线面、面面关系的判定与性质

合集下载

线面垂直、面面垂直的判定与性质

线面垂直、面面垂直的判定与性质

本周知识小结:直线与平面垂直的判定和性质:线线垂直⇔线面垂直⇔面面垂直线面垂直的判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。

面面垂直的判定定理:一个平面过另一个平面的垂线,则这两个平面垂直。

线面垂直的性质定理:垂直于同一个平面的两条直线平行。

面面垂直的性质定理:两个平面垂直,则一个平面内垂直于交线的直线例3、.(2012·广东高考)如图所示,在四棱锥P-ABCD中,AB⊥平面PAD,AB∥CD,PD=AD,E是PB的中点,F是CD上的点,且DF=21AB,PH为△PAD中AD边上的高.(1)证明:PH⊥平面ABCD.(2)若PH=1,AD= 2,FC=1,求三棱锥E-BCF的体积.(3)证明:EF⊥平面PAB.例4、(09一模东城)如图,ABCD是边长为2a的正方形,ABEF是矩形,且二面角C AB F--是直二面角,AF a=,G是EF的中点.(Ⅰ)求证:平面AGC⊥平面BGC;(Ⅱ)求GB与平面AGC所成角的大小;例5、(09年崇文一模)在直四棱柱1111ABCD A B C D-中,AB CD∥,1AB AD==,12D D CD==,AB AD⊥.(Ⅰ)求证:BC⊥平面1D DB;(Ⅱ)求1D B与平面11D DCC所成角的大小.例6、如图,在三棱锥P-ABC中,△PAC和△PBC角形,AB=2,O是AB中点.(1)在棱PA上求一点M,使得OM∥平面PBC;(2)求证:平面PAB⊥平面ABC.课后练习:B1、若一个三角形,采用斜二测画法作出其直观图,则其直观图的面积是原三角形面积的( )A.倍B.2倍C.倍D.倍2、(2013·惠州高一检测)某几何体的俯视图是如图所示的矩形,正视图是一个底边长为8、高为5的等腰三角形,侧视图是一个底边长为6、高为5的等腰三角形.则该几何体的体积为( )A.24B.80C.64D.2403、(2013·宿州高一检测)如图,四边形BCC1B1是圆柱的轴截面.AA1是圆柱的一条母线,已知AB=2,AC=2,AA1=3.(1)求证:AC⊥BA1.(2)求圆柱的侧面积4、如图,四棱锥P-ABCD的底面ABCD是边长为a的正方形,侧棱PA=a,PB=PD=a,则PC=5、对于直线m,n和平面α,β,能得出α⊥β的一个条件是( )A.m⊥n,m∥α,n∥βB.m⊥n,α∩β=m,n⊂αC.m∥n,n⊥β,m⊂αD.m∥n,m⊥α,n⊥β6、(2012·上海高考)一个高为2的圆柱,底面周长为2π,则该圆柱的表面积为.。

线面定理性质

线面定理性质

线面、面面平行和垂直的定理性质
一、线面平行
1、判定定理:平面外一条直线与平面内一条直线平行,那么这条直线与这个平面平行。

符合表示:
2、性质定理:如果一条直线与平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

符号表示:
二、面面平行
1、判定定理:如果一个平面内有两条相交直线分别平行于另一个平面内的两条相交直线,那么这两个平面平行。

符号表示:
变形:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。

2、性质定理:如果两个平面平行同时与第三个平面相交,那它们的交线平行。

符号表示:
(更加实用的性质:一个平面内的任一直线平行另一平面)
三、线面垂直
1、判定定理:如果一条直线与一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面。

符号表示:
(经常考到这种逻辑)在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。

符号表示:
三垂线定理的逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直。

2、性质定理:垂直同一平面的两条直线互相平行。

(更加实用的性质是:一个平面的垂线垂直于该平面内任一直线。


变形:垂直于同一条直线的两个平面平行
四、面面垂直
1、判定定理:经过一个平面的垂线的平面与该平面垂直。

(如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直)
其他:两个平面相交,如果它们所成的二面角是直角,则这两个平面互相垂直。

