电压电流双闭环控制

合集下载

电压电流双闭环控制逆变器并联系统的建模和环流特性分析

电压电流双闭环控制逆变器并联系统的建模和环流特性分析

[U ref1 ( s )( K P1 + K I1
s ) K1 + I H ( s ) ]Go1 s ) K 2 − I H ( s ) ]Go2
(4)
[U ref2 ( s)( K P2 + K I2 =
1 + ( K P1 + K I1 s ) K vf1 K1Go1
1 + ( K P2 + K I2 s ) K vf2 K 2 Go2
出的有功功率之差主要取决于输出电压的相位差 输出的无功功率之差主要取决于输出电压的幅值 差 因此 通过改变各逆变模块输出电压幅值来控 通过改变输出电压相 但文献 [5]提出了 输出 到 制各模块输出无功功率平衡 完全相反的研究结果
u vf 为反馈电压
压反馈系 数 KP K I 为 PI 调节器的比 例 和积分系 数 i ref 为电流 给 定 数 iL 为电感电流 K 为电流环 放 大 倍 Go 为输出滤波电 容 C f 与负载并联的 传递函数
Xiao Lan 1 1 2 Abstract Zhejiang University Li Rui 2 Nanjing China 210016 China 310027 Nanjing University of Aeronautics & Astronautics Hangzhou
Traditional power difference based paralleling control technology of inverters is evolved
素的电压电流双环控制逆变器单模块系统电路模 在此基础上分析了并联系统输出电压幅值 无功功率之间的关系 位与输出有功 值 应用等效输
出阻抗和求解微分方程两种方法推导出输出电压幅 相位与输出有功 无功功率之间的定量关系 并进行了仿真和实验验证

逆变器双闭环控制的限幅问题

逆变器双闭环控制的限幅问题

逆变器双闭环控制的限幅问题一、概述逆变器是一种将直流电转换为交流电的电气设备,广泛应用于风电、光伏发电等领域。

在逆变器的控制过程中,双闭环控制是一种有效的控制策略,能够提高系统的稳定性和响应速度。

然而,在实际应用中,双闭环控制却面临着限幅问题,该问题不仅会影响逆变器的控制性能,还会导致系统不稳定甚至损坏设备。

解决逆变器双闭环控制的限幅问题对于提高系统的稳定性和可靠性至关重要。

二、逆变器双闭环控制原理逆变器双闭环控制是基于内外环控制的控制策略,内环控制主要是控制逆变器的输出电流或电压,外环控制则是控制输出电压或频率。

双闭环控制能够自动调节逆变器的输出电流或电压以及输出电压或频率,从而实现系统的稳定运行和优化性能。

然而,双闭环控制中存在限幅问题,即在控制过程中输出电流或电压受到一定范围的限制,超出限制范围将会出现问题。

三、逆变器双闭环控制的限幅问题分析1. 输出电流或电压限幅问题:在逆变器的双闭环控制过程中,输出电流或电压可能会受到一定范围的限制,当输出电流或电压超出限制范围时,系统容易出现过载、失稳等问题,从而影响系统的运行和性能。

2. 输出电压或频率限幅问题:双闭环控制中外环控制通常是控制输出电压或频率,当输出电压或频率超出限制范围时,系统可能会出现过压、过频等问题,进而影响逆变器和整个系统的安全运行。

四、解决逆变器双闭环控制的限幅问题的方法1. 设计合理的控制策略:针对逆变器双闭环控制中存在的限幅问题,可通过设计合理的控制策略来解决。

可以采用多级控制结构、合理的参数调节等手段,提高系统的稳定性和控制精度。

2. 优化控制算法:优化控制算法是解决逆变器双闭环控制限幅问题的重要手段,通过改进现有的控制算法或引入新的控制算法,能够更好地应对限幅问题,提高系统的控制性能。

3. 引入限幅保护机制:在逆变器的双闭环控制中引入限幅保护机制,能够及时发现并处理输出电流或电压超出限制范围的情况,有效地保护逆变器和整个系统不受损坏。

直流电动机双闭环调速系统设计

直流电动机双闭环调速系统设计

1 设计方案论证电流环调节器方案一,采用PID调节器,PID调节器是最理想的调节器,能够平滑快速调速,但在实际应用过程中存在微分冲击,将对电机产生较大的冲击作用,一般要小心使用。

