固体物理倒格子
固体物理学-倒格子

§3 倒格子
证明: 证明:
v v a i gb j = 2πδ ij
如果所考虑的体系足够大,忽略表面效应, 如果所考虑的体系足够大,忽略表面效应,布拉 菲格子满足平移对称性要求,对应点的物理化学性质, 菲格子满足平移对称性要求,对应点的物理化学性质, 如质量、密度、电子云密度、原子实产生的势场等, 如质量、密度、电子云密度、原子实产生的势场等, 亦为周期函数,一般地写成: 亦为周期函数,一般地写成:
v u v v Γ r + R n = Γ r L L L L (1)
(
) ()
u v v v v 其中, 其中,R n = n1 a1 + n2 a 2 + n3 a 3
v 将 Γ r 展成傅里叶级数
()
v u iG h gr v uv v Γ r = ∑ A Gh e L L L L L L L ( 2)
g u v v u v v −iG h gr 1 A Gh = ∫ Γ r e L L L L L L ( 3) Ω Ω Ω为原胞体积, ) 式意味着,对所有布拉菲格子的所有格矢,应有 (1 u v v u v v u − iG h gr v 1 A Gh = ∫ Γ r + R n e dr L L L L L L ( 4 ) Ω Ω uv v u v / 引入r = r + R n , ( 4 ) 式化为 u v uv uu/v u u v v u u v v u v u v iG h gRn 1 / − iG h gr / iG h gR n A Gh = ∫ Γ r e dr ge = A Gh e L L L L L ( 5) Ω Ω 即: u u v v u v iG h gR n A G h 1 − e = 0L L L L L L L L ( 6 )
固体物理第二章第四节 倒格子

1 ig r ig Rn 1 ig r ig Rn A( g ) F (r )e e dr F (r )e dr e
A( g ) 0 or
g
A( g )
定义对布拉维格子中所有格矢满足或或m为整数的全部端点的集合构成该布拉维格子称为正格子的倒格子reciprocallattice与倒格子的定义对应由格矢的端点所描述的布拉维格子称为正格子directlattice由端点的集合所描述的布拉维格子称为倒格子reciprocallattice称为倒格矢利用倒格矢满足的傅里叶展开为
ig Rn ig Rn A( g ) A( g )e A( g )[1 e ] 0 ig Rn
ig r F (r ) A( g )e 0
e
1
不合要求,应舍去
所以
e
ig Rn
1
ig Rn 也就是说,一定存在某些 g 使得当 e 1 成立时
同理可得 b2 , b3
所以倒格子基矢与正格子基矢的关系为:
2π b1 a2 a3 Ω 2π b2 a3 a1 Ω 2π b3 a1 a2 Ω
其中 a1 , a2 , a3 是正格基矢 Ω a1 a2 a3
则下式自然成立: n1Gh a1 n2Gh a2 n3Gh a3 2 m 或: Gh a1 2 h1; Gh a2 2 h2 ; Gh a3 2 h3 由于 a1 , a2 , a3为基矢,互不共面,则由 bi a j 2 ij 可知 b1 , b2 , b3 亦应该不共面,从 而可以用 Gh h1b1 h2b2 h3b3 描述倒格子。
固体物理03-倒格子空间

4
dr
nj
(r )r 2
sin Gr Gr
实验发现固体中的原子形状因子与自由原子的差别不大
其它实验手段
1. 电子衍射 (动量空间)
与X射线相比,电子波长更短,所以更加精确;更容易被物体吸收适 合于研究微薄膜、小晶体。
2. 中子散射 (动量空间)
可以测量晶体磁结构
3. 扫描隧道显微镜(实空间,表面)
S v1v2v3 f {1 exp i v2 v3 exp i v1 v3 exp i v1 v2 }
S 4 f 所有指数均为奇数,或均为偶数 S 0 其它情况
面心立方 的x-ray 散射图像
原子形状因子 f j dV n j (ρ)eiGρ
对自由原子:
f j 2 dr r 2 d cos n j exp(iGr cos )
j
ρ r rj
定义原子的形状因子 f j dV n j (ρ)eiGρ
结构因子
化简后可以得到晶体的结构因子
SG
f eiGr j j
j
对于第 j 个原子
G rj v1b1 v2b2 v2b2 x ja1 y ja2 z ja3 2 v1x j v2 y j v3z j
散射幅度
SG
dV n(r)eiGr
cell
结构因子
结构因子
假设晶胞中有 s 个原子,可以把原胞中的电荷密度分配到每一 个原子上(分配方法不唯一),即:
s
n(r) n j (r rj )
j 1
SG
cell dV n j (r r j )eiGr
j
eiGrj cell dV n j (ρ)eiGρ
晶体点阵的Fourier变换,晶体点阵则是倒易点阵的Fourier逆 变换。正格子的量纲是长度 L, 称作坐标空间,倒格子的量钢是 长度的倒数 L-1,称作波矢空间(或称动量空间)。
简述倒格子点阵的物理意义