2、性质定理:已知两个平面垂直,在一个平面内垂直于交线的直线垂直于另一个平面。

线面垂直、面面垂直的性质与判定定理ppt课件

线面垂直、面面垂直的性质与判定定理ppt课件

a⊥β α
b
a
B
γ
证明:过a作平面γ交于b, 因为直线a//,所以a//b
β 又因为a⊥AB,所以b⊥AB
A
又⊥β,∩β=AB
辅助线(面):
所以b⊥β
发展条件的使解题过 程获得突破的
进而a⊥β
【课后自测】4、如图,已知SA⊥平面ABC,
平面SAB⊥平面SBC,求证:AB⊥BC
证明:过点A作AD⊥SB于D, ∵平面SAB⊥平面SBC,
直线l在平面α内,那么直线l与平面β
的位置关系有哪几种可能?
α l
β
平行
α
l
β
相交
α
l β
线在面内
知识探究:
思考2:黑板所在平面与地面所在平面垂 直,在黑板上是否存在直线与地面垂直? 若存在,怎样画线?
α
β
证明问题:
已知: , A , C B , 且 D C A . 求D 证:B CD
β
a
l
A α
a
l
a
a l
作用: 面面垂直线面垂直
垂直体系
判定
判定
线线垂直
线面垂直 面面垂直
定义
性质
问题2 , a , a , 判 断 a 与 位 置 关 系
α
a
a //
l
问题3: β
思考:已 , , 知直 平 a,且 线 面 ,A,B
a/ /,aA,B 试判断 a与直 平 的 线 面 位置关
符号语言:
ab
a ,b a //b
α
线面垂直关 系
最新版整理ppt
线线平行关 系
3
平面与平面垂直的性质
温故知新

线线垂直、线面垂直、面面垂直的判定和性质

线线垂直、线面垂直、面面垂直的判定和性质

空间中的垂直关系1.线面垂直直线与平面垂直的判定定理:如果 ,那么这条直线垂直于这个平面。

推理模式:直线与平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线 。

2.面面垂直两个平面垂直的定义:相交成 的两个平面叫做互相垂直的平面。

两平面垂直的判定定理:(线面垂直⇒面面垂直)如果 ,那么这两个平面互相垂直。

推理模式:两平面垂直的性质定理:(面面垂直⇒线面垂直)若两个平面互相垂直,那么在一个平面内垂直于它们的 的直线垂直于另一个平面。

一般来说,线线垂直或面面垂直都可转化为线面垂直来分析解决,其关系为:线线垂直−−−→←−−−判定性质线面垂直−−−→←−−−判定性质面面垂直.这三者之间的关系非常密切,可以互相转化,从前面推出后面就是判定定理,而从后面推出前面就是性质定理.同学们应当学会灵活应用这些定理证明问题.在空间图形中,高一级的垂直关系中蕴含着低一级的垂直关系,下面举例说明.例题:1.如图,AB 就是圆O 的直径,C 就是圆周上一点,PA ⊥平面ABC.(1)求证:平面PAC ⊥平面PBC;(2)若D 也就是圆周上一点,且与C 分居直径AB 的两侧,试写出图中所有互相垂直的各对平面.2、如图,棱柱111ABC A B C -的侧面11BCC B 就是菱形,11B C A B ⊥证明:平面1AB C ⊥平面11A BC3、如图所示,在长方体1111ABCD A B C D -中,AB=AD=1,AA 1=2,M 就是棱CC 1的中点 (Ⅰ)求异面直线A 1M 与C 1D 1所成的角的正切值;(Ⅱ)证明:平面ABM ⊥平面A 1B 1M 14、如图,AB 就是圆O的直径,C就是圆周上一点,PA ⊥平面ABC .若AE ⊥PC ,E为垂足,F就是PB 上任意一点,求证:平面AEF ⊥平面PBC .5、如图,直三棱柱ABC —A 1B 1C 1 中,AC =BC =1,∠ACB =90°,AA 1 =2,D 就是A 1B 1 中点.(1)求证C 1D ⊥平面A 1B ;(2)当点F 在BB 1 上什么位置时,会使得AB 1 ⊥平面C 1DF ?并证明您的结论6、S 就是△ABC 所在平面外一点,SA ⊥平面ABC,平面SAB⊥平面SBC,求证AB ⊥BC 、7、在四棱锥中,底面ABCD 就是正方形,侧面VAD 就是正三角形,平面VAD ⊥底面ABCD证明:AB ⊥平面VAD8、如图,平行四边形ABCD 中,60DAB ︒∠=,2,4AB AD ==,将CBD ∆沿BD 折起到EBD ∆的位置,使平面EDB ⊥平面ABD 、求证:AB DE ⊥VDC B A SAB9、如图,在四棱锥ABCD P -中,平面PAD ⊥平面ABCD,AB=AD,∠BAD=60°,E 、F 分别就是AP 、AD 的中点求证:(1)直线EF ‖平面PCD;(2)平面BEF ⊥平面PAD10、如图,在三棱锥ABC S -中,平面⊥SAB 平面SBC ,AB AS BC AB =⊥,、过A 作SB AF ⊥,垂足为F ,点G E ,分别就是棱SC SA ,的中点。

