶瓷和 化合物沉积层
精选ppt
8
(2)CVD的方法
LCVD技术的优点:沉积过程中不直接加热整块 基板,可按需要进行沉积,空间选择性好,甚 至可使薄膜生成限制在基板的任意微区内;避 免杂质的迁移和来自基板的自掺杂;沉积速度
比2
(D)超声波化学气相沉积(UWCVD)
定义:是利用超声波作为CVD过程中能源的一种 新工艺。
①常压CVD法; ②低压CVD法; ③热CVD法; ④等离子CVD法; ⑤间隙CVD法; ⑥激光CVD法; ⑦超声CVD法等。
精选ppt
14
(C)CVD的流程与装置
化学气相沉积解读

由上图分析可知: 高温:扩散控制 低温:表面反应控制 反应导致的沉积速率为:
其中 N0 为表面原子密度。 沉积速率随温度的变化规律取决于Ks,D,δ 等随温度的变化情况。 因此,一般而言,化学反应或化学气相沉积的速度将随温度的升 高而加快。 但有时并非如此,化学气相沉积的速率随温度的升高 出现先升高后降低的情况。 这是什么原因呢?
第四章 化学气相沉积
(Chemical vapor deposition)
•
•
4.4 薄膜生长动力学 4.5 化学气相沉积装置
4.4 薄膜生长动力学
在CVD过程中,薄膜生长过程取决于气体与衬底间界面
的相互作用,具体过程如下: 1. 反应气体扩散通过界面 层 2. 气体分子在薄膜或衬底 表面的吸附 3. 原子表面的扩散、反应 和溶入薄膜晶格之中 4. 反应产物扩散离开衬底 表面并通过界面层
此式表明:Si的沉积速度将随着距离的增加呈指数 趋势下降,即反应物将随着距离的增加逐渐贫化。
•
轴向生长速率的均匀性:
•
扩散速度小于气流速度
•
沉积速率随距离的增加呈指数下降! 倾斜基片使薄膜生长的均匀性得以改善 ;
提高气体流速v和装置的尺寸b 调整装置内温度分布,影响扩散系数D的分布
因此,提高沉积均匀性可以采取如下措施:
我们用CVD方法共同的典型式子来说明: 设这一反应正向进行时为放热反应,则
aA( g ) bB( g ) cC (s) dD( g )
ΔH<0, U0<U
上式描述的正向和逆向反应速率如下页图a所示,均随 温度上升而提高。同时,正向反应的激活能低于逆向反应 的激活能。而净反应速率应是正反向反应速率之差,而他 随温度升高时会出现一个最大值。因此温度持续升高将会 导致逆反应速度超过正向的,薄膜的沉积过程变为薄膜的 刻蚀过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章 化学气相沉积----4.1 概述
一、CVD原理及特点
缺点:
CVD外延层容易形成自掺杂;
化学反应需要高温;
反应气体会与基片或设备发生化学反应;
设备较为复杂,需要控制变量多。
第四章 化学气相沉积----4.1 概述
一、CVD原理及特点
应用:
在半导体集成电子技术中应用很多。
二、CVD动力学分析--2、边界层模型
(1)流动气体的边界层及影响因素
二、CVD动力学分析--2、边界层模型
(1)流动气体的边界层及影响因素
(x)
Re( x)
5x Re( x) v0 x
边界层厚度
流速、密度、粘滞系数
雷诺数是用来判断流体流动状态的一个无量纲的参数,表示流 体流动中惯性效应与黏滞效应的比
多晶硅沉积的生长温度可低至600℃;单晶硅则需850℃。
第四章 化学气相沉积----4.2 化学气相沉积
3. 热解反应 主要优点是能够在低温下实现外延生长;热 解反应不可逆,不存在卤化物的气相腐蚀作 用,因而对衬底的腐蚀不严重,对异质外延
生长尤为有利。
主要问题是气态反应物的纯度、成本和安全
hg为气相质量输运系数,Ks为表面化学反应速率常数
反应导致的沉积速率
k s hg C g F G N1 k s hg N1
N1表示形成单位体积的薄膜所需原子个数
多数CVD中,反应剂先被惰性气体稀释,Cg=YCT
