第7章 平均数差异的显著性检验
平均数差异显著性检验

独立样本:秩和检验法
适用资料
秩和检验法与参数检验中独立样本的t 检验相对应。当“总体正态” 这一前提不成立,不能使用t检验时以秩和检验法代替t 检验。
计算过程
具体步骤: ① 将两个样本数据混合由小到大进行等级排列(最小的为1等); ② 设 n1 < n2 ,将容量较小的样本( n1 )中各数据的等级相加, 以T表示; ③ 把T值与秩和检验表(附表14)中的临界值比较,若T≤T1 或 T≥T2 ,则表明两样本差异有统计学意义;若T1<T<T2 ,则意味着两样本 差异无统计学意义。
s12 s22 n1 n2
(2)相关样本
Z DX DX SEDX
X X
1 2 1 2
12 22 2r 1 2 n
或
Z
D X DX SE DX
X
1
X 2 1 2 s12 s 22 2rs1 s 2 n
1
X 2 1 2
2 s12 s2 n 1
(1)两个样本容量均小于10 时(n1 ≤10 , n2 ≤10 )
独立样本:秩和检验法
(2)两个样本容量均大于10 时(n1>10,n2>10) 一般认为当两个样本容量均大于10时,秩和的分 布接近正态分布,其平均数及标准差如下(n1≤n2) :
n n n 1 T 1 1 2 2
配对样本:符号等级检验法(方法二)
(2)当N>25 时 当N>25 时,一般认为T 的分布接近正态分布。 其平均数、标准差分别为:
T
N N 1 4
N N 12 N 1 T 24
T T
因而可以进行Z 检验
7-2平均数差异的显著性检验

平均数差异的显著性检验
平均数差异的显著性检验是指通过从两个总 体中抽取出的两个样本来判断这两个总体的均值 的大小关系。 一、理论依据
抽样分布理论
• 两个平均数之差的标准误,是用一切可能的样本 平均数之差在抽样分布上的标准差来表示的: 1.相关样本:
SEX X
1 2
2 12 2 2r 1 2
Z X1 X 2
2 X 1
n1
2 X 2
n2
•
决断规则(查Z值表): 同前
2.独立小样本(n1≤30或n2≤30):
X1 X 2
2 2 n1 X 1 n2 X 2 n1 n2 n1 n2 2 n1n2
• •
检验统计量:
t
df n1 n2 2
决断规则(查t值表): 同前
2.独立样本:
SEX
1X2
12
n1
2 2
n2
平均数差异的显著性检验
二、相关样本平均数差异的显著性检验 相关样本的两种情况: 1.同组前后测 2.配对组 1.相关大样本(n=n1=n2>30): • • 检验统计量: Z
X1 X 2
2 2 X 1 X 2 2r X 1 X 2
n
决断规则(查Z值表): 同前 2.相关小样本(n=n1=n2≤30):
X1 X 2
2 2 X 1 X 2 2r X 1 X 2
• •
检验统计量:
t
df n 1
n 1
决断规则(查t值表): 同前
平均数差异的显著性检验
三、独立样本平均数差异的显著性检验 1.独立大样本(n1>30、n2>30): • 检验统计量:
《教育统计学》名词解释重点

第一章绪论1,教育统计学是运用数理统计学的原理来研究教育问题的一门应用科学。
2,教育统计学分为描述统计、推断统计和实验设计三类。
(1)描述统计:计算集中量(算术平均数、中位数、众数、加权算术平均数、几何平均数、调和平均数)来反映集中趋势;计算差异量(全距、四分位距、百分位距、平均差、标准差、差异系数)反映离散程度;计算偏态量及峰态量反映分布形态;计算相关量(积差相关系数、等级、点二列、二列、四分、C相关系数、肯德尔和谐系数、多系列相关系数)反映一致性程度。
(2)推断统计包括总体参数估计和假设检验两部分。
3,随机现象三个特性:一,一次试验有多种可能的结果,其所有结果是已知的;二,试验之前不能预料那一种结果会出现;三,在相同条件下可以重复试验。
随机事件:随机现象的每一种结果。
随机变量:把能表示随机现象各种结果的变量称之4,总体:是我们研究的具有某种共同特性的个体的总和。
样本数目大于30称为大样本,小于等于30称为小样本。
第二章数据的初步整理1,教统资料来源有经常性资料和专题性资料。
专题性资料包括(1)教育调查。
按调查方法分为现情调查、回顾调查和追踪调查;按调查范围分全面调查和非全面调查(抽样调查和典型调查)。
(2)教育实验。
分为单组实验(指对同一实验对象先后实施两种实验处理)、等组实验(指在甲乙两组条件基本相同的情况下,对之实行不同的实验处理)和轮组实验(指在实验组和对照组分别进行两种实验处理,并且每种处理各重复一次,也即每个或多个单组实验的联合)2,数据的分类。
按来源分为点计数据和度量数据;按随机变量取值情况分为间断型随机变量(取值个数有限、独立的、两个单位之间不能再划分细小单位、一般用整数表示,如优劣程度、品德爱好打分)和连续性随机变量(个数无限、单位之间可以再划分、可以用小数表示如身高体重、完成作业的时间等)。