简述倒格子点阵的物理意义
倒格子点阵是固体物理学中的一个重要概念,用于描述晶体中离子、原子或分子的排列方式。
它表示了晶体中离子在晶格中的周期性排列。
倒格子点阵在物理意义上具有以下重要特征:
1.倒格子与晶体结构的相互关系:倒格子是晶体格矢的补格。
晶体格矢是描述晶体结构的向量,而倒格子则是晶格矢的傅里叶变换。
倒格子点阵的形状和大小与晶体结构紧密相关。
2.表征晶体的动量空间:倒格子点阵的形成使得晶体在动量空间中的结构得以描述。
晶体具有动量离散化的性质,电子、声子等载流子在动量空间中的行为可以通过倒格子点阵的形态和性质来理解和
分析。
3.描述布里渊区和能带结构:倒格子点阵的布里渊区(Brillouin Zone)是动量空间中与晶格有关的基本单元。
布里渊区的形状和大小直接决定了电子能带结构、光学性质和输运特性等重要物理现象。
4.反映物质衍射性质:倒格子点阵的概念是描述晶体衍射的基础。
实验中利用晶体的衍射现象可以确定物质的结构和性质,倒格子点阵提供了理论上的基础框架。
倒格子点阵在固体物理学中具有重要的物理意义,它是描述晶体结构和性质的关键概念,并与动量空间、能带结构、衍射性质等密切相关。
通过倒格子点阵的分析,可以深入理解晶体的属性和行为,为研究材料科学和固体物理学提供了有力的工具和理论基础。
固体物理第一章 晶体结构4-5

—— 由于六角晶体的各向异性,具有光的双折射现象
—— 立方晶体的光学性质则是各向同性的 ——已知晶体的对称性,可以简化物理常数的测量
20
固体物理
固体物理学
晶体宏观对称性的描述
列举晶体的全部对称操作:
对称操作是指能使晶体自身重合的动作。 与晶体宏观对称性相对应的是点对称操作 (操作过程中保持空间中至少有一个不动点的 对称操作),包括旋转、中心反演,镜面反映
及它们的联合操作。
对称操作的数目越多,晶体的对称性越高。
21
固体物理
固体物理学 举例:立方晶体的对称操作
绕三个立方轴转 3 , ,
2 2
绕6条面对角线转
绕4条体对角线转
2 4 , 3 3
共9个对称操作
共6个对称操作
共8个对称操作
另外,“不动”也是1个对称操作。以上24个对称以操作 加中心反演仍是对称操作,立方晶体共有48个对称操作。
i,j=1,2,3
注意:倒格子基矢的量纲是[长度]-1,与波数矢量 具有相同的量纲。
7
固体物理
固体物理学
2.3位矢之间关系
正格矢: 倒格矢: 二者的关系:
Rl l1 a1 l2 a2 l3 a3
G h h1 b1 h2 b2 h3 b3
G h Rl 2n (n为整数);
11
固体物理
固体物理学
2 d 晶面族(h1h2h3)的面间距d为 Gh
(2)
证明:由前面的证明可知,原点 到面ABC的距离即为所求面间距 (设为d)。
d OA cos 又 OA Gh OA Gh cos d OA G Gh a1 1 2 ( h1 b1 h2 b2 h3 b3 ) h1 Gh Gh
固体物理§1.5倒格子

r r r Kh ⊥ CA Kh ⊥ CB ⇒ Kh ⊥ 晶面 ABC。 ,
9
r 3.倒格矢 Kh和面间距的关系 倒格矢 晶面ABC为晶面族中最靠近原点的晶面。 为晶面族中最靠近原点的晶面。 晶面 为晶面族中最靠近原点的晶面
dh1h2h3 r a1 = ⋅ h1
r r r r r Kh a1 ⋅ h1b1 + h2b2 + h2b3 r = r Kh h1 Kh
( Ω Ω=2π )
∗
3
3 r r r (2π ) (a a ) [(a a ) (a a )] r r r r r r ∗ Ω = b1 ⋅ (b2 × b3 ) = 2× 3 ⋅ 3× 1 × 1× 2 3 Ω r r r r r r r r r 利用: A 利用: × (B × C) = ( A⋅ C)B − ( A⋅ B)C r r r r r r r r r r r r r (a3 × a1 ) × (a1 × a2 ) = [(a3 × a1 ) ⋅ a2 ]a1 − [(a3 × a1 ) ⋅ a1 ]a2 = Ωa1
1
2.倒格子基矢和正格子基矢之间的关系 倒格子基矢和正格子基矢之间的关系
r r r r r r 正格子基矢: a 正格子基矢: 1、a2、a3;倒格子基矢: 1、b2、b3; 倒格子基矢: b
晶面族: a d 晶面族: 1a2、a2a3、a3a1的面间距分别为 3、d1、d2;
r b3
r a3
r b2
3.倒格矢和正格矢的关系 倒格矢和正格矢的关系
r r r r r r r r Kh ⋅ Rl = (l1a1 + l2a2 + l3a3 ) ⋅ (h b1 + h2b2 + h3b3 ) 1 = 2πµ (µ为整数)
固体物理03-倒格子空间

