ADS低通滤波器的设计与仿真
ADS2009射频电路仿真实验实验报告

低通滤波器的设计与仿真报告一、实验目的(1)熟悉ADS2009的使用及操作;(2)运用此软件设计一低通录波器,通过改变C2.L1的值,使低通录波器达到预定的要求(dB值以大于—3.0以上为宜);(3)画出输出仿真曲线并标明截止频率的位置与大小。
二、低通滤波器简介(1)定义:让某一频率以下的信号分量通过,而对该频率以上的信号分量大大抑制的电容、电感与电阻等器件的组合装置。
低通滤波器是容许低于截止频率的信号通过,但高于截止频率的信号不能通过的电子滤波装置。
(2)特点与用途特点:低损耗高抑制;分割点准确;双铜管保护;频蔽好,防水功能强。
用途:产品用途广泛,使用于很多通讯系统,如 CATV EOC 等系统。
并能有效的除掉通频带以外的信号和多余的频段、频率的干扰。
低通滤波器在信号处理中的作用等同于其它领域如金融领域中移动平均数所起的作用;低通滤波器有很多种,其中,最通用的就是巴特沃斯滤波器和切比雪夫滤波器。
三、设计步骤1,建立新项目(1)在界面主窗口执行菜单命令【File】/【New Project...】,创建新项目。
在选择保存路径时,在“Name”栏中输入项目的名称“lab1”;(2)单击按钮“确认”,出现电路原理图设计及仿真向导对话框,按照要求进行选择选项。
2,建立一个低通录波器设计(1)在主界面窗口,单击“New Schematic Window”图标,弹出原理图设计窗口;(2)单击“保存”图标,保存原理图,命名为“lpf1”;(3)在元件模型列表窗口中选择“Lumped-Components”集总参数元件类;(4)在左侧面板中选择电容图标,将其放置到电路图设计窗口中,并进行旋转;(5)用类似的方法将电感放置到电路图设计窗口中,并利用接地图标,把电容器的一端接地,将各个器件连接起来;(6)在元件库列表窗口选择“Simulation-S-Param”项,在该面板中选择S-parameter模拟控制器和端口Term,将其放到原理图中。
3微带低通滤波器ADS2011仿真实验

微带低通滤波器ADS 仿真实验一.实验目的1.了解微带低通滤波器的设计方法及原理2.熟悉ADS2011软件 二.具体指标 1.具有最平坦响应 2.截止频率GHz c 5.2=ω3.在GHz 4=ω处的插入损耗必须大于20dB4.阻抗为Ω50,采用6阶巴特沃兹低通原型,最高实际线阻抗为120Ω,最低实际阻抗为20Ω,采用的基片参数为02.0tan ,2.4,58.1===δεr mm d ,铜导体的厚度为mm t 035.0=三.滤波器设计步骤1.根据设计要求确定低通原型元器件值2.采用阻抗和频率定标公式,用低阻抗和高阻抗线段代替串联电感和并联电容。
所需微带线的电长度l β,以及实际微带线宽w 和线长l 可由ADS 软件中的lineCalc 工具计算得到3.根据得到的线宽和线长进行建模并仿真计算计算如下:6.015.241||=-=-c w w ,由下图1.1看出,对于n=6的曲线,当6.0)1|(|=-cw w时,LA 〈20dB ,故最大平坦滤波器级数n=6.图1.1 最大平坦滤波器原型的衰减与归一化频率的关系曲线根据表1.2列出低通原型值:1==.0,.1=5176=ggg。
gg4142=g=2,.15,65176.0,4142.0931893183.04,表1.2 巴特沃兹滤波器低通原型元器件值四.滤波器原理图设计1.建工程打开ADS2011,点击— > next —〉在workspace name中写入工程名称StepFilter_wrk—〉点击finish2.在StepFilter_wrk工程里创建原理图在folder view中选中你建立的工程,右键点击New Schematic,然后ok。
3.画微带线原理图在红框处打入MLIN回车,软件就会自动帮你找到微带线元器件(后面的元器件均如此添加),画好的原理图如图1.3图1.34.电路参数的设置添加器件MSUB,双击MSUB,添加参数如图1。
10.2.1 集总参数低通滤波器设计向导[共5页]