3,频数分布表制作步骤:求全距;决定组数和组距;决定组限;登记频数。
4,用累计频数表示的频数分布表称为累计频数分布表。
差异显著性检验t检验知识讲解

说,从而形成结论,或开始新一轮的试验以验证修改完善后的 假说,如此循环发展,使所获得的认识或理论逐步发展、深化
13
一、几个相关概念
9. 科学研究的基本过程
① 选题 ② 文献 ③ 假说 ④ 假说的检验 ⑤ 试验的规划与设计
质、仪器的不准等因素引起的真值与观测指间的差异; 通过努力可以克服 系统误差;
随机误差:随机误差又叫抽样误差(sampling error) ,这是由于许多无法控制的
内在和外在的偶然因素所造成的真值与观测指间的差异;在试验中,即使十 分小心也难以消除;随机误差影响试验的精确性;统计上的试验误差指随机 误差,这种误差愈小,试验的精确性愈高。
x 5 0 0 5 2 0 L 4 9 05 2 8 5= 5 2 8 .5
1 0
1 0
36
17.平均数
• 加权法 计算若干个来自同一总体的样本平均数的平均数 时,如果样本含量不等(或者其总要性程度不同), 也采用加权法计算
x fixi fx fi n
37
17.平均数
• 算术平均数的重要特性
17
一、几个相关概念
13. 单因素试验 指整个试验中只变更、比较一个试验因素的不同 水平,其他作为试验条件的因素均严格控制一致的试验。
18
一、几个相关概念
14 多因素试验 指在同一试验方案中包含2个或2个以上的试验因 素,各个因素都分为不同水平,其他试验条件均应严格控制一 致的试验。
19
一、几个相关概念
• 总体平均数
N
xi N i 1
39
17.平均数
第七章 平均数差异的显著性检验

n
——第一个与第二个变量的总体方差; r——两个变量的相关系数 n——样本的容量(n对相关样本)
2 12 2
10
第一节 平均数差异显著性检验的基本原理
二、平均数之差的标准误 平均数之差的标准误——两个总体标准差已知 2、独立样本——
D
2 1
n1
2 2
n2
n1、n2——第一个与第二个样本的容量
第二节 相关样本平均数差异的显著性检验
一、配对组的情况 例1: 检验的步骤: 分别用平均数差异的标准误的三种不同形式计算t值: ①用D计算
t
D
D D
2
n( n 1)
( D ) / n
2
19
第二节 相关样本平均数差异的显著性检验
一、配对组的情况 例1: 检验的步骤: ②用总体标准差估计值S计算
23
第二节 相关样本平均数差异的显著性检验
二、同一组对象的情况 例1 32人的射击小组经过三天集中训练,训练前后分数如表, 问三天集训有无明显效果?
检验的步骤:
(1)提出假设
H0:μ1≤μ2(或μD≤0) H1:μ1>μ2(或μD>0)
24
第二节 相关样本平均数差异的显著性检验
二、同一组对象的情况 例1 检验的步骤: (2)选择检验统计量并计算其值 ——假定训练前后射击得分是从两个正态总体抽出的相关样 本,那么它们差数的总体也呈正态分布; ——而差数的总体标准差σD未知, ——于是样本的差数平均数与差数的总体平均数的离差统计 量呈t分布。 ——但因差数的数目n=32>30,t分布接近正态,也可以用 Z检验近似处理。
25
第二节 相关样本平均数差异的显著性检验
平均数差异的显著性检验

0
1
2
D
1
1
2
D
2.计算检验的统计量
D
2.2353 0
Z
D
6.031
D2 ( D)2 / n 324 762 34
n(n 1)
34(34 1)
3.确定检验形式 双侧检验 4.统计决断 Z=6.031**>2.58,P<0.01 所以,要在0.01的显著性水平上拒绝零假设,接受备择假设。
表7.1 10对学生在两种识字教学法中的测验分数和差数
组别
实验组
X1
对照组 X2
差数值
D
D2
1
93
76
17
289
2
72
74
-2
4
3
91
80
11
121
4
65
52
13
169
5
81
63
13
324
6
77
62
15
225
7
89
82
7
40
8
84
85
-1
1
9
73
64
9
81
10
70
72
-2
4
总和
795
710
85
1267
第七章 平均数差异的 显著性检验
回顾
样本平均数与总体平均数之间差异的假设检验又叫做总体平均数的显著性 检验。如果某个样本平均数与总体平均数的差异达到了显著性水平就可以推翻零 假设,认为这个样本不是来自该总体,而是来自其他总体;如果这个样本平均数 与总体平均数的差异未达到显著性水平,则要接受零假设,这时就得承认这个样 本来自该总体。
7.平均数差异的显著性检验

例:全区物理统一考试,成绩分布服从正态分布, 平均分为 50 ,标准差为 10 。某校一个班 41 人,平均 分 52.5 ,问该班物理成绩与全区平均成绩的差异是 否显著?