线面垂直面面垂直的性质与判定定理课件

线面垂直面面垂直的性质与判定定理课件

学习目标
学习者能够理解面面 垂直的性质与判定定 理的基本概念。
学习者能够通过实际 案例分析,提高解决 实际问题的能力。
学习者能够掌握面面 垂直的性质与判定定 理的应用方法。
02
线面垂直的性质
定义与性质
01
02
03
定义
线面垂直是指一条直线与 某一平面内的任意一条直 线都垂直。
性质1
线面垂直,则该直线与平 面内任意直线都垂直,且 线段与平面所成的角为直 角。
06
实例分析
线面垂直实例
总结词
线面垂直的判定定理
详细描述
若一条直线与平面内两条相交直线都垂直,则该 直线与该平面垂直。
实例
一个长方体,其一条棱与底面垂直,则该棱与底 面所在的平面垂直。
面面垂直实例
总结词
面面垂直的判定定理
详细描述
若两个平面内各有一条相交直线互相垂直,则这两个平面互相垂直 。
实例
证明2
根据判定定理2,如果一个平面$alpha$与另一个平面$beta$的垂线$c$平行,那么可以证明平面$alpha$与平面 $beta$垂直。设过直线$c$作平面$gamma$与$beta$相交于直线$d$,由于$c parallel d$,且$c perp beta$ ,则$d perp beta$。又因为直线$d$在平面$alpha$内,所以平面$alpha perp beta$。
平面与平面垂直的判定定理证明
假设平面β内有一条直线m与平面α垂直,那么可以通过平面的性质证明平面β与平面α 互相垂直。
05
面面垂直的判定定理
判定定理
判定定理1
如果一个平面内的两条相交直线与另一个平面垂直,则这两 个平面垂直。

9.4线面、面面平行的判断、性质

9.4线面、面面平行的判断、性质

9.4 线面、面面平行的判断与性质编制人:高三数学组 负责人:__________________ 【使用说明】:1.课前认真研读课本,完成自主研读学习单设计的问题..2.课堂内限时完成合作探究学习单,书写规范.3.找出疑问和不能独立解决的问题,通过合作探究,教师指导等方式解决.4.课后认真完成反馈巩固学习单. 【大纲要求】 1..2.※自主研读学习单※知识体系一、直线与平面平行1.判定方法(1)用定义:直线与平面无公共点.(2)判定定理: (线线平行⇒线面平行) (3)其他方法: (面面平行⇒线面平行) 2、性质定理: (线面平行⇒线线平行) 二、平面与平面平行 1、判定方法(1)用定义:两个平面无公共点(2)判定定理: (线面平行⇒面面平行) (3)其他方法: (线面垂直⇒面面平行);(面面平行的传递性)(两个平面内相交的两条直线平行,那么这两个平面平行)2、性质定理: (面面平行⇒线线平行)3、两条直线被三个平行平面所截,截得的线段对应 。

