解三角形公式汇总

合集下载

解三角形常用变换公式及经典例题

解三角形常用变换公式及经典例题

解三角形知识点:1〃正弦定理:2sin sin sin a b cR A B C===或变形:::sin :sin :sin a b c A B C =. 2〃余弦定理: 2222222222cos 2cos 2cos a b c bc A b a c ac B c b a ba C⎧=+-⎪=+-⎨⎪=+-⎩ 或 222222222cos 2cos 2cos 2b c a A bc a c b B ac b a c C ab ⎧+-=⎪⎪+-⎪=⎨⎪⎪+-=⎪⎩.3〃(1)两类正弦定理解三角形的问题:1、已知两角和任意一边,求其他的两边及一角.2、已知两角和其中一边的对角,求其他边角. (2)两类余弦定理解三角形的问题:1、已知三边求三角.2、已知两边和他们的夹角,求第三边和其他两角.(1)三角形内角和等于0180,即0180=++C B A ,灵活变形,如)(1800C B A +-=等 (2)大边对大角,即若c b a >>,则C B A >>2.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即:R CcB b A a 2sin sin sin ===(R 为三角形外接圆半径) 变形:(1)C B A c b a sin :sin :sin ::= (2)R a A 2sin =,R b B 2sin =,Rc C 2sin =(角化边) (3)A R a sin 2=, B R b sin 2=,C R c sin 2=(边化角)3.余弦定理:三角形中任何一边的平方等于其它两边的平方的和减去这两边与它们的夹角的余弦的积的两倍。

即:A bc c b a cos 2222-+= ;B ac c a b cos 2222-+= ;C ab b a c cos 2222-+= 变形: bc a c b A 2cos 222-+= ; ac b c a B 2cos 222-+= ; ab c b a C 2cos 222-+=条件角角边边边角边边边边角边适用定理正弦定理 正弦定理(注意解的个数) 余弦定理余弦定理 余弦定理4.三角形的面积公式C ab S sin 21=,B ac S sin 21=,A bc S sin 21= 5.三角形形状的判断 : 若0cos >A ,A 为锐角;若0cos =A ,A 为直角;若0cos <A ,A 为钝角例1.在△ABC 中,若B A sin sin >,则A 与B 的大小关系为( )A. B A >B. B A <C. A ≥BD. A 、B 的大小关系不能确定例2.已知△ABC 中,a =4,b =43,∠A =30°,则∠B 等于( ) A .30° B .30°或150° C .60°D .60°或120°例3.已知△ABC 中,AB =6,∠A =30°,∠B =120°,则△ABC 的面积为( ) A .9 B .18C .93D .183例4.在△ABC 中,sin A :sin B :sin C =3:2:4,则cos C 的值为( )A .23B .-23C .14D .-14例5.在ABC ∆中,若,cos sin bBa A =则B 的值为( ) A. 30 B. 45 C. 60 D. 90例6.在ABC ∆中,若,sin 23A b a =则B 为( ) A.3π B. 6π C. 3π或32π D.6π或65π例7.在ABC ∆中,,sin sin sin 222C B A =+求证ABC ∆为直角三角形。

解三角形公式汇总

解三角形公式汇总

解三角形解三角形公式汇总一、正弦定理正弦定理:公式推论1:(边化角)推论2:(角化边)题(1)已知sinB 求B:一题多解型判断依据:大角对大边,三角形两边之和大于第三边,两边之差小于第三边。

型(2)asin B=2b:方法:边化角,推论1,a:b=sinA :sinB(3)3sin A=5sinB 或sinA:sinB:sinC=1:2:3方法:角化边,推论2,sinA :sinB=a:b二、余弦定理公余弦定理:(已知两边及夹角,求第三边)推论1:(已知三边,求角)推论2:(三边的平方关系)式2+b2-c2=2abcosC2+c2-a2=2bccosA2+c2-b2=2accosBaba题(1)已知a,b,角C,求c 2=a2+b2-2abcosC方法:已知两边及夹角,求第三边,余弦定理 c型(2)已知a:b:c=1:2:,求cosB方法:已知三边求角,余弦定理推论1,(3)已知,求cosA方法:已知三边平方关系,余弦定理推论2, b2+c2-a2=2bccosA1解三角形三、求三角形面积公式:题型1:已知a,b,c,A 求△ABC 的面积.方法:带公式题型2:已知A,a,b+c,求△ABC 的面积.方法:四、判断三角形形状题型: b cosC c cosB asin A ,判断三角形形状方法1:角化边公式:sinA:sinB:sinC=a:b:c 或结论:方法2:边化角公式:a:b:c = sinA:sinB:sinC将原式转化为sinBcosC+sinCcosB=sin 2A,用三角恒等变换公式求解。