双尾检验 σ2已知 总体正态 Z检验
例:某省进行数学竞赛,结果分数分布非正态,总 平均43.5。某县参赛学生168人,平均45.1,标准差 18.7 。试问该县平均分与全省平均分有无显著差异?
第四节 总体平均数的显著性检验
检验统计量确定的因素 1. 样本容量的大小 2. 总体分布形状 3. 总体方差是否已知 总体均值检验统计量主要有 1. z检验统计量 2. t检验统计量
一、总体正态
Z检验 σ2已知
t 检验 σ2未知
SEX
Z
n X 0
SEX
x SEX n 1 X 0
2.规定显著性水平 (1)α =0.05 (2)α =0.01 3.计算检验统计量 4.比较与决策
H 0:
H 1:
检验统计量
1. 根据样本观测结果计算得到的,并据以对原假设 和备择假设作出决策的某个样本统计量
2. 对样本估计量的标准化结果
原假设H0为真
点估计量的抽样分布 3. 标准化的检验统计量
Z检验
Z(CR) <1.645 ≥1.645 ≥2.330
t(CR) <t(n’)0.05 ≥ t(n’)0.05 ≥ t(n’)0.01
P值 >0.05 ≤0.05 ≤0.01
P值
显著性 符号 不显著 显 著 * 极显著 **
显著性 符号
t检验
>0.05 不显著 ≤0.05 显 著 * ≤0.01 极显著 **
0 0
右侧检验
置信水平
(抽样检验)第七章第一次课抽样原理与方法

(抽样检验)第七章第⼀次课抽样原理与⽅法第⼀节抽样⽅案的制定在科学研究中,除了进⾏控制试验外,有时也要进⾏调查研究。
调查研究是对已有的事实通过各种⽅式进⾏了解,然后⽤统计的⽅法对所得数据进⾏分析,从⽽找出其中的规律性。
例如,了解畜禽品种及⽔产资源状况;探索和分析对某种疾病有效的防治规律、措施以及新的检验⼿段和⽅法等。
由于现场调查⽴⾜于⽣产实际,所以它是研究和解决实际问题的⼀种重要研究⽅法。
同时,控制试验的研究课题,往往是在调查研究的基础上确定的;试验研究的成果,⼜必须在其推⼴应⽤后经调查得以验证。
为了使调查研究⼯作有⽬的、有计划、有步骤地顺利开展,必须事先拟定⼀个详细的调查计划。
调查计划应包括以下⼏个内容:(⼀) 调查研究的⽬的任何⼀项调查研究都要有明确的⽬的,即通过调查了解什么问题,解决什么问题。
例如,家畜健康状况的调查的⽬的是评定家畜健康⽔平;畜禽品种资源调查的⽬的是了解畜禽品种的数量、分布与品种特征特性等情况。
同时,调查研究的⽬的还应该突出重点,⼀次调查应针对主要问题收集必要的数据,深⼊分析,为主要问题的解决提出相应的措施和办法。
(⼆) 调查的对象与范围根据调查的⽬的,确定调查的对象、地区和范围,划清调查总体的同质范围、时间范围和地区范围。
例如,四川省家禽品种资源调查,调查地区为四川省,调查总体和对象为全省各市、县的家禽,调查时间从2000年1⽉到2000年12⽉。
(三) 调查的项⽬调查项⽬的确定要紧紧围绕调查⽬的。
调查项⽬确定的正确与否直接关系到调查的质量。
因此,项⽬应尽量齐全,重要的项⽬不能漏掉;项⽬内容要具体、明确,不能模棱两可。
应按不同的指标顺序以表格形式列⽰出来,以达到顺利完成搜集资料的⽬的。
例如,家禽品种资源调查项⽬有:种类(鸡、鸭、鹅等)、品种(柴鸡、来航、⽩洛克等),数量、体重、产蛋性能等项⽬。
调查项⽬有⼀般项⽬和重点项⽬之分。
⼀般项⽬主要是指调查对象的⼀般情况,⽤于区分和查找,如畜主姓名、住址及编号等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
又如:
某小学为了更有效地训练中年级学生掌握有关 计算机操作的基本技能,特对两种训练方法的有效 性进行了比较研究。在四年级学生中,根据智力水 平、兴趣、数学和语文成绩,以及家庭中有无学习 计算机的机会等有关因素都基本相同的条件下,将 学生匹配成34对,然后把每对学生拆开,随机地分 配到不同的训练组中,经训练后,两组学生考核的 分数如下,问两种不同的训练方法是否确实造成学 习效果上的显著性差异?