基础自测1.已知直线、和平面,那么的一个必要不充分的条件是( ), ,a b αb a //()A α//a α//b ()B α⊥a α⊥b且 、与成等角2.、表示平面,、表示直线,则的一个充分条件是 ( ),且 ,且 ,且 ,且3.已知平面平面,是外一点,过点的直线与分别交于点,过点的直线与分别交于点,且,,,则的长为( )或4.空间四边形的两条对角线,,则平行于两对角线的截面四边形的周长的取值范围是 .※合作探究学习单※ 题型一:直线与平面平行的判定与性质 【例1】►(2011·天津改编)如图,在四棱锥P ABCD 中,底面ABCD 为平行四边形,O 为AC 的中点,M 为PD 的()C α⊂b α//a ()D a b ααβa b α//a ()A βα⊥β⊥a ()B b =βα b a //)(C b a //α//b ()D βα//β⊂a //αβP βα,P m βα,C A ,P n βα,D B ,6=PA 9=AC 8=PD BD ()A 16()B 24524()C 14()D 20ABCD 4=AC 6=BD中点.求证:PB∥平面ACM.例2.正方体ABCD—A1B1C1D1中.(1)求证:平面A1BD∥平面B1D1C;(2)若E、F分别是AA1,CC1的中点,求证:平面EB1D1∥平面FBD.练习:1、如图,若P A⊥平面ABCD,四边形ABCD是矩形,E、F分别是AB、PD的中点,求证:AF∥平面PCE.2.如图,已知M、N、P、Q分别是空间四边形ABCD的边AB、BC、CD、DA的中点.求证:(1)线段MP和NQ相交且互相平分;(2)AC∥平面MNP,BD∥平面MNP.题型二平面与平面平行的判定与性质【例2】►如图,在正方体ABCDA1B1C1D1中,M、N、P分别为所在边的中点.求证:平面MNP∥平面A1C1B;练习:1、如图,在三棱柱ABCA1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:BADC PNQM(1)B ,C ,H ,G 四点共面; (2)平面EF A 1∥平面BCHG .2、已知正四棱锥的底面边长为,侧棱长为,点分别在和上,并且,平面,求线段的长.题型三:线面平行中的探索问题 【例3】►如图所示,在三棱柱ABCA 1B 1C 1中,A 1A ⊥平面ABC ,若D 是棱CC 1的中点,问在棱AB 上是否存在一点E ,使DE ∥平面AB 1C 1?若存在,请确定点E 的位置;若不存在,请说明理由.练习:1、 如图,在四棱锥P ABCD 中,底面是平行四边形,P A ⊥平面ABCD ,点M 、N 分别为BC 、P A 的中点.在线段PD 上是否存在一点E ,使NM ∥平面ACE ?若存在,请确定点E 的位置;若不存在,请说明理由.高考真题 共3-5题1.(文)已知两条直线m 、n ,两个平面α、β.给出下面四个命题:①m ∥n ,m ⊥α⇒nABCD S -a a 2Q P ,BD SC 2:1:=PD BP //PQ SAD PQ⊥α;②α∥β,m⊂α,n⊂β⇒m∥n;③m∥n,m∥α⇒n∥α;④α∥β,m ∥n,m⊥α⇒n⊥β.其中正确命题的序号是(C)A.①③B.②④C.①④D.②③2. (理)对于任意的直线l与平面α,在平面α内必有直线m,使m与l(C)A.平行B.相交C.垂直D.互为异面直线3.(2010·浙江理)设m,l是两条不同的直线,α是一个平面,则下列命题正确的是(B) A.若l⊥m,m⊂α,则l⊥αB.若l⊥α,l∥m,则m⊥αC.若l∥α,m⊂α,则l∥mD.若l∥α,m∥α,则l∥m4.(2010·山东文,4)在空间,下列命题正确的是(D)A.平行直线的平行投影重合B.平行于同一直线的两个平面平行C.垂直于同一平面的两个平面平行D.垂直于同一平面的两条直线平行5、(2011·山东)如图,在四棱台ABCDA1B1C1D1中,D1D⊥平面ABCD,底面ABCD是平行四边形,AB =2AD,AD=A1B1,∠BAD=60°.