实空间点阵
简立方
a1 a i, a2 a j, a3 a k
倒空间点阵
简立方
2
2
2
b1 a i, b2 a j, b3 a k
2 a 2
a
2 a
四方晶格
简单点阵的倒易点阵也是简单点阵。 正格子的基矢越长,倒格子的基矢越短,反之亦然。
六角点阵
正格子空间六方结构,在倒格子空间亦为六方结构。 不过其基矢尺寸关系发生变化,基矢方向也转了30度。
k 2 2k G G 2 k 2
2k G G 2 (G 和 –G 都是倒格矢)
G
衍射方程(也是布里渊区的边界方程)
k
k ·(G/2)=(G/2)2
Ewald 图解法
1. 选择原点以入射 k 矢长度 为半径作圆,保证另一端 点在倒格矢上。
2. 连接从原点到与圆相交的 所有倒格矢的波矢k’都能 发生衍射。
4
dr
nj
(r )r 2
sin Gr Gr
实验发现固体中的原子形状因子与自由原子的差别不大
其它实验手段
1. 电子衍射 (动量空间)
与X射线相比,电子波长更短,所以更加精确;更容易被物体吸收适 合于研究微薄膜、小晶体。
2. 中子散射 (动量空间)
可以测量晶体磁结构
3. 扫描隧道显微镜(实空间,表面)
4. 原子力显微镜(实空间,表面)
中国散裂中子源
扫描隧道显微镜(STM)
Si (100) 表面
原子力显微镜(AFM)
Si (111) 表面
作业 2
1. 证明正格子与倒格子互易 2. 证明面心立方格子的倒格子是体心立方,体心立方的倒格子是
面心立方!
3. 证明只有 k G' 时,衍射幅度F才不为0。
倒格子讲解

中文名称:倒格子英文名称:Reciprocal lattice术语来源:固体物理学倒格子,亦称倒易格子(点阵),它在固体物理学中,特别是在晶格动力学理论、晶体电子论以及晶体衍射方面有着较为广泛的应用。
1定义假定晶格点阵基矢a1、a2、a3(1、2、3表示 a 的下标,粗体字表示a1 是矢量,以下类同)定义一个空间点阵,我们称之为正点阵或正格子,若定义b1 = 2 π ( a2× a3) /νb2 = 2 π ( a3× a1) /νb3 = 2 π ( a1× a2) /ν其中 v = a1· ( a2× a3 ) 为正点阵原胞的体积,新的点阵的基矢b1、b2、b3是不共面的,因而由b1、b2、b3也可以构成一个新的点阵,我们称之为倒格子,而b1、b2、b3 称为倒格子基矢。
2性质1. 倒格子的一个矢量是和晶格原胞中一组晶面相对应的,它的方向是该晶面的法线方向,而它的大小则为该晶面族面间距倒数的2π倍。
2. 由倒格子的定义,不难得到下面的关系a i ·b j = 2 πδij3. 设倒格子与正点阵(格子)中的位置矢量分别为G = αb1+ βb2 + γb3R = ηa1 + θa2 + λa3 (α,η,β,θ,γ,λ皆为整数)不难证明G·R = 2π ( αη + βθ +γλ ) = 2π n,其中n为整数。
4. 设倒格子原胞体积为ψ,正格子原胞体积为 v ,根据倒格子基矢的定义,并利用矢量乘法运算知识,则可得到ψ v = ( 2 π )^3.5. 正格子晶面族(αβγ)与倒格子矢量G = αb1+ βb2 + γb3 正交(具体的内容及证明过程,请参考文献[1])3倒格子引入的意义这里简单的说一点,如上面的性质1,倒格子中的一个基矢对应于正格子中的一族晶面,也就是说,晶格中的一族晶面可以转化为倒格子中的一个点,这在处理晶格的问题上有很大的意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
为周期的三维— 倒格子基矢量
b1
2
a2 a3 a1 a2 a3
b2
2
a3 a1 a1 a2 a3
b3
2
a1 a2 a1 a2 a3
以
为基矢构成一个倒格子
倒格子每个格点的位置
Vh1, h2 , h3
1 a1 a2 a3
dxeiGh1h2h3 xV ( x )
—— 积分在一个原胞中进行
—— 倒格子与正格子间的关系 1) 正格子原胞体积反比于倒格子原胞体积
* (2 )3
2)正格子中一簇晶面
和
正交
—— 可以证明
Gh1h2h3 CA 0 Gh1h2h3 CB 0
与晶面族正交
3)倒格子矢量
为晶面
晶面方程
各晶面到原点的距离(x在G上的投影)
的法线方向
ai
bj
2ij
面间距
d
2
h1b1 h2b2 h3b3
—— 倒格子矢量
倒格子基矢的性质
ai
bj
2ij
2
0
(i j) (i j)
—— 倒格子空间是正格子的倒易空间 —— 周期性函数可以展开为傅里叶级数
原胞里任一点
宗量
晶格周期性函数
傅里叶级数
为整数
由倒格子基矢
得到 代入
得到
V (x)
V eiGn1n2n3 x h1, h2 , h3
h1, h2 , h3