n表示样本容量 表示第一个变量样本方差 表示第二个变量样本方差
对两个总体平均数差异的显著性检验涉及 到两个总体,要考虑到如下五个因素:
样本是相关的还是独立的; 总体是正态分布还是非正态分布; 总体方差是已知还是未知; 总体方差是否齐性; 样本的大小。
第二节
相关样本平均数差异的显著性检验
定义:两个样本内个体之间存在着一一对应的
(一)提出假设
H0 : D 0, H1 : D 0
(二)选择检验统计量并计算其值。
在小样本的情况
D D D 2 ( D)2 / n n( n 1)
t
在大样本的情况
D D D 2 ( D) 2 / n n( n 1)
Z
D表示样本的差数平均数或两个样本平均数之差
D 1 -1 -1 1 4 2 3 0 2 4 -1 2 2 3 4 0 3 76
解:1.提出假设
H0 : D 0, H1 : D 0
2.计算检验的统计量
D 2.2353 0 Z 6.031 D ( D) / n 324 76 34 n(n 1) 34(34 1)
D1 X 11 X 21
(第一次抽样) (第二次抽样) (第三次抽样)
D 2 X 12 X 22
D 3 X 13 X 23
数理统计学的研究表明,假若
1 2
那么两个样本平均数之差的概率分布就是 以0为中心的正态分布:
概 率
0 D1 临 界 值
保留区间0.95
D
临 界 值
学生 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17
X1 86 83 80 75 68 60 56 48 76 77 70 65 62 58 73 90 82
X2 88 80 76 68 65 54 50 43 72 78 68 64 60 56 70 88 81 总和第七章平均数差异的 显著性检验
回顾
样本平均数与总体平均数之间差异的假设 检验又叫做总体平均数的显著性检验。如果某 个样本平均数与总体平均数的差异达到了显著 性水平就可以推翻零假设,认为这个样本不是 来自该总体,而是来自其他总体;如果这个样 本平均数与总体平均数的差异未达到显著性水 平,则要接受零假设,这时就得承认这个样本 来自该总体。
3.确定检验形式
右侧检验
4.统计决断 Z=2.69>2.33,P<0.01 所以,要拒绝零假设,接受备择假设,由 此得出结论:高年级思想品德教育的效果极显 著地优于中年级。
二、独立小样本平均数差异的显著性检验
两个样本容量
n1
n2
均小于30,或其中一个小于30的独立样本 称为独立小样本。
独立小样本平均数差异的显著性检验方法:
2 2
S x1 - x 2
(n1 - 1 )S (n2 - 1 )S n1 n2 2
2 X1
2 X2
n1 n2 n1n2
t
X1 X 2 ( X 1 X 1 ) 2 ( X 2 X 2 ) 2 n1 n2 n1 n2 2 n1n2
X1 X 2
D
SD
N
2 S12 S2 2rS1S2 n
(相关样本)
D
2 1
2 2
n
2 1 2 2
(独立总体,r=0)
S S SD n 1
(独立样本,r=0)
12 表示第一个变量总体方差
22 表示第二个变量总体方差
r
S12 S
2 2
表示第一个与第二个变量的相关系数
要实际地判断样本平均数的差异是否落入 了零假设的拒绝区域里,需要以该抽样分布的 标准差,即平均数之差的标准误为依据。
二、平均数之差的标准误
两个样本平均数差的抽样误差称为平均数之差的 标准误,用一切可能的样本平均数之差在抽样分 布上的标准差来表示。
2 12 2 - 2r 1 2 (相关总体)
关系,这两个样本称为相关样本。
(1)用同一测验对同一组被试在试验前后进行 两次测验,所获得的两组测验结果是相关样本。
(2)根据某些条件基本相同的原则,把被试一 一匹配成对,然后将每对被试随机地分入实验组和 对照组,对两组被试施行不同的实验处理之后,用 同一测验所获得的测验结果,也是相关样本。
相关样本平均数差异的显著性检验方 法和步骤:
D2
289 4 121 169 324 225 40 1 81 4
总和
795
710
85
1267
解:1.提出假设
H0 : D 0, H1 : D 0
2.计算检验的统计量
t D D 2 (D) 2 / n n(n 1)
85 10 3.456 2 1267 85 / 10 10(10 1)
一、独立大样本平均数差异的显著性检验
两个样本容量
n1
n2
都大于30的独立样本称为独立大样本。 独立大样本平均数差异的显著性检验所用 的公式是:
S x1 - x 2
S
2 X1
n1
S
2 X2
n2
如
假设某小学从某学期刚开学就在中、高年 级各班利用每周班会时间进行思想品德教育, 学期结束时从中、高年级各抽取两个班进行道 德行为测试,结果如下表所示,问高年级思想 品德教育的效果是否优于中年级?
