2019-2020学年高中数学 第二章 变化率与导数及导数的应用 导数与函数的单调性教案1 北师大版选修1-1.doc

合集下载

高三数学一轮总复习 第二章 函数、导数及其应用 2.10 变化率与导数、导数的计算课件.ppt

高三数学一轮总复习 第二章 函数、导数及其应用 2.10 变化率与导数、导数的计算课件.ppt
3.函数 f(x)的导函数 fx+Δx-fx
称函数 f′(x)=□9 __Δl_ixm→_0_______Δ_x_____为 f(x)的导函数,导函数有时也记作 y′。
6
4.基本初等函数的导数公式 原函数 f(x)=c
f(x)=xn(n∈Q*) f(x)=sinx f(x)=cosx
f(x)=ax(a>0,且 a≠1) f(x)=ex
处的导数,记作
f′(x0)或
y′|x=x ,即 0
f′(x0)=lim
Δx→0
ΔΔyx=□5
5
(2)几何意义
函数 f(x)在点 x0处的导数 f′(x0)的几何意义是在曲线 y=f(x)上点□6 _(_x_0_,__f(_x_0)_)___ 处的□7 ___切__线__的__斜__率______。相应地,切线方程为□8 _y_-__y_0_=__f′__(_x_0)_(_x_-_x_0_)__。
3
课前学案 基础诊断
夯基固本 基础自测
4
1.函数 y=f(x)从 x1 到 x2 的平均变化率 fx2-fx1
函数 y=f(x)从 x1 到 x2 的平均变化率为□1 ____x_2-__x_1__,若 Δx=x2-x1,Δy=f(x2)
Δy
-f(x1),则平均变化率可表示为□2 __Δ__x____。
7
5.导数运算法则
(1)[f(x)±g(x)]′=□18 ___f′ __(_x_)_±_g_′__(x_)_____; (2)[f(x)g(x)]′=□19 __f′__(_x_)g_(_x_)_+__f(_x_)g_′__(_x_)_; (3)gfxx′=□20 _f_′__x__g_[_xg_-_x_f]_2x__g_′___x__(g(x)≠0)。

高中数学 第2章 变化率与导数 2 导数的概念及其几何意义课件 北师大版选修22

高中数学 第2章 变化率与导数 2 导数的概念及其几何意义课件 北师大版选修22

(2)∵f(x)= x,
∴Δy=f(1+Δx)-f(1)= 1+Δx-1,
∴ΔΔyx=
1+ΔΔxx-1=
1+Δx-1 1+Δx+1 Δx 1+Δx+1

1 1+Δx+1.
∴Δlxi→m 0 ΔΔxy=Δlxi→m 0 1+1Δx+1=12,
∴f′(1)=12.
根据定义求导数是求函数的导数的基本方法,
1 C.2 解析:
1 D.4 ΔΔyx=2+1ΔΔxx-12=-4+12Δx,
当Δx→0时,ΔΔxy→-14,故在x=2处的导数为-14. 答案: A
3.设函数y=f(x)为可导函数,且满足 Δlxi→m 0
f1-f1-x x
=-1,则曲线y=f(x)在点(1,f(1))处切线的倾斜角为______.
=Δlxi→m 0
Δx+x0+1 Δx-x10 Δx
=Δlxi→m 0
Δx+x0-x0+ΔxΔx Δx
=Δlxi→m 0 1+x0x-0+1Δx=1-x120,
又∵g′(x0)=34,∴1-x102=34, ∴x20=4,∴x0=2或-2.
利用导数求切线方程
已知曲线y=
1 3
通常分三步:
(1)计算函数值的增量Δy=f(x0+Δx)-f(x0);
(2)计算函数值的增量Δy与自变量的增量Δx的比值ΔΔyx;
(3)计算上述增量的比值在Δx→0时的极限,就是该函数在
x0点的导数,即f′(x0)=Δlxi→m 0
ΔΔyx=Δlxi→m 0源自fx0+Δx-fx0 Δx
.这
三步简称为:一差,二比,三极限.
1.已知函数f(x)在x=a处可导,则 hl→ima
fh-fa h-a
等于