![10.2.1 集总参数低通滤波器设计向导[共5页]](https://img.taocdn.com/s3/m/b780410ead51f01dc381f1bb.png)
第10章 集总参数滤波器的仿真
231║
图10.9 从低通滤波器原型到低通、高通、带通和带阻滤波器的变换
10.2 集总参数低通滤波器的仿真
集总参数低通滤波器是由电感和电容构成的,当技术指标不同时,电感和电容的取值也不同,本节学习如何设计集总参数低通滤波器,并给出符合技术指标的集总参数低通滤波器原理图。
10.2.1 集总参数低通滤波器设计向导
ADS 自带了集总参数滤波器设计向导,利用设计向导可以方便地设计出符合技术指标的集总参数低通滤波器。
集总参数低通滤波器设计指标如下。
设计集总参数低通滤波器。
通带频率范围为0~0.1GHz 。
滤波器响应为切比雪夫Chebyshev 。
通带内波纹为0.5dB 。
在0.2GHz 时衰减大于40dB 。
特性阻抗选为50Ω。
下面介绍集总参数滤波器设计向导的使用方法。
1.创建项目
下面将创建一个集总参数滤波器项目,本章所有的设计都将保存在这个项目之中。
创建项目的步骤如下。
(1)启动ADS 软件,弹出主视窗。
(2)选择主视窗中【File 】菜单→【New Project 】,弹出【New Project 】对话框,在【New Project 】 对话框中,输入项目名称和这个项目默认的长度单位,这里项目名称定为LC _Filter ,默认的长度单位选为millimeter 。
《ADS设计滤波器》课件

重新仿真
进行二次仿真以验证调整后的电 路性能ຫໍສະໝຸດ ADS设计滤波器的注意事项
元器件的选择要合理
根据设计需求选择适合的元器件
仿真设置要正确
准确设置仿真参数,以获取准确的仿真结 果
连接要准确
确保元器件之间的连接正确无误
调整参数要谨慎
在调整元器件参数时要小心谨慎,避免影 响整体电路性能
ADS设计滤波器的示例
2 高通滤波器 4 带阻滤波器
ADS设计滤波器的流程
1
新建Schematic
创建电路原理图
选择合适的元器件
2
根据设计需求选择合适的电子元
器件
3
连接元器件
将元器件正确连接成电路
添加控制器和仿真设置
4
配置控制器以及设置仿真参数
5
进行仿真
运行仿真并观察电路性能
调整元器件参数
6
根据仿真结果调整元器件参数
7
低通滤波器的设计
设计一个低通滤波器来滤除 高频噪声
带通滤波器的设计
设计一个带通滤波器来提取 特定频率范围内的信号
带阻滤波器的设计
设计一个带阻滤波器来抑制 特定频率范围内的信号
总结
1 ADS是RF、微波电路设计的重要工具 2 滤波器在通信、雷达等领域有广泛应用 3 ADS设计滤波器要注意元器件的选择和仿真设置的正确处理
《ADS设计滤波器》PPT 课件
# ADS设计滤波器
什么是ADS?
ADS是高级设计系统(Advanced Design System)的简称,用于RF、微波电路的 设计和仿真。
滤波器的作用
1 抑制不需要的信号,保留有用信号 2 在通信、雷达等领域有广泛应用
微带阶梯阻抗低通滤波器原理图的仿真_物联网:ADS射频电路仿真与实例详解_[共10页]
![微带阶梯阻抗低通滤波器原理图的仿真_物联网:ADS射频电路仿真与实例详解_[共10页]](https://img.taocdn.com/s3/m/d13916b39b6648d7c0c746c5.png)
║260 物联网:ADS 射频电路仿真与实例详解 5式(11.7)和(11.8)中,L 和C 是低通滤波器原型的元器件值,R S 是滤波器阻抗。
2.阶梯阻抗低通滤波器的设计下面设计微带线阶梯阻抗低通滤波器,设计的详细过程可以参阅人民邮电出版社出版的《射频电路理论与设计》。
要求截止频率为3GHz ,通带内波纹为0.5dB ,在6GHz 处具有不小于30dB 的衰减,系统阻抗为50Ω。
选微带线特性阻抗最大值h Z =120Ω,特性阻抗最小值l Z =15Ω。
设计微带线阶梯阻抗低通滤波器的步骤如下。