3.确定检验形式 双侧检验 4.统计决断 因为是t检验,所以要根据自由度df=n-1 =10-1=9查t值表(即附表2),找双侧检验的临 界值。
t (9)0.05 2.262
t 3.456 * * 3.250
t (9)0.01 3.250
p<0.01,所以,在0.01的显著性水平上拒 绝零假设,接受备择假设。即可得出小学分散 识字教学法与集中识字教学法有极其显著的差 异的结论。
1、方差齐性时
方法和步骤: 如果两个独立样本的总体方差未知,经方 差齐性检验表明两个总体方差相等,则要用汇 合方差来计算标准误,
公式为:
2 2 ( X X ) ( X X ) 2 1 1 2 2 S合 (n1 1) (n2 1)
S x1 - x 2
( X 1 X 1 ) ( X 2 X 2 ) n1 n2 n1 n2 2 n1n2
性别
男 女
人数
25 28
平均数
92.2 95.5
样本标准差
13.23 12.46
解:1.提出假设
H 0 : 1 2
H 1 : 1 2
2.计算检验的统计量
t X1 X 2
2 2 (n1 - 1 )S X ( n 1 ) S 1 2 X 2 n1 n2 n1 n2 2 n1n2
标准差=15,已知两次测验结果的相关系数r=0.72, 问能否说随着年龄的增长与一年的教育,儿童智商 有了显著提高?
解:1.提出假设
H0 : D 0, H1 : D 0
2.计算检验的统计量
t X1 X 2
2 2 SX S 2rS X 1 S X 2 X2 1
n 1 99 101 14 15 2 0.72 14 15 28 1
表7.1 10对学生在两种识字教学法中的测验分数和差数
组别
1 2 3 4 5 6 7 8 9 10
实验组
X1
93 72 91 65 81 77 89 84 73 70
对照组 X2
76 74 80 52 63 62 82 85 64 72
差数值
D
17 -2 11 13 13 15 7 -1 9 -2
D 2 2 2
3.确定检验形式
双侧检验
4.统计决断
Z=6.031**>2.58,P<0.01
所以,要在0.01的显著性水平上拒绝零假
设,接受备择假设。
二、同一组对象的情况
例子:某小学在新生入学时对28名儿童进行了
韦氏智力测验,结果平均智商=99,标准差=14,
一年后再对这些被试施测,结果平均智商=101,
2 2 (n1 - 1 )S X ( n 2 ) S n1 n2 1 2 X2 n1 n2 2 n1n2
t
如:
有人在某小学的低年级做了一项英语教学 实验,在实验的后期,分别从男女学生中抽取 一个样本进行统一的英语水平测试,结果如下 表所示。问在这项教学实验中男女生英语测验 成绩有无显著性差异?(假定方差齐性)
年级 高 中 人数 90 100 平均数 80.50 76.00 标准差 11 12
解:1.提出假设
H 0 : 1 2
X1 X 2 S
2 X1
H 1 : 1 2
2.计算检验的统计量
Z
n1
2
S
2 X2
n2
2
80.50 76 11 12 90 100
2.69
2 2
0.954
3.确定检验形式 左侧检验 4.统计决断 当df=27时,
t( 27 )0.05 1.703
t=0.954<1.703,P>0.05 所以,要保留零假设,即一年后儿童的智 商没有显著地提高。