Y是反应剂的摩尔百分比,CT单位体积中反应剂和惰性气体分 子的总数,
则薄膜的生长速度:
k s hg CT Y F G N1 k s hg N1
结论:
1. 反应气体没有稀释时,沉积速率与反应剂浓度Cg成
正比。
2. 当反应剂稀释时,沉积速率与气相中反应剂的摩尔
百分比Y成正比。
3. 在Cg或Y为常数时,薄膜沉积速率将由ks和hg中 较
小的一个决 定:
结论:
在ks<<hg时,
k s CT Y G N1
设在生长中的薄膜表面形成了界面层,其厚度为,cg和cs分别为
反应物的原始浓度和其在衬底表面的浓度,则
扩散至衬底表面的反应物的通量为: 衬底表面消耗的反应物通量与Cs成正比
F1 hg (C g C s ) F2 k s C s F1 F2 Cg Cs ks 1 hg
平衡时两个通量相等,得
速度的加快,输运到表面的反应剂的数量低于表
面反应所需的数量,这时沉积速率转为由质量输
运控制,反应速度不再随温度变化而变化。
质量输运控制的CVD 质量输运过程是通过气体扩散完成的,扩散速 度与气体的扩散系数和边界层内的浓度梯度有关。
质量输运速率控制的薄膜沉积速率与主气流速
度的平方根成正比,增加气流速度可以提高薄膜沉
Re( x)
5x Re( x) v0 x
(提高Re,降低边界层厚度) (提高气体流速和压力,降低粘滞 系数可提高雷诺数)
气流以一定平 均速度流动
气流
气流
气体流动的速度 为零或接近于零 边界层很薄, 流速为零
连续膜
的吸附
衬底
第四章 化学气相沉积----4.2 化学气相沉积
二、CVD动力学分析 1、CVD模型(Grove模型)
CVD过程主要受两步工艺过程控制:
(1)气相输运过程; (2)表面化学反应过程。
1966年Grove建立了一个简单的CVD模型。认为控制薄膜 沉积速率的两个主要因素是:
(1)反应剂在边界层中的输运过程。 (2)反应剂在衬底表面上的化学反应过程。
第四章 化学气相沉积
第四章 化学气相沉积----4.1 概述
所谓外延生长,就是在一定条件下在单晶基片上生长一 层单晶薄膜的过程,所生长的单晶薄膜称为外延层。 20世纪60年代初在硅单晶薄膜研究基础上出现,已可实 现各种半导体薄膜一定条件的外延生长。 气相外延生长是最早应用于半导体领域的较成熟的外延 生长技术,促进了半导体材料和器件质量及性能提高。
第四章 化学气相沉积----4.2 化学气相沉积
硅CVD外延生长三个基本热化学类型: 歧化反应、还原反应、热解反应
1. 歧化反应
包含二价卤化物的分解:
2SiX2(g) ↔ Si(s) + SiX4(g)
低温时,反应向右进行;高温时,反应向左进行。
大多数的闭管反应都是利用歧化反应,将单晶硅衬底放在沉 积区,沉积固态硅就可以获得单晶外延薄膜。
目前,制备半导体单晶外延薄膜的最主要方法是化学气 相沉积(chemical vapor deposition,简称CVD)。
第四章 化学气相沉积----4.1 概述
一、CVD原理及特点
CVD(chemical vapor deposition)是利用汽态的先驱反应物, 通过原子分子间化学反应的途径生成固态薄膜的技术。 特点: 需要使用汽态的物质作为反应物质 源物质要经过化学汽相反应生成所需要的材料 需要相对较高的气体压力环境 通常需要热,电磁场或光等的作用,促使化学反应的进行。 热能:热CVD ,热丝CVD 光能:激光诱导CVD;紫外光诱导CVD 电磁场:等离子体增强CVD
第四章 化学气相沉积----4.2 化学气相沉积
3. 热解反应 某些元素的氢化物和金属有机化合物高温下不稳定,发 生分解,产物可沉积为薄膜,反应是不可逆的。 如: SiH4(g) = Si(s) + 2H2(g) Ni(CO)4(g) = Ni(s) + 4CO(g) TiI(g) = Ti(s) + 2I
使用等。