方案二,采用PI调节器,PI调节器能够做到无静差调节,且电路较PID调节器简单,故采用方案二。

转速环调节器方案一,采用PID调节器,PID调节器是最理想的调节器,能够平滑快速调速,但在实际应用过程中存在微分冲击,将对电机产生较大的冲击作用,一般要小心使用。

方案二,采用PI调节器,PI调节器能够做到无静差调节,且电路较PID调节器简单,故采用方案二。

2双闭环调速控制系统电路设计及其原理综述随着现代工业的开展,在调速领域中,双闭环控制的理念已经得到了越来越广泛的认同与应用。

相对于单闭环系统中不能随心所欲地控制电流和转矩的动态过程的弱点。

双闭环控制那么很好的弥补了他的这一缺陷。

双闭环控制可实现转速和电流两种负反应的分别作用,从而获得良好的静,动态性能。

其良好的动态性能主要表达在其抗负载扰动以及抗电网电压扰动之上。

正由于双闭环调速的众多优点,所以在此有必要对其最优化设计进展深入的探讨和研究。

本次课程设计目的就是旨在对双闭环进展最优化的设计。

整流电路本次课程设计的整流主电路采用的是三相桥式全控整流电路,它可看成是由一组共阴接法和另一组共阳接法的三相半波可控整流电路串联而成。

共阴极组VT1、VT3和VT5在正半周导电,流经变压器的电流为正向电流;共阳极组VT2、VT4和VT6在负半周导电,流经变压器的电流为反向电流。

变压器每相绕组在正负半周都有电流流过,因此,变压器绕组中没有直流磁通势,同时也提高了变压器绕组的利用率。

三相桥式全控整流电路多用于直流电动机或要求实现有源逆变的负载。

为使负载电流连续平滑,有利于直流电动机换向及减小火花,以改善电动机的机械特性,一般要串入电感量足够大的平波电抗器,这就等同于含有反电动势的大电感负载。

三相桥式全控整流电路的工作原理是当a=0°时的工作情况。

电压、电流的反馈控制模式

电压、电流的反馈控制模式

电压、电流的反馈控制模式电压、电流的反馈控制模式现在的高频开关稳压电源主要有五种PWM反馈控制模式。

电源的输入电压、电流等信号在作为取样控制信号时,大多需经过处理。

针对不同的控制模式其处理方式也不同。

下面以由VDMOS开关器件构成的稳压正激型降压斩波器为例,叙述五种PWM反馈控制模式的进展过程、基本工作原理、电路原理暗示图、波形、特点及应用要`氪,以利于挑选应用及仿真建模讨论。

(1)电压反馈控制模式电压反馈控制模式是20世纪60年月后期高频开关稳压电源刚刚开头进展而采纳的一种控制办法。

该办法与一些须要的过电流庇护电路相结合,至今仍然在工业界被广泛应用。

如图1(a)所示为Buck 降压斩波器的电压模式控制原理图。

电压反馈控制模式惟独一个电压反馈闭环,且采纳的是脉冲宽度调制法,即将经电压误差放大器放大的慢变化的直流采样信号与恒定频率的三角波上斜坡信号相比较,经脉冲宽度调制得到一定宽度的脉冲控制信号,电路的各点波形如图1(a)所示。

逐个脉冲的限流庇护电路必需另外附加。

电压反馈控制模式的优点如下。

①PWM三角波幅值较大,脉冲宽度调整时具有较好的抗噪声裕量。

①占空比调整不受限制。

①对于多路输出电源而言,它们之间的交互调整特性较好。

①单一反馈电压闭环的设计、调试比较简单。

①对输出负载的变化有较好的响应调整。

电压反馈控制模式的缺点如下。

①对输入电压的变化动态响应较慢。

当输入电压骤然变小或负载阻抗骤然变小时,由于主电路中的输出电容C及电感L有较大的相移延时作用,输出电压的变小也延时滞后,而输出电压变小的信息还要经过电压误差放大器的补偿电路延时滞后,才干传至PWM比较器将脉宽展宽。