(1)证明:AA1⊥BD;(2)证明:CC1∥平面A1BD.6、(2010·安徽)如图,在多面体ABCDEF中,四边形ABCD是正方形,AB=2EF=2,EF∥AB,EF⊥FB,∠BFC=90°,BF=FC,H为BC的中点.(1)求证:FH∥平面EDB;(2)求证:AC⊥平面EDB;(3)求四面体BDEF的体积.※巩固提升学习单※共12题左右1.(文)(2011·泰安模拟)设m、n表示不同直线,α、β表示不同平面,则下列命题中正确的是( )A.若m∥α,m∥n,则n∥αB.若m⊂α,n⊂β,m∥β,n∥α,则α∥βC.若α∥β,m∥α,m∥n,则n∥βD.若α∥β,m∥α,n∥m,n⊄β,则n∥β2.(文)(2011·宁波模拟)已知直线l、m,平面α、β,则下列命题中的假命题是( ) A.若α∥β,l⊂α,则l∥βB.若α∥β,l⊥α,则l⊥βC.若l∥α,m⊂α,则l∥mD.若α⊥β,α∩β=l,m⊂α,m⊥l,则m⊥β3.(2011·北京海淀期中)已知平面α∩β=l,m是α内不同于l的直线,那么下列命题中错误..的是( )A.若m∥β,则m∥l B.若m∥l,则m∥βC.若m⊥β,则m⊥l D.若m⊥l,则m⊥β4.(文)(2011·浙江省温州市高三适应性测试)已知m,n,l为三条不同的直线,α,β为两个不同的平面,则下列命题中正确的是( )A.α∥β,m⊂α,n⊂β⇒m∥nB.l⊥β,α⊥β⇒l∥αC.m⊥α,m⊥n⇒n∥αD.α∥β,l⊥α⇒l⊥β5.(2011·广东揭阳模拟)若a不平行于平面α,且a⊄α,则下列结论成立的是( ) A.α内的所有直线与a异面B.α内与a平行的直线不存在C.α内存在唯一的直线与a平行D.α内的直线与a都相交6.(文)(2010·福建福州市)对于平面α和共面的直线m,n,下列命题是真命题的是( )A.若m,n与α所成的角相等,则m∥nB.若m∥α,n∥α,则m∥nC.若m⊥α,m⊥n,则n∥αD.若m⊂α,n∥α,则m∥n7.(2011·浙江五校联考)已知m、n是两条不重合的直线,α、β、γ是三个两两不重合的平面,给出下列命题:①若m∥α,n∥α,m∥β,n∥β,则α∥β;②若α⊥γ,β⊥γ,α∩β=m,n⊂γ,则m⊥n;③若m⊥α,α⊥β,m∥n,则n∥β;④若n∥α,n∥β,α∩β=m,那么m∥n.其中正确命题的序号是________.8.(2011·福建文,15)如下图,正方体ABCD-A1B1C1D1中,AB=2,点E为AD的中点,点F在CD上,若EF∥平面AB1C,则线段EF的长度等于________.9.(2011·郑州一检)已知两条不重合的直线m、n,两个不重合的平面α、β,有下列命题:①若m∥n,n⊂α,则m∥α;②若n⊥α,m⊥β,且n∥m,则α∥β;③若m⊂α,n⊂α,m∥β,n∥β,则α∥β;④若α⊥β,α∩β=m,n⊂β,n⊥m,则n⊥α.其中正确命题的序号是________.10.(2011·广东揭阳一模)如下图,已知平行四边形ABCD中,BC=6,正方形ADEF所在平面与平面ABCD垂直,G,H分别是DF,BE的中点.(1)求证:GH∥平面CDE;(2)若CD=2,DB=42,求四棱锥F-ABCD的体积.11.(2011·广东省广州市质检)如下图,正方体ABCD-A1B1C1D1中,E,F分别为棱AB,CC1的中点,在平面ADD1A1内且与平面D1EF平行的直线( ) A.不存在B.有1条C.有2条D.有无数条12.(文)(2011·北京模拟)给出下列关于互不相同的直线l、m、n和平面α、β、γ的三个命题:①若l与m为异面直线,l⊂α,m⊂β,则α∥β;②若α∥β,l⊂α,m⊂β,则l∥m;③若α∩β=l,β∩γ=m,γ∩α=n,l∥γ,则m∥n.其中真命题的个数为( )13、点是所在平面外一点,分别是、、的重心,求证:(1)平面平面;(2)求.P ABC ∆C B A ''',,PBC ∆PCA ∆PAB ∆ABC //C B A '''AB B A :''。