(1)根据波纹为0.5dB 切比雪夫滤波器衰减随频率的对应关系,滤波器需为5阶,对应的切比雪夫低通滤波器原型元器件值为111.7058g C ==221.2296g L ==332.5408g C ==441.2296g L ==551.7058g C == (2)利用式(11.7)和(11.8)计算可以得到 1 1.70581518029.350l ⨯=⨯≈︒πβ 2 1.22965018029.4120l ⨯=⨯≈︒πβ 3 2.54081518043.750l ⨯=⨯≈︒πβ 4 1.22965018029.4120l ⨯=⨯≈︒πβ 5 1.70581518029.350l ⨯=⨯≈︒πβ (3)低通滤波器电路的示意图如图11.3所示,其中图11.3(a )为由低通滤波器原型元器件值构成的低通滤波器,图11.3(b )为微带线阶梯阻抗低通滤波器。
图11.3 低通滤波器电路的示意图11.1.2 微带阶梯阻抗低通滤波器原理图的仿真由上面微带线阶梯阻抗低通滤波器的理论基础,我们得到了微带线阶梯阻抗低通滤波器第11章 分布参数低通滤波器的仿真 261║的电路基本结构,本节学习如何利用ADS微带线的计算工具完成微带线的计算,以及如何设计并仿真微带线阶梯阻抗低通滤波器的原理图。
微带线阶梯阻抗低通滤波器的设计指标如下。
基于ADS和HFSS低通滤波器设计与仿真

低通滤波器设计指标:
具有最平坦响应 截止频率fc=3.0GHz 在f=4GHz处,插入损耗IL(S21)<-15dB 在通带内(0-3GHz),回波损耗S11≤-15dB 输入输出阻抗为50Ω,采用6阶巴特沃斯低通原型 采用FR4板材,板厚1.58mm,介电常数εr=4.4,损耗角
XY Plot 2
LPF-Original
0.00
m1 Curve Info
m2
dB(S(2,1))
Setup1 : Sw eep -5.00
Name X Y
从图中可以得到,滤波器
-10.00
m1 2.7400 -1.5064
m2 3.0000 -4.0389
-15.00
m3 4.0000 -20.0776
从图中可以得到,滤波器在
3.0GHz就开始截止了,达到设计指 标 , 在 4GHz 处 , S21=-12.139dB 符 合设计要求。
综上所述,该滤波器已经完全达到设计指标,此时各节微带线 长度与宽度如下表所示:
节数 1 2 3 4 5 6 7 8
W(mm) 3.41 12.74 0.34 10.60 0.50 9.84 0.30 3.41
θ(°) 90 11.8 33.8 44.3 46.1 32.4 12.3 90
W(mm) 3.01 11.05 0.36 11.05 0.36 11.05 0.36 3.01
L(mm) 16.45 2.02 6.64 7.58 9.05 5.54 2.42 16.45
ADS仿真:
根据设计计算得到的微带线尺寸在ADS构建低通滤波器电路如下:
将搭建好的低通滤波器电路运行仿真得到数据: 从图中可以看到,S11和S22小于-15dB带宽范围为0-1.8GHz,远没有 达到设计指标。
ads低通滤波器的设计与仿真

利用ADS自带的集总方式得出切雪夫 低通滤波器的阶数如下图:
可得阶数为n=11
之后直接利用集总生成切比雪夫滤波器, 然后用如下图的功能把切比雪夫滤波器中的 电感、电容转换为微带线。
转换过程中把电介质设为2.2,基板厚度设为 0.8mm(这里使用的是已经验证可用)。把转 换完的11阶微带电路复制到另一个新建设计 面页,连成如下图所示,并连成如下电路,
设计指标
❖ 截止频率:1.1GHz; ❖ 带内波纹:<0.2dB; ❖ 在阻带频率1.21GHz处,阻带衰减>25dB; ❖ 输入输出阻抗:50Ω。
设计方案
利用之前计算的切比雪夫滤波器原型的 阶数n=9连接电路图,并用ADS自带的微带 计算器计算长宽,结果在优化是始终没办法 使带内波纹小于0.2dB,经过查找资料后以 及上论坛交流。又换成使用椭圆函数滤波器, 结果调出来的波形能达到指标,但波形会形 成带阻波形,只能在一定范围内低通。之后 使用ADS的集总功能自动计算切比雪夫滤波 器要达到指标的阶数为11,经过调试后可用。