这两个延时滞后作用是动态响应慢的主要缘由。

①补偿网络设计原来就较为复杂,闭环增益随输入电压而变化的现象使其更为复杂。

①输出端的LC滤波器给控制环增强了双极点,在补偿设计误差放大器时,需要将主极点低频衰减,或者增强一个零点举行补偿。

①在控制磁芯饱和故障状态方面较为棘手和复杂。

Buck电路平均电流双闭环控制

Buck电路平均电流双闭环控制

3)滤波电容设计
由C
duc dt
ic 可知, 2Vo
1 C
1 Ts 22
IL ,代入数值得 C 20.83uF ,考虑到
电容的等效串联电阻, RESR 0.01 。
三 Buck 变换器控制器参数设计
3.1 电路双闭环控制结构
整个系统的双闭环控制结构图如图 3-1。
图 3-1 系统总控制框图
Bode Diagram Gm = -Inf dB (at 0 rad/sec) , Pm = 28.3 deg (at 1.01e+006 rad/sec) 150
100
Magnitude (dB)
50
0
-50 -120
Phase (deg)
-150
-180
3
4
5
6
7
10
10
10
10
10
Frequency (rad/sec)
10
10
10
10
10
Frequency (rad/sec)
图 3-11 系统总的开环传函
Phase (deg)
四 Buck 变换器 Saber 仿真 4.1 电流环电流跟踪仿真
下图为加入了电流闭环的 Buck 电路,通过给定脉冲基准电流,观察电感电 流跟踪情况。
图 4-1 电流内环跟踪仿真原理图
图 4-2 电流环仿真输出电压和电感电流波形
kv
(
s wz
2
s2( s
1)( s wz3
1)( s
1) 1)

wp2
wp3
零点 wz2、wz3 由 wz1 大致确定, wp2、wp3 受到 wA 限制。具体参数需要通过 Saber 仿真,观察输出电压和电感电流波形找到满足电路输出要求的参数。在这里,取 wz2 1000 rad / s, wz3 1200 rad / s , wp2 wp3 65000 rad / s ,kv 3.3106 。作出 该补偿网络的幅频与相频特性曲线图。

电压电流双闭环原理

电压电流双闭环原理

电压电流双闭环原理
电压电流双闭环原理是指电源的输出电压和负载电流都有相关的反馈控制回路,使得输出电压和负载电流始终保持稳定的控制策略。

这种控制方法常用于高精度和精密的电源应用中。

电压电流双闭环控制系统通常包含两部分:电压回路和电流回路。

电压回路负责测量并控制电源输出电压的大小,以保持稳定的输出电压。

电流回路则负责测量电源输出电流大小,并根据流经负载的电流反馈回路来实现对输出电流的闭环控制。

电源的电压回路通常包括一个比较器和一个反馈环。

比较器将输出电压信号与参考电压信号进行比较,并输出一个正向或反向的控制信号。

反馈环将控制信号送回至电源的输出端口,对输出电压进行调整。

这样,当输出电压偏离参考电压时,反馈环会自动对电源进行调整,并将输出电压维持在参考电压附近。

电流闭环控制则通过测量和控制负载电流来实现。

电压电流双闭环控制可以大大提高电源的稳定性和可靠性。

它可以弥补传统单电压闭环或单电流闭环的不足,确保电源提供稳定可靠的输出电压和电流。

同时,电压电流双闭环原理可以提高系统的响应速度和抗干扰能力,使得电源可以在各种不同的负载要求下保持均衡和稳定。

总之,电压电流双闭环原理是一种高效且精密的电源控制方式,可以保证输出电
压和电流的稳定性和可靠性,适用于各种电源应用中。

电机控制中双闭环及PI控制的个人理解[xiu]

电机控制中双闭环及PI控制的个人理解[xiu]

运动控制中多闭环反馈控制及PI 控制的个人理解(1)虫虫QQ214081712 Email:kyo2000652@ 在运动控制系统中,为了实现对电机速度或者位置的良好控制,常常采用多重闭环的结构。