线线垂直线面垂直面面垂直的判定与性质

线线垂直线面垂直面面垂直的判定与性质

线线垂直线面垂直面面垂直的判定与性质Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】空间中的垂直关系1.线面垂直直线与平面垂直的判定定理:如果 ,那么这条直线垂直于这个平面。

推理模式:直线和平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线 。

2.面面垂直两个平面垂直的定义:相交成 的两个平面叫做互相垂直的平面。

两平面垂直的判定定理:(线面垂直⇒面面垂直)如果 ,那么这两个平面互相垂直。

推理模式:两平面垂直的性质定理:(面面垂直⇒线面垂直)若两个平面互相垂直,那么在一个平面内垂直于它们的 的直线垂直于另一个平面。

一般来说,线线垂直或面面垂直都可转化为线面垂直来分析解决,其关系为:线线垂直−−−→←−−−判定性质线面垂直−−−→←−−−判定性质面面垂直.这三者之间的关系非常密切,可以互相转化,从前面推出后面是判定定理,而从后面推出前面是性质定理.同学们应当学会灵活应用这些定理证明问题.在空间图形中,高一级的垂直关系中蕴含着低一级的垂直关系,下面举例说明.例题:1.如图,AB 是圆O 的直径,C 是圆周上一点,PA ⊥平面ABC .(1)求证:平面PAC ⊥平面PBC ;(2)若D 也是圆周上一点,且与C 分居直径AB 的两侧,试写出图中所有互相垂直的各对平面.2、如图,棱柱111ABC A B C -的侧面11BCC B 是菱形,11B C A B ⊥证明:平面1AB C ⊥平面11A BC3、如图所示,在长方体1111ABCD A B C D -中,AB=AD=1,AA 1=2,M 是棱CC 1的中点 (Ⅰ)求异面直线A 1M 和C 1D 1所成的角的正切值;(Ⅱ)证明:平面ABM ⊥平面A 1B 1M 14、如图,AB 是圆O的直径,C是圆周上一点,PA ⊥平面ABC .若AE ⊥PC ,E为垂足,F是PB 上任意一点,求证:平面AEF ⊥平面PBC .5、如图,直三棱柱ABC —A 1B 1C 1 中,AC =BC =1,∠ACB =90°,AA 1 =2,D 是A 1B 1 中点.(1)求证C 1D ⊥平面A 1B ;(2)当点F 在BB 1 上什么位置时,会使得AB 1 ⊥平面C 1DF 并证明你的结论6、S 是△ABC 所在平面外一点,SA ⊥平面ABC,平面SAB ⊥平面SBC,求证AB ⊥BC.7、在四棱锥中,底面ABCD 是正方形,侧面VAD 是正三角形,平面VAD ⊥底面ABCD证明:AB ⊥平面VAD8、如图,平行四边形ABCD 中,60DAB ︒∠=,2,4AB AD ==,将CBD ∆沿BD 折起到EBD ∆的位置,使平面EDB ⊥平面ABD .求证:AB DE ⊥ 9、如图,在四棱锥ABCD P -中,平面PAD ⊥平面ABCD ,AB=AD ,∠BAD=60°,E 、F 分别是AP 、AD 的中点求证:(1)直线EF ‖平面PCD ;(2)平面BEF ⊥平面PADVDCBA SA10、如图,在三棱锥ABC S -中,平面⊥SAB 平面SBC ,AB AS BC AB =⊥,.过A 作SB AF ⊥,垂足为F ,点G E ,分别是棱SC SA ,的中点。

(完整版)线面、面面平行和垂直的八大定理

(完整版)线面、面面平行和垂直的八大定理

线面、面面平行和垂直的八大定理一、线面平行。

1、判定定理:平面外一条直线与平面内一条直线平行,那么这条直线与这个平面平行.符合表示:βββ////a b a b a ⇒⎪⎭⎪⎬⎫⊂⊄2、性质定理:如果一条直线与平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

符号表示: b a b a a a ////⇒⎪⎪⎭⎪⎪⎬⎫=⊂⊄βαβαα二、面面平行。

1、判定定理:如果一个平面内有两条相交直线分别平行于另一个平面内的两条相交直线,那么这两个平面平行。

符号表示: βα//////⇒⎪⎪⎪⎭⎪⎪⎪⎬⎫==N n m M b a a m bn 2、性质定理:如果两个平面平行同时与第三个平面相交,那它们的交线平行。

符号表示: d l d l ////⇒⎪⎭⎪⎬⎫==γβγαβα (更加实用的性质:一个平面内的任一直线平行另一平面)三、线面垂直。

1、判定定理:如果一条直线与一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面.符号表示: α⊥⇒⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫=⊥⊥a M c b b a c a $:三垂线定理:(经常考到这种逻辑)在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。