高中数学第二章变化率与导数2.1变化的快慢与变化率课件北师大版选修2_2

高中数学第二章变化率与导数2.1变化的快慢与变化率课件北师大版选修2_2

M 目标导航 UBIAODAOHANG
Z 知识梳理 HISHI SHULI
D 典例透析 IANLI TOUXI
S 随堂演练 UITANGYANLIAN
题型一 题型二
解 :(1)∵Δy=f(4+Δt)-f(4)=(4+Δt)3+3-(43+3)=(Δt)3+12(Δt)2+48Δt,
������
∴ Δ������ = 48 + 12Δ������ + (Δ������)2.
������ ������
=
������(������1)-������(������0) ������1-������0
=
������(������0+ΔΔ������������)-������(������0). 而当 Δx 趋于 0 时,平均变化率就趋于函数在 x0点的瞬时变化率,
瞬时变化率刻画的是函数在一点处变化的快慢.
当Δt=0.01时,平均速度为14+3×0.01=14.03.
(2)结合(1)知,当t趋于2时,平均速度趋于14.所以估计当t=2时,该
质点的瞬时速度为14.
M 目标导航 UBIAODAOHANG
Z 知识梳理 HISHI SHULI
D 典例透析 IANLI TOUXI
S 随堂演练 UITANGYANLIAN
1)
=2x0-2+Δx.
M 目标导航 UBIAODAOHANG
Z 知识梳理 HISHI SHULI
D 典例透析 IANLI TOUXI
S 随堂演练 UITANGYANLIAN
题型一 题型二
题型二
瞬时变化率
【例2】 如果一个质点从定点A开始运动,在时间t的位移函数为

2020年高考数学(文科)复习课件 第二单元 第13讲 变化率与导数、导数的运算

2020年高考数学(文科)复习课件 第二单元 第13讲 变化率与导数、导数的运算

课堂考点探究
考向2 求切点坐标
例 3(1)[2018·衡水武邑中学月考] 已知直线 l:x-ty-2=0(t≠0)与函数 f(x)=e������������(x>0)的图像相切,则切 点的横坐标为 ( )
A.2± 2 B.2+ 2 C.2 D.1+ 2
(2)[2018·大连一模] 过曲线 y=ex 上一点 P(x0,y0)作曲
程为 y-1=2(x-0),即 2x-y+1=0.
课前双基巩固
4.[教材改编] 若曲线 y=ax2-ln x 在点(1,a)处
的切线平行于 x 轴,则 a=
.Hale Waihona Puke [答案]1 2[解析] ∵y=ax2-ln x, ∴y'=2ax-1������,∴y' x=1=2a-1=0,∴a=12.
课堂考点探究
考点一

e������ ������
=
������,
解得 m=2± 2,故
e������ (������-1) ������ 2
=
1 ������
,
选 A.
课堂考点探究
例 3(1)[2018·衡水武邑中学月考] 已知直线 l:x-ty-2=0(t≠0)与函数 f(x)=e������(x>0)的图像相切,则切
例 1 (1)[2018·咸阳模拟] 已知 f'(x)是函
数 f(x)的导函数,且对任意的实数 x 都有
f'(x)=ex(2x-2)+f(x)(e 是自然对数的底
数),f(0)=1,则 ( )
A.f(x)=ex(x+1) B.f(x)=ex(x-1) C.f(x)=ex(x+1)2 D.f(x)=ex(x-1)2

北师大版高中数学选修2-2:第二章 变化率与导数 复习课件

北师大版高中数学选修2-2:第二章 变化率与导数 复习课件

g
(
x)
(
g
(
x)

0)
当点Q沿着曲线无限接点
P即Δx→0时,割线PQ如果有一
个极限位置PT。则我们把直线
y
PT称为曲线在点P处的切线。
设切线的倾斜角为α,那 么当Δx→0时,割线PQ的斜率, 称为曲线在点P处的切线的斜 率。

P o
即: k切线

f
' ( x0 )

lim
x0
y x

练习3:求下列函数的导数。
12 y
x x2
y 1 4 x2 x3
x y
1 x2
y 1 x2
1 x2 2
y tan x
本题可先将tanx转化为sinx和cosx的比值, 再利用导数的运算法则(3)来计算。
y

1 cos2
x
练习4:求曲线
y

9 x
在点M(3,3)处的切线
x)-f(x0),若极限
lim
x0
y x

lim
x0
f
( x0
x) x
f
(x0 )
存在,
则此极限称为f(x)在点 x x0 处的导数,记为
f ’(x0),或 y |xx0 。
2.导函数:如果函数y=f(x)在区间(a,b)内每一点都可导,
就说y=f(x)在区间(a,b)内可导.即对于开区间(a,b)内每
y 3x2 2
练习2:求下列函数的导数。
y x3 sin x cos x y 3 x 2 cos x sin x
y 2sin x cos x 2x2 1 y co s x 4 x