参数、变量什么的都设完后自动优化加手动 都达不到理想波形,通过讨论后加上T型接 头才能调出理想波形。
图形改为如下所示,设计变量参数、微 带参数和S参数
设置变量参数如 右图所示
设置如右图 中的控件 MSUB微带 线参数
设置S参数中 扫描的频率范 围和步长如右 图
设置完成后即可单 击工具栏上的simulate按 钮或是点击simulate→simulate,当仿真结束 后,系统会自动弹出一个数据显示窗口,在 数据显示窗口中插入一 个S21参数的矩形图 图形如下
显然波形还达不到指标要求,设置如下自 动优化参数并自动优化
优化后若还不够符合指标,则 把优化的数据填入变量中,继续进 行优化直到达到指标。图形如下
写一篇用ads进行微波射频滤波器设计与仿真的实验心得100字

写一篇用ads进行微波射频滤波器设计与仿真的实验心得ADS在微波射频滤波器设计与仿真中的应用心得进入实验室,我首次接触到了使用ADS(Advanced Design System)进行微波射频滤波器的设计与仿真。
微波射频技术是电子通信领域的核心技术之一,而滤波器则是其中的关键部件,用于筛选和过滤特定频率的信号。
为了更深入地理解这一技术,并探索滤波器的设计奥妙,我参与了这次富有挑战性的实验。
实验过程中,我首先学习了ADS软件的基本操作和设计原理。
通过模拟不同的滤波器结构,如带通、带阻等,我逐渐感受到了滤波器设计的复杂性和精确性。
在仿真环节,我不断调整滤波器的参数,如中心频率、带宽等,以观察其对信号频谱的影响。
随着数据的不断变化,我意识到设计的每一步都需谨慎思考和精确计算。
当然,实验过程并非一帆风顺。
在初次设计时,我曾因为参数设置不当导致仿真结果偏离预期。
正是这些小挫折,使我更加深刻地认识到了理论学习和实际操作之间的紧密联系。
每当遇到问题时,我都会回顾相关理论知识,或向导师和同伴请教,从而找到解决问题的方法。
这次实验让我体会到了科研工作的严谨性和探索性。
通过ADS进行微波射频滤波器设计与仿真,我不仅学会了如何使用专业软件进行科研工作,更加深入地理解了滤波器的工作原理和设计方法。
同时,我也明白了理论知识和实践操作相辅相成
的重要性。
展望未来,我希望能够进一步深入研究微波射频技术,探索更多的滤波器设计方法,并应用到实际工程中。
我相信,随着技术的不断进步和自身的不懈努力,我将能够在这一领域取得更加卓越的成果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电磁场与微波技术
课程设计报告
课程题目:低通滤波器的设计与仿真姓名:
指导老师:
系别:电子信息与电气工程系专业:通信工程
班级:
学号:
完成时间:
低通滤波器的设计与仿真
摘要:微波滤波器是用来分离不同频率微波信号的一种器件。
它的主要作用是抑制不需要的信号, 使其不能通过滤波器, 只让需要的信号通过。
在微波电路系统中,滤波器的性能对电路的性能指标有很大的影响,因此如何设计出一个具有高性能的滤波器,对设计微波电路系统具有很重要的意义。
微带电路具有体积小,重量轻、频带宽等诸多优点,近年来在微波电路系统应用广泛,其中用微带做滤波器是其主要应用之一。
关键词:ads;微带线;低通滤波器
一、设计思路
1、设计要求:截止频率:1.1GHz,通带内波纹小于0.2dB,在 1.21GHz 处具有不小于 25dB 的带外衰减。
2、方案选择
利用椭圆函数滤波器设计并仿真,经过优化后,结果调出来的波形能达到指标,但波形会形成带阻波形,只能实现在一定范围内低通。
所以不选。
利用切比雪夫滤波器设计并仿真,经过优化调试后可用。
3、设计法案
首先用 LC 设计低通滤波器集总参数模型当频率工作在高频时,要用微带线代替 LC 元件。
高阻抗微带线代替串联电感,低阻抗微带线代替并联电容。
一般取Zhigh=120Ω,Zlow=20Ω。
在输入和输出加上50Ω微带线。