比如有刷直流电机调速系统,交流永磁同步电动机伺服系统,都采用了类似的结构,除此之外,闭环系统一般采用PI 控制器或者PID 控制器。

所以设计或调试类似系统就必须熟悉多闭环系统和PI 控制器的作用机理。

本问着重从物理意义的角度谈一下这些内容,而不做较深层次的分析,因为是个人的见解,所以难免有错误或者不全面的地方,请大家指出,谢谢! 一,基本知识:谈这个问题的时,首先要明确我们对运动控制系统的要求,其次要了解电机这个被控对象的一些特征,只有明确了这两点才能理解为什么选用多闭环的结构。

/1, 对运动控制系统的要求:不同类型运动控制系统对性能的要求是不一样的,比如一些调速系统要求系统能对负载扰动有很强的抑制能力,有的伺服系统要求系统对某类信号的静态误差不能超过多少,或者能适应频繁启动制动的情况。

但是把他们综合以下,可以大致归纳为以下几点:A,静态性能指标:主要是系统的静态误差,一般要保证指令信号和实际输出之间没有误差或者误差在允许范围内,假如你输入的指令是一个阶跃信号表示为50转每分,那么电机的稳态输出就要尽量接近50转每分,当然这里说的指令信号不一定都是阶跃信号,也有可能是斜坡或者其他信号,但是一般系统多用阶跃响应作为标准。

对于负反馈闭环控制系统来说,影响静态误差的主要因素是系统开环传递函数的型别,所以开环传函中串联的积分环节越多,系统型别就越高,静态误差越小,可以参考自动控制原理中的一些内容,这里不再深究。

B,抗扰动指标:也有不少书把该指标化归到静态性能中,这里单独把这个拿出来是为了强调它的重要性。

一般我们要求,当扰动在系统内某点产生作用时,系统输出受他的影响最小,也就是输出波动的幅度最小,而且能在很快的时间内恢复到正常输出。

SPWM变频电源双闭环控制的设计和研究.wps

SPWM变频电源双闭环控制的设计和研究.wps

SPWM变频电源双闭环控制的设计和研究在目前逆变电源的控制技术中,滞环控制技术和SPWM控制技术是变频电源中比较常用的两种控制方法。

滞环控制技术开关频率不固定,滤波器较难设计,且控制复杂,难以实现;SPWM控制技术开关频率固定,滤波器设计简单,易于实现控制。

当二者采用电压电流瞬时值双闭环反馈的控制策略时,均能够输出高质量的正弦波,且系统拥有良好的动态性能。

对于SPWM变频电源,采用电压电流瞬时值双闭环反馈的控制策略,工程中参数设计往往采用试凑法,工作繁琐,误差较大。

本文详细介绍了SPWM变频电源主要的控制参数设计准则和方法,对于快捷、准确地选择合适的闭环参数,有很大的实践应用价值。

2系统简介图1 双闭环控制的SPWM变频电源系统构成简化图图1为系统构成简化图,该系统由主电路和控制电路两部分组成。

逆变电源主电路采用以IGBT为开关器件的单相逆变电路, 采用全桥电路结构,经过LC低通滤波器,滤去高频成分,在滤波电容两端获得相应频率的光滑的正弦波。

虚线框包括的是控制电路,电压电流瞬时值双闭环反馈控制是由输出滤波电感电流和输出滤波电容电压反馈构成的。

其外环为输出电压反馈,电压调节器一般采用PI形式。

电压外环对输出电压的瞬时误差给出调节信号,该信号经PI调节后作为内环给定;电感电流反馈构成内环,电流环设计为电流跟随器。

电流内环由电感电流瞬时值与电流给定比较产生误差信号,与三角形载波比较后产生SPWM信号,通过驱动电路来控制功率器件,保证输出电压的稳定,形成典型的双环控制。

在实际应用中采用电流内环之外还设置电压外环的目的除了降低输出电压的THD外,还在于对不同负载实现给定电流幅值的自动控制。

3SPWM变频电源的线性化模型由于SPWM变频电源中存在着开关器件,因此是一个非线性系统,但因为一般情况下,SPWM变频电源的开关频率远高于调制频率,故可以利用传递函数和线性化技术,建立起SPWM变频电源的线性化模型[1],如图2所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档