高中数学 第二章 变化率与导数 2.2.1 导数的概念课件42高二选修22数学课件

高中数学 第二章 变化率与导数 2.2.1 导数的概念课件42高二选修22数学课件

第八页,共三十一页。
解:
__ s
1
v 2g g(t)
t
2
(1)将 Δt=0.1代入上式,得: __
v2.05g2.05m/s.
(2)将 Δt=0.01代入上式,得: __ v2.00g52.00m 5/s.
(3)当t 0,2t 2,
__
从而平均速v度 的极限为: vli_ m v _lim s2g2m 0/s.
第五页,共三十一页。
练习:求曲线 y x13上一点P(1,-1)处的切线方程. 答案(dá àn):y=3x-4.
第六页,共三十一页。
2.瞬时速度(shùn
shísù dù)
已知物体作变速直线运动
,其运动 (yùndòng)
(yùndòng)



s
=s(t)(s表示位移,t表示时间),求物体在t0时刻的速度.
x 0
x
(1x)21(11)
lim
x0
x
y = x 2 +1
lim2x(x)2 2.
x0 x
因此,切线(qiēxiàn)方程为y-2=2(x-1),
即y=2x.
求曲线在某点处的切
yQ
y
P M
x
1j
x
线方程的基本步骤 : 先利
-1 O 1
用切线(qiēxiàn)斜率的定义求出切
线的斜率,然后利用点斜式求切线方程.
t t 0 t 0
即物体(wùtǐ)在时刻t0=2(s)的瞬时速度等于20(m/s). 当时间间隔Δt 逐渐变小时,平均速度就越接近t0=2(s)
时的瞬时速度v=20(m/s).
第九页,共三十一页。
练习:某质点(zhìdiǎn)沿直线运动,运动规律是s=5t2+6,求:

2022数学第二章函数导数及其应用第十节变化率与导数导数的运算教师文档教案文

2022数学第二章函数导数及其应用第十节变化率与导数导数的运算教师文档教案文

第十节变化率与导数、导数的运算授课提示:对应学生用书第37页[基础梳理]1.导数的概念(1)函数y=f(x)在x=x0处导数的定义称函数y=f(x)在x=x0处的瞬时变化率=错误!为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′|x=x0,即f′(x0)=错误!=.(2)导数的几何意义函数f(x)在点x0处的导数f′(x0)的几何意义是在曲线y=f(x)上点P(x0,y0)处的切线的斜率(瞬时速度就是位移函数s(t)对时间t 的导数).相应地,切线方程为y-y0=f′(x0)(x-x0).(3)函数f(x)的导函数称函数f′(x)=错误!为f(x)的导函数.2原函数导函数f(x)=c(c为常数)f′(x)=0f(x)=xα(α∈Q*)f′(x)=αxα-1f(x)=sin x f′(x)=cos__xf(x)=cos x f′(x)=-sin__xf(x)=a x(a>0,且a≠1)f′(x)=a x ln__af(x)=e x f′(x)=e x f(x)=log a x(a>0,且a≠1)f′(x)=错误!f(x)=ln x f′(x)=错误!3.导数的运算法则(1)[f(x)±g(x)]′=f′(x)±g′(x).(2)[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x).(3)错误!′=错误!(g(x)≠0).1.求导其实质是一种数学运算即求导运算,有公式和法则,也有相应的适用范围或成立条件,要注意这一点,如(x n)′=nx n-1中,n≠0且n∈Q*.错误!′=错误!,要满足“=”前后各代数式有意义,且导数都存在.2.(1)f′(x0)代表函数f(x)在x=x0处的导数值;(f(x0))′是函数值f(x0)的导数,而函数值f(x0)是一个常量,其导数一定为0,即(f(x0))′=0.(2)f′(x)是一个函数,与f′(x0)不同.3.(1)“过”与“在”:曲线y=f(x)“在点P(x0,y0)处的切线”与“过点P(x0,y0)的切线”的区别:前者P(x0,y0)为切点,而后者P(x0,y0)不一定为切点.(2)“切点”与“公共点”:曲线的切线与曲线的公共点的个数不一定只有一个,而直线与二次曲线相切只有一个公共点.[四基自测]1.(基础点:求导数值)若f(x)=x·e x,则f′(1)等于()A.0B.eC.2e D.e2答案:C2.(易错点:导数的运算)已知f(x)=x·ln x,则f′(x)=() A。