符号表示:PA a A oA a po oA a ⊥⇒⎪⎪⎭⎪⎪⎬⎫=⊥⊥⊂⊂ααα 2、性质定理:垂直同一平面的两条直线互相平行。

(更加实用的性质是:一个平面的垂线垂直于该平面内任一直线.)四、面面垂直.1、判定定理:经过一个平面的垂线的平面与该平面垂直。

βααβ⊥⇒⊂⊥a a ,2、性质定理:已知两个平面垂直,在一个平面内垂直于交线的直线垂直于另一个平面。

βαβαβα⊥⇒⊥⊂=⋂⊥a b a a b ,,,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线面、面面关系的判定与性质
一、线面关系的转换网络图
1﹒线线平行:
(1)平行公理:平行于同一直线的两直线平行(线线平行的传递性)﹒
(4)线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么
这条直线和交线平行(线面平行→线线平行)﹒
(6)面面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行(面面平行
→线线平行)﹒
(12)线面垂直的性质定理:垂直于同一平面的两直线平行﹒
2﹒线线垂直:
(9)线面垂直的性质:一直线垂直于一平面,这条直线垂直于平面内所有直线(线面垂直→线线垂直)其它判定方法:利用平面几何中证明线线垂直的方法(如勾股定理,等腰直角三角形底边上的高,正方形(菱形)的对角线等)﹒
3﹒线面平行:
(2)线面平行的判定定理:如果平面外的一条直线和平面内的一条直线平行,那么这条直线和这个平面
平行(线线平行→线面平行)﹒
(5)面面平行的性质定理:两个平面平行,其中一个平面内的直线必平行于另一个平面(面面平行→线
面平行)﹒
4﹒线面垂直:
(7)线面垂直的判定定理:如果一直线和平面内的两相交直线垂直,这条直线就垂直于这个平面(线线
垂直→线面垂直)﹒
(11)线面垂直的判定定理推论:如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个
平面﹒
(14)一条直线垂直于两个平行平面中的一个平面,则它也垂直于另一个平面﹒
(10)面面垂直的性质定理:如果两个平面垂直,那么在—个平面内垂直于交线的直线必垂直于另—个
平面(面面垂直→则线面垂直)﹒
5﹒面面平行:
(4)面面平行的判定定理:一个平面内的两条相交直线分别平行于另一个平面,这两个平面平行(线面
平行→面面平行)﹒
(13)定理:垂直于同一条直线的两个平面平行﹒ 6﹒面面垂直:
(8)面面垂直的判定定理:如果一条直线与一个平面垂直,另一个平面过这条线,则这两个平面垂直
(面面垂直→则线面垂直)﹒
7.直线与平面所成的角
(1)定义:平面的一条斜线和它在这个平面内的射影所成的锐角,叫做这条直线和这个平面所成的角.
这个角的范围为]90,0[0
.
(2)斜线与平面成角计算一般步骤: ①找过斜线上一点与平面垂直的直线;
②连结垂足和斜足,得出斜线在平面的射影,确定出所求的角; ③把这个角放在三角形中计算.
注:斜线PA 与平面α所成的角为PAB ∠,其中α平面⊥PB . 二、典型例题
例1:三棱锥ABC P -中,ABC PA 平面⊥, 0
90=∠BAC ,证明:PAC BA 平面⊥. (判定定理、定义)
变式1:三棱锥ABC P -中,PA AC ⊥,ABC ∆满足0
90=∠BAC , AC PA =,D 是边PC 的中点,
证明:DAB PC 平面⊥.
(判定定理、定义、等腰三角形的高)
C
B A
P
C
D
A
P B
P
A
B
α
变式2:三棱锥ABC P -中,ABC PA 平面⊥,4===AB AC PA ,22=BD ,AB PC ⊥,D 是
边PC 的中点,证明:PAC BD 平面⊥. (判定定理、定义、勾股定理)
变式3:三棱锥ABC P -中, PA AC ⊥,满足24BC PC PB PA ====,D 是边PC 的中点,
ABD PAD 平面平面⊥.证明:PAC BD 平面⊥.
(判定定理、定义、面面垂直性质定理)
例2:【信宜市2015届高三10月统测】如图,在四棱锥P ABCD -中,底面ABCD 是正方形,侧棱
ABCD PD 底面⊥,DC PD =,E 是PC 的中点,作PB EF ⊥,交PB 于点F .