注:三角形内常见角度转化:五、解三角形应用举例仰角:俯角:坡度:2。

余弦定理公式大全

余弦定理公式大全

正弦、余弦定理 解斜三角形建构知识结构1.三角形基本公式:(1)内角和定理:A+B+C=180°,sin(A+B)=sinC, cos(A+B)= -cosC,cos2C =sin 2B A +, sin 2C =cos 2B A + (2)面积公式:S=21absinC=21bcsinA=21casinBS= pr =))()((c p b p a p p --- (其中p=2cb a ++, r 为内切圆半径)(3)射影定理:a = b cos C + c cos B ;b = a cos C + c cos A ;c = a cos B + b cos A 2.正弦定理:2sin sin sin a b cR A B C===外 证明:由三角形面积111sin sin sin 222S ab C bc A ac B ===得sin sin sin a b c A B C==画出三角形的外接圆及直径易得:2sin sin sin a b cR A B C===3.余弦定理:a 2=b 2+c 2-2bccosA , 222cos 2b c aA bc+-=;证明:如图ΔABC 中,sin ,cos ,cos CH b A AH b A BH c b A ===-22222222sin (cos )2cos a CH BH b A c b A b c bc A=+=+-=+-当A 、B 是钝角时,类似可证。

正弦、余弦定理可用向量方法证明。

要掌握正弦定理、余弦定理及其变形,结合三角公式,能解有关三角形中的问题. 4.利用正弦定理,可以解决以下两类问题:(1)已知两角和任一边,求其他两边和一角; (2)已知两边和其中一边的对角,求另一边的对角;有三种情况:bsinA<a<b 时有两解;a=bsinA 或a=b 时有 解;a<bsinA 时无解。

5.利用余弦定理,可以解决以下两类问题:(1)已知三边,求三角;(2)已知两边和它们的夹角,求第三边和其他两角。

解三角形知识点归纳(附三角函数公式)

解三角形知识点归纳(附三角函数公式)

高中数学必修五 第一章 解三角形知识点归纳1、三角形三角关系:A+B+C=180°;C=180°—(A+B);2、三角形三边关系:a+b>c; a-b<c3、三角形中的基本关系:sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=-4、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ∆AB 的外接圆的半径,则有2sin sin sin a b cR C===A B . 5、正弦定理的变形公式:①化角为边:2sin a R =A ,2sin b R =B ,2sin c R C =;②化边为角:sin 2a R A =,sin 2b R B =,sin 2c C R=; ③::sin :sin :sin a b c C =A B ;④sin sin sin sin sin sin a b c a b cC C++===A +B +A B . 6、两类正弦定理解三角形的问题:①已知两角和任意一边,求其他的两边及一角.②已知两角和其中一边的对角,求其他边角.(对于已知两边和其中一边所对的角的题型要注意解的情况(一解、两解、三解))7、余弦定理:在C ∆AB 中,有2222cos a b c bc =+-A 等,变形: 222cos 2b c a bc+-A =等,8、余弦定理主要解决的问题:①已知两边和夹角,求其余的量。

②已知三边求角) 9、三角形面积公式:111sin sin sin 222C S bc ab C ac ∆AB =A ==B .=2R 2sinAsinBsinC=R abc 4=2)(c b a r ++=))()((c p b p a p p ---10、如何判断三角形的形状:判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式设a 、b 、c 是C ∆AB 的角A 、B 、C 的对边,则:①若222a b c +=,则90C =;②若222a b c +>,则90C <;③若222a b c +<,则90C >.11、三角形的四心:垂心——三角形的三边上的高相交于一点重心——三角形三条中线的相交于一点(重心到顶点距离与到对边距离之比为2:1) 外心——三角形三边垂直平分线相交于一点(外心到三顶点距离相等) 内心——三角形三内角的平分线相交于一点(内心到三边距离相等) 12同角的三角函数之间的关系(1)平方关系:sin²α+cos²α=1 (2)倒数关系:tanα·cotα=1 (3)商的关系:ααααααsin cos cot ,cos sin tan ==特殊角的三角函数值三角函数值0 111不存在三角函数诱导公式:“ (2k πα+)”记忆口诀: “奇变偶不变,符号看象限”,是指(2kπα+),k ∈Z 的三角函数值,当k 为奇数时,正弦变余弦,余弦变正弦(正切,余切;正割、余割也同样);当k 为偶数时,函数名不变。