2020年高考数学一轮总复习第二章函数、导数及其应用2_10变化率与导数、导数的计算课件文新人教A版

2020年高考数学一轮总复习第二章函数、导数及其应用2_10变化率与导数、导数的计算课件文新人教A版

f(x)=ax(a>0,且a≠1) f(x)=ex
f(x)=logax(a>0,且a≠1)
f(x)=ln x
f′(x)=__a_xl_n_a__
f′(x)=__e_x_
1 f′(x)=__x_l_n__a
1 f′(x)=__x___
3.导数的运算法则
(1)[f(x)±g(x)]′= f′(x)±g′(x)

(2)[f(x)·g(x)]′= f′(x)g(x)+f(x)g′(x)

f′xgx-fxg′x
(3)gfxx′=
[gx]2
(g(x)≠0).
4.利用公式求导时,一定要注意公式的适用范围及符号,如(xn)′=nxn-1 中 n≠0
且 n∈Q*,(cos x)′=-sin x.
(3)函数f(x)的导函数 fx+Δx-fx
称函数f′(x)=__Δl_ixm→_0_______Δ_x________为f(x)的导函数.
2.基本初等函数的导数公式 原函数
f(x)=c(c为常数) f(x)=xα(α∈Q*)
f(x)=sin x f(x)=cos x
导函数 f′(x)= 0 f′(x)=_α_x_α_-_1___ f′(x)=_c_o_s_x___ f′(x)=_-__s_i_n_x__
,即 x0+a=1.
又 y0=ln (x0+a),所以 y0=0,则 x0=-1,所以 a=2.
[答案] B
名师点拨 导数几何意义的应用及解法 (1)已知切点 A(x0,f(x0))求斜率 k,即求该点处的导数值 f′(x0)=k; (2)已知斜率 k,求切点 A(x1,f(x1)),即解方程 f′(x1)=k; (3)已知过某点 M(x1,f(x1))(不是切点)的切线斜率为 k 时,常需设出切点 A(x0,f(x0)), 利用 k=fxx11- -fx0x0求解.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年高中数学 第二章 变化率与导数及导数的应用 导数
与函数的单调性教案1 北师大版选修1-1
一、教学目标:
1.会从几何直观了解可微函数的单调性与其导数之间的关系,并会灵活应用;
2.会用导数判断或证明函数的单调性;
3.通过对可微函数单调性的研究,加深学生对函数导数的理解,提高学生用导数解决实际问题的能力,增强学生数形结合的思维意识.
二、教学重点:正确理解“用导数法判别函数的单调性”的思想方法,并能灵活应用. 教学难点:灵活应用导数法去解决函数单调性的有关问题的能力,以及解题善于运用数形结合的思想方法.
三、教学用具:多媒体
四、教学过程
1.复习引入
问题1 对于函数34)(2+-==x x x f y ,利用函数单调性的定义讨论它在R 上的单调性.(此题是教科书中引例的变式.多媒体展示)
教师引导学生独立完成,并请学生上台板演,以帮助学生复习函数单调性的有关知识.点评学生的解答后,展示教师的推演过程与函数图象,理清学生的思路.
略解:对任意R 21∈<x x ,有)4)(()()(21212121-+-=-=-x x x x x f x f y y . 当221<<x x 时,有021>-y y ,知)(x f 在其中是减函数;
当212x x <<时,有021<-y y ,知)(x f 在其中是增函数.
2.新授
(多媒体画面中,问题1的解答消失,问题1与图形适当调整位置,并增加展示出图象上点))(,(00x f x 处的切线随0x 变化的动画.给出问题2)
问题 2 对于函数34)(2
+-=x x x f ,它的增减性与函数图象在相应区间上的切线的斜率有何联系?
从动画中学生不难看出:在区间),2(+∞内,函数为增函数,切线的斜率为正;在区间
)2,(-∞内,函数为减函数,切线的斜率为负;在2=x 时,函数的切线的斜率为0. (画面中问题1、2与图形适当调整位置,给出问题3)
问题3 对于函数34)(2+-==x x x f y ,它的增减性与函数在相应区间上导数的正负符号有何联系?
因函数在某点处的导数就是函数在该点的切线的斜率,或从动画中学生易知:函数在区间),2(+∞内导数为正;在区间)2,(-∞内导数为负;在2=x 时,函数的切线的斜率为0.