(1)证明:EDB PA 平面//;(2)若2==DC PD ,求三棱锥BDE A -的体积; (3)证明:EFD PB 平面⊥.
C
B
A
P
D
C
D
A
P
B
P
A
B
C
D
E
F
三、巩固训练、能力提升
1.【2014高考北京卷 节选】如图,在三棱柱111ABC A B C -中,侧棱垂直于底面,AB BC ⊥,
12AA AC ==,E 、F 分别为11A C 、BC 的中点.求证:平面ABE ⊥平面11B BCC .
2.【2014高考江苏卷 节选】如图在三棱锥-P ABC 中,,,D E F 分别为棱,,PC AC AB 的中点,已知
,6,8,5PA AC PA BC DF ⊥===.证明:平面BDE ⊥平面ABC .
3.【2013年高考北京 节选】如图,在四棱锥P ABCD -中,//AB CD ,AB AD ⊥,2CD AB =,平面
PAD ⊥底面ABCD ,PA AD ⊥,E 和F 分别是CD 和PC 的中点,求证:
(1)PA ⊥底面ABCD ;(2)平面BEF ⊥平面PCD .
4.【肇庆市2015届高中毕业班第一次统一检测】如图,已知P A ⊥⊙O 所在的平面,AB 是⊙O 的直径,AB =2,C 是⊙O 上一点,且AC =BC =P A ,E 是PC 的中点,F 是PB 的中点. (1)求证:EF //平面ABC ;(2)求证:EF ⊥平面P AC ; (3)求三棱锥B —P AC 的体积.
5.【广东2015届高三第一次六校联考】直角梯形ABCD 中AB ∥ CD ,CD AB 2
1
=
,BC AB ⊥,平面ABCD ⊥平面BCE ,BCE ∆为等边三角形,F M ,分别是BC BE ,的中点,DC DN 4
1
=
. (1)证明:EF ⊥AD ;(2)证明:MN ∥ 平面ADE ; (3)若1,2AB BC ==,求几何体ABCDE 的体积.
P
A
B
O E F
6.【广州六中2015届9月高三第二次月考】如图,在三棱柱111C B A ABC -中,1AA ⊥底面ABC ,且
ABC ∆为正三角形,16AA AB ==,D 为AC 的中点.
(1)求证:直线1AB ∥平面D BC 1;(2)求证:平面D BC 1⊥平面;
(3)求三棱锥D BC C 1-的体积.
7.【广州市荔湾区2015届高三11月调研测试】如图所示,已知PD 垂直以AB 为直径的圆O 所在平面, 点D 在线段AB 上,点C 为圆O 上一点,且33,22BD PD AC AD ====. (1)求证:PA ⊥CD ;
(2)求点B 到平面PAC 的距离.
D
B 1
C 1
A
B
C
A 1
D 1
C 1
B 1
A 1
F E
D
C
B
A
8.【韶关市2015届高三模拟底考试】如图,长方体1111ABCD A B C D -的底面是正方形,1AB =,
12AA =,线段11B D 上有两个点E ,F .
(1)证明:11AC B D ⊥;(2)证明:EF ABCD 平面∥; (3)若E ,F 是线段11B D 上的点,且1
2
EF =,求三棱锥ABF E -的体积.
9.【2015届中山七校联考】如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 是菱形,点O 是对角线AC 与BD 的交点,M 是PD 的中点,2,60AB BAD =∠=. (1)求证://OM 平面PAB ; (2)平面PBD ⊥平面PAC ; (3)当四棱锥ABCD P -的体积等于3时,求PB 的长.
F E

D
C
B
A
10.【2014高考浙江卷】如图,四棱锥BCDE A -中,平面ABC ⊥平面BCDE ,90CDE BED ∠=∠=︒,
2AB CD ==,1DE BE ==,2AC =.
(1)证明:AC ⊥平面BCDE ;
(2)求直线AE 与平面ABC 所成的角的正切值.
11.【深圳市2015届高三年级第一次五校联考】如图甲,在平面四边形ABCD 中,已知
45,90,105,o o o A C ADC ∠=∠=∠=AB BD =,现将四边形ABCD 沿BD 折起,使平面ABD ⊥平
面BDC (如图乙),设点E 、F 分别为棱AC 、AD 的中点. (1)求证:DC ⊥平面ABC ;
(2)设CD a =,求三棱锥A -BFE 的体积.
A
D E
B
C
盛年不重来,一日难再晨。

及时宜自勉,岁月不待人。

相关文档
最新文档