专题一、二:解三角形

专题一、二:解三角形

专题一正余弦定理知识梳理1.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即:2sin sin sin a b cR A B C===(R 为△ABC 外接圆的半径)常见的变形有:①::sin :sin :sin a b c A B C =;②sin sin a A b B =,sin sin a A c C =,sin sin b Bc C=;③sin sin sin sin sin sin a b c a b cA B C A B C++===++;④边化角公式:2sin a R A =,2sin b R B =,2sin c R C =;⑤角化边公式:sin 2a A R =,sin 2b B R =,sin 2c C R=;⑥sin sin sin sin sin sin A B a b A BA B a b A B A B a b A B <⇔<⇔<⎧⎪=⇔=⇔=⎨⎪>⇔>⇔>⎩;2.解三角形:一般地,把三角形的三个角A,B,C 和它们的对边a,b,c 叫做三角形的元素,已知三角形的几个元素求其他元素的过程叫做解三角形。

利用正弦定理可以解两类三角形:①已知三角形的任意两个角与一边,求其他两边和另一角。

②已知三角形的两边与其中一边的对角,计算另一边的对角,进而计算出其他的边和角。

剖析:已知两角与一边,用正弦定理,有解时,只有一解。

已知两边及其中一边的对角,用正弦定理,可能有两解、一解、或无解,一般常用的方法是利用大边对大角,小边对小角定理来验证。

3.在△ABC 中常见的公式:(如图)①111sin sin sin 222S ab C ac B bc A===②111222a b c S ah bh ch ===AcbaBCh aAcbaBC③4abcS R=(R 表示三角形外接圆的半径)④22sin sin sin S R A B C =⑤1()2S r a b c =++(r 表示三角形内切圆的半径)⑥海伦公式:S =,其中1()2p a b c =++.4.余弦定理定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们夹角的余弦的积的两倍。

解三角形常用知识点归纳与题型总结-解三角形题型归纳总结

解三角形常用知识点归纳与题型总结-解三角形题型归纳总结

解三角形常用知识点归纳与题型总结1、①三角形三角关系:A+B+C=180°;C=180°—(A+B);②.角平分线性质定理:角平分线分对边所得两段线段的比等于角两边之比. ③.锐角三角形性质:若A>B>C 则6090,060A C ︒≤<︒︒<≤︒. 2、三角形三边关系:a+b>c; a-b<c3、三角形中的基本关系:sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=- sincos ,cos sin ,tan cot 222222A B C A B C A B C+++=== (1)和角与差角公式sin()sin cos cos sin αβαβαβ±=±;cos()cos cos sin sin αβαβαβ±=; tan tan tan()1tan tan αβαβαβ±±=.(2) 二倍角公式 sin2α = 2cosαsinα.2222cos 2cos sin 2cos 112sin ααααα=-=-=-221tan 1tan αα-=+. 221cos 21cos 2sin ,cos 22αααα-+==(3)辅助角公式(化一公式))sin(cos sin 22ϕ±+=±=x b a x b x a y 其中ab =ϕtan 4、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ∆AB 的外接圆的半径,则有2sin sin sin a b cR C===A B . 5、正弦定理的变形公式:①化角为边:2sin a R =A ,2sin b R =B ,2sin c R C =;②化边为角:sin 2a R A =,sin 2b R B =,sin 2c C R=; ③::sin :sin :sin a b c C =A B ;④sin sin sin sin sin sin a b c a b cC C++===A +B +A B =2R 6、两类正弦定理解三角形的问题:①已知两角和任意一边,求其他的两边及一角. ②已知两角和其中一边的对角,求其他边角.(对于已知两边和其中一边所对的角的题型要注意解的情况(一解、两解、三解)) 7、三角形面积公式:111sin sin sin 222C S bc ab C ac ∆AB =A ==B .=2R 2sinAsinBsinC=R abc 4=2)(c b a r ++=))()((c p b p a p p ---(海伦公式)8、余弦定理:在C ∆AB 中,有2222cos a b c bc =+-A ,2222cos b a c ac =+-B ,2222cos c a b ab C =+-.9、余弦定理的推论:222cos 2b c a bc +-A =,222cos 2a c b ac +-B =,222cos 2a b c C ab+-=.注明:余弦定理的作用是进行三角形中的边角互化,当题中含有二次项时,常使用余弦定理。