分段展示结论:一般地,设函数)(x f y =在某个区间可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数;如果在某区间内恒有0)(='x f ,则)(x f 为常数.
特别说明第三点:)(x f 在某区间内为常数,当且仅当0)(=x f 在该区间内“恒有”之时.否则可能只是“驻点”(曲线在该点处的切线与x 轴平行).
3.例题与练习
例1
题解可引导学生自己完成,教师加以完善.然后向学生展示教师的书写格式与此函数的图象,使学生能清楚解题时应如何表达书写为好.最后可提示学生,)(,0)1(x f f ='在1=x 处改变了增减性,)(x f 改变了正负符号,为下一节的学习作铺垫.
学生独立完成并请上台板演.点评时注意学生的思路、符号、术语、书写格式是否合理.然后向学生展示教师的推演过程与函数的图象,以帮助学生理清思路.(解题过程略) 例2
师生共同完成,展示教师的解答与此函数的图象,加深学生的理解.说明在1=x 和2=x 处函数改变增减性,导数为0.一是使学生能更清楚在何种情况下)(x f 为常数,而不是驻点;二是为下一节课学习函数的极值埋下伏笔.(解题过程略)
特别说明:利用导数法去探讨可微函数的单调性,一般要比定义法简捷,提醒学生在以后解题时可多尝试使用此法.
补充练习1函数53)(2
3--=x x x f 的单调递增区间是_____________.
略解:由0)2(363)(2>-=-='x x x x x f ,得增区间为)0,(-∞与),2(+∞.
补充练习2 已知函数31232)(23+-+=x x x x f ,则函数)(x f 在(-2,1)内是( )
A .单调递减
B .单调递增
C .可能递增也可能递减
D .以上都不成立
略解:当)1,2(-∈x 时,有0)1)(2(6)(<-+='x x x f ,递减.故选A .
补充练习3 已知函数x x x f ln )(=,则( )
A .在),0(+∞上递增
B .在),0(+∞上递减
C .在⎪⎭⎫
⎝⎛e 1,0上递增 D .在⎪⎭
⎫ ⎝⎛e 1,0上递减 略解:当⎪⎭⎫ ⎝⎛∈e x 1,0时,01ln )(<+='x x f ,递减.故选D .
补充练习4 函数1+-=x e y x 的递减区间是_______________.
略解:要使01<-='x e y ,只需0<x ,故递减区间为)0,(-∞.
补充练习5 证明函数22x x y -=
在区间(0,1)上单调递减,而在区间(1,2)上单调递增.
略证:由)
2(1x x x y --=',在(0,1)上0>'y ,增;在(1,2)上0<'y ,减. 补充练习6 讨论函数x x y sin 2-=在)2,0(π内的单调性.
略解:因x y cos 21-=',由0>'y ,得353ππ
<<x ,增.由0<'y ,得3
0π<<x ,ππ23
5<<x ,减. 4.归纳小结
(1)函数导数与单调性的关系:0)(>'x f 时,增函数;0)(<'x f 时,减函数.用导数去研究函数的单调性比用定义法更为简便.
(2)本节课中,用导数方法去研究函数单调性问题是中心,灵活应用导数法去解题是目的,适当的见识与练习是达到目的最佳手段,数形结合是应使学生养成的良好思维习惯.
五、布置作业
教科书习题 第1、2题
课外研究题
1.设函数ax x x f -+=1)(2,其中0>a ,求a 的取值范围,使函数)(x f 在),0(+∞上是单调函数.(2000年全国高考题) 略解:a x x
x f -+='1)(2,其中0>a 且),0(+∞∈x 时,)1,0(12∈+x x 使函数)
(x f 在),0(+∞上是单调必然;0)(<'x f ,知1≥a .
2.当0>x 时,证明不等式
x x x x <+<+)1ln(1成立. 解:作函数)1ln(1)(x x x x f +-+=,当0>x 时,0)
1()(2<+-='x x x f ,知)(x f 单调递减;当0=x 时,0)(=x f .知)(x f 在0>x 时,0)(<x f .
作x x x g -+=)1ln()(,当0>x 时,01)(<+-='x
x x g ,知)(x g 单调递减;当0=x 时,0)(=x g .知)(x g 在0>x 时,0)(<x g .综上获证.。

相关文档
最新文档