第四章 化学气相沉积----4.2 化学气相沉积
4. 氧化反应 利用氧气作为氧化剂促进反应: SiH4(g) + O2 = SiO2(s) + H2O(g) (450℃)
Si(C2H5O)4 + 8O2 = SiO2 + 10H2O + 8CO2
(Si(C2H5O)4是正硅酸乙酯 简称TEOS)
2SiHCl3(g) ↔ Si(s) + SiCl4(g) + 2HCl(g)
第四章 化学气相沉积----4.2 化学气相沉积
2. 还原反应
SiCl4和SiHCl3常温下都是液体,氢气作载体,由鼓泡法
携带到反应室。维持稳定的生长速率,硅源气体与H2的
体积比须恒定。问题是要维持一个恒定的温度。 优点:能在整个沉淀区实现比较均匀的外延生长;可控 制反应平衡移动;可利用反应可逆性在外延生长之前对 衬底进行原位气相腐蚀;在深而窄的沟槽内进行平面化 的外延沉积。
SiCl4 + O2 = SiO2 + 2Cl2
GeCl4 + O2 = GeO2 + 2Cl2
第四章 化学气相沉积----4.2 化学气相沉积
5. 化合反应 只要所需物质的先驱物可以气态存在并具有反应活
性,就可利用化学反应沉积其化合物。
如:
SiCl4(g) + CH4(g) = SiC(s) + 4HCl(g) (1400℃)
积速率,当气流速率大到一定程度时,薄膜的沉积
速率达到一稳定值不再变化。沉积速率转变为由表
面反应速度控制
质量输运和表面反应速度控制的CVD • 在由质量输运速度控制的沉积过程中,要得到均 匀的薄膜,必须严格控制到达各硅片表面的反应 剂的浓度,各硅片的温度的均匀性次要因素。
• 在由表面反应速度控制的沉积过程中,必须严格
3SiH4 + 4NH3 = Si3N4 + 12H2
BCl3 + NH3 = BN + HCl
第四章 化学气相沉积----4.2 化学气相沉积
二、CVD动力学分析 1、CVD模型(Grove模型)
薄膜的生长过程取决于气体与衬底间界面的相互 作用,可能涉及以下几个步骤: (1)反应气体从入口区域流动到衬底表面的淀积区域
(2)气相反应导致膜先驱物(组成膜最初的原子或分 子)和副产物的形成 (3)膜先驱物附着在衬底表面
第四章 化学气相沉积----4.2 化学气相沉积
二、CVD动力学分析 1、CVD模型(Grove模型)
(4)膜先驱物粘附在衬底表面
(5)膜先驱物向膜生长区域的表面扩散
(6)吸附原子(或分子)在衬底表面发生化学反应导
控制各硅片表面的温度,使各硅片均处于一个恒 温场中。
第四章 化学气相沉积----4.2 化学气相沉积
二、CVD动力学分析--2、边界层模型 流速受到扰动并按抛物线型变化、同时还存在反应
剂浓度梯度的薄层被称为边界层,也称附面层、滞
流层等。
是一个过渡区域,存在于气流速度为零的硅片表面
与气流速度为最大的主气流区之间。 边界层厚度:从速度为零的硅片表面到气流速度为 0.99V0(气流最大速度)时的区域厚度。
第四章 化学气相沉积----4.2 化学气相沉积
1. 歧化反应 大多数歧化反应,中间产物和反应器壁需高温,如 生成SiI2中间产物需要1150℃: Si(s) + 2I2(g) → SiI4 (g) SiI4 (g) + Si(s) → 2SiI2 (g) 衬底区生成硅外延层的歧化反应只需900℃: 2SiI2 (g) → Si(s) + SiI4 (g)
装片少,主要用于基础研究。
第四章 化学气相沉积----4.2 化学气相沉积
一、CVD反应类型 开管系统应用较多。
开管外延是用载气将反应物蒸气由源区输运到衬底 区进行化学反应和外延生长,副产物则被载气携带 排出系统。
开管系统中的化学反应偏离平衡态较大。 可在常压或低压条件下进行。 适于大批量生产。
致膜淀积和副产物的生成 (7)气态副产物和未反应的反应剂扩散离开衬底表面 (8)副产物排出反应室(进入主气流区被排除系统)