然后根据设计要求通过 ADS 自带的Linecalc 计算转换过来的微带线长和宽。
在进行设计时,主要以滤波器的 S 参数作为优化目标进行优化仿真。
S21(S12) S(表示传输参数,滤波器的通带,阻带的位置以及衰减,起伏全部表现在 S21(S12)随频率变化的曲线上。
S11(S22)参数是输入、输出端口的反射系数,由它可以换算输入输出的电压驻波比。
如果反射系数过大,就会导致反射损耗过大,影响系统的后级匹配,使系统性能下降。
板材设置:H(基板厚度)=0.8mm,Er(基板相对介电常数)=2.2,Mur (磁导率)=1,Cond(金属电导率)=1E+50,Hu(封装高度)=1E+033mm,T (金属层厚度)=0.01mm,TanD (损耗角正切)=0。
二、仿真过程及电路原理图、版图、S 参数等
经过ADS软件的仿真和折中,以下就以相对比较好的方案为例介绍详细过程以及电路和版图仿真的情况。
低通滤波器集总参数模型如图1所示:
图1
原理图设计并加T型接口如图2所示:
图2
优化控件如图 3 所示:
图3
未经优化原理图仿真的S(2,1)参数如图 4 所示:
图4
图中 m1 位置即为1.1GHz,与要求衰减3dB还有差距。
因此需要对原电路进行优化,优化完后的S(2,1)参数如图5所示:
图5
由图5可看出经过优化后的S(2,1)参数达到设计要求。
电路图仿真成功后进行PBC版图的生成和仿真,利用ADS软件生产版图如图6:
图6
当生成版图后,在版图的两端边沿打上两个 Port,设置 Port 的板层和版图的板层一致。
接下来就是把原理图的参数导入5版图中,点击版图窗口菜单中的Momentum -> Substrate -> Update From Schematic从原理图中获得参数。
之后点击Momentum -> Simulation -> S-parameter弹出仿真设置窗口,该窗口右侧的Sweep Type选择Adaptive,起止频率设为与原理图中相同,采样点数限制取10 (因为仿真很慢,所以点数不要取得太多)。
然后点击Update按钮,将设置填入左侧列表中,点击Simulate按钮开始进行仿真。
仿真完S(2,1)参数波形如图7:
图7
由图7可看出版图仿真的截止频率与设计要求还有点偏差,重新回到原理图窗口进行优化仿真,产生这种情况的原因是微带线的宽度取值不合适,可以改变优化变量的初值,也可根据曲线与指标的差别情况适当调整优化目标的参数,重新进行优化。
经过多次重新优化后得到如图8的S(2,1)参数波形:
图8
由图8可看出相比图7更接近设计要求,且证明版图仿真与设计要求也一直,此时的微带的长和宽的参数如图9所示:
图9
三、设计总结
本次课程设计是用ADS设计微带低通滤波器,根据设计要求设计所要制作的滤波器的原理图。
经过小组讨论后决定用切比雪夫滤波器原型来设计。
根据所给的参数计算出所要设计的滤波器需要的阶数为9,之后根据上网查找的经验方法用ADS自带的微带计算器算计算出所要用的微带的长和宽,设计完后进行优化时却无法优化出符合设计要求的S(2,1)参数波形,之后小组上网查找,在微波仿真论坛得到说可用椭圆函数滤波器制作。
用进行了使用椭圆函数滤波器的制作,结果得到的波形是能满足带内波纹、截至频率、阻带频率,但所得图形是阻带图形,只能满足在一定范围内实现低通。
通过查找资料可以利用集总的方法让ADS自行得出阶数与原理图,于是变用集总的方式得出了切比雪夫11阶滤波器,之后用第一次的计算方法,再经过优化终于得到正确的波形且完全符合设计要求。
通过本次课程设计,使我不仅学到了通信专业相关的知识,更重要的是掌握ADS的基本使用方法。
通过实验,使我更直观地去理解和巩固课堂所学的理论知识,调动了我们的学习兴趣。
通过ADS仿真实验,提升了我的动手能力和解决问题的能力。
经过一学期的实验,经过小组不同分工,对实验的各个进度的讨论和改进,使我加强了团队合作的意识,,且对于低通滤波器有了更深的了解,特别是不同类型的滤波器——巴特沃斯滤波器、切比雪夫滤波器以及椭圆函数滤波器的区分有了更深的理解。