解三角形公式大全

解三角形公式大全

解三角形公式大全
解三角形是初中、高中数学中重要的内容,通常需要掌握一些基本的三角函数公式和定理。

下面是一些常用的解三角形公式:
1.正弦定理:a/sinA = b/sinB = c/sinC(其中a、b、c为三角形三边的长度,A、B、C为对应的内角度数)。

2.余弦定理:a = b + c - 2bc cosA(其中a、b、c为三角形三边的长度,A为对应的内角度数)。

3.正切定理:tanA = (a/b) / (1 - a/b)^(1/2)。

4.半角公式:sin(A) = (u/v)^(1/2),cos(A) = (1 +
u/v)^(1/2)/v^(1/2)(其中u = 1 - cosA,v = 1 + cosA)。

5.万能公式:tan(A/2) = [(s-b)(s-c)]^(1/2) / [s(s-a)]^(1/2) + [(s-a)(s-c)]^(1/2) / [s(s-b)]^(1/2)(其中a、b、c为三角形三边的长度,s为半周长)。

6.勾股定理:a + b = c(其中a、b、c为直角三角形两条直角边的长度和斜边长度)。

上述公式和定理,可以帮助我们解决不同类型的三角形题目。

需要注意的是,在应用这些公式时,要根据具体的问题情况选择合适的公式并进行变形计算。

此外,还需要掌握一些基本的三角函数值及其特点,有助于更好地理解和运用这些公式。

三角形的公式,应用题解方程

三角形的公式,应用题解方程

三角形的公式,应用题解方程
设三角形ABC,∠A、∠B、∠C的对边分别为a、b、c。

已知三角形的部分边和角,而求剩下的边和角的过程叫做解三角形。

三角形的内角和公式:三角形的内角和等于180°。


A+B+C=180°。

正弦定理:在解三角形的问题中,正弦定理和正弦定理的推论常用于“已知两角和一边”、“已知两边和其中一边的对角”的情况。

余弦定理:余弦定理的公式有三个。

1、a的平方=b的平方+c的平方-2bccosA;2、b的平方=a的平方+c的平方-2accosB;3、c的平方=a的平方+b的平方-2abcosC。

勾股定理:若三角形ABC为直角三角形,C为直角,A、B、C的对边分别为a、b、c,则有a的平方+b的平方=c的平方。

应用题解方程:一个等腰三角形,底角是顶角的2倍,这个等腰三角形的底角是多少度?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解三角形公式汇总一、正弦定理


正弦定理:
推论1:(边化角)
推论2:(角化边)


(1)已知sinB求B:一题多解型
判断依据:大角对大边,三角形两边之和大于第三边,两边之差小于第三边。

(2)asin B=2b:
方法:边化角,推论1,a:b=sinA:sinB
(3)3sin A=5sinB或sinA:sinB:sinC=1:2:3
方法:角化边,推论2,sinA:sinB=a:b
二、余弦定理


余弦定理:
(已知两边及夹角,求第三边)
推论1:
(已知三边,求角)
推论2:
(三边的平方关系)
a2+b2-c2=2abcosC
b2+c2-a2=2bccosA
a2+c2-b2=2accosB


(1)已知a,b,角C,求c
方法:已知两边及夹角,求第三边,余弦定理c2=a2+b2-2abcosC
(2)已知a:b:c=1:2:,求cosB
方法:已知三边求角,余弦定理推论1,
(3)已知,求cosA
方法:已知三边平方关系,余弦定理推论2,b2+c2-a2=2bccosA
三、求三角形面积
公式:
题型1:已知a,b,c,A 求△ABC的面积.
方法:带公式
题型2:已知A,a,b+c,求△ABC的面积.
方法:
四、判断三角形形状
题型:cos cos sin
+=,判断三角形形状
b C
c B a A
方法1:角化边
公式:sinA:sinB:sinC=a:b:c 或
结论:
方法2:边化角
公式:a:b:c = sinA:sinB:sinC
将原式转化为sinBcosC+sinCcosB=sin2A,用三角恒等变换公式求解。

注:
三角形内常见角度转化:
五、解三角形应用举例
仰角:
俯角:
坡度:。

相关文档
最新文档