数学建模作业(三)

合集下载

数学建模课作业范例

数学建模课作业范例

数学建模课作业范例范例题目:一家具公司签定了一项合同,合同要求在第一个月月底前,交付80把椅子,在第二个月月底前,交付120把椅子。

若每月生产x把椅子时,成本为50x+0.2x2(元);如第一个月生产的数量超过订货数,每把椅子库存一个月的费用是8元。

公司每月最多能生产200把椅子。

求完成以上合同的最佳生产安排。

家具公司最佳生产安排问题一问题的提出一家具公司签定了一项合同,合同要求在第一个月月底前,交付80把椅子,在第二个月月底前,交付120把椅子。

若每月生产x把椅子时,成本为50x+0.2x2(元);如第一个月生产的数量超过订货数,每把椅子库存一个月的费用是8元。

公司每月最多能生产200把椅子求成以上合同的最佳生产安排。

二假设与变量说明1.)模型假设1.椅子的成本和库存费没有变化2.该公司签定的合同并未发生变化3.该公司生产的椅子质量合格4.除了成本费和库存费并未产生其他额外的费用2)变量说明x1: 公司第一个月生产的椅子数x2: 公司第二个月生产的椅子数y1: 公司第一个月的成本费y2: 公司第二个月的成本费z: 库存费Y: 总的费用三模型分析和建立1. 模型分析:该家具公司需要每月制定一个最佳的椅子生产数(x1、x2),使该公司完成合同所需成本最小,而获得最大利润。

本模型的问题焦点就是确定最小成本,即使Y=y1+y2+z最小的数学问题。

2. 模型建立第一个月的生产成本:y1=50x1+0.2x12第二个月的生产成本:y2=50x2+0.2x22所需库存费: z=(x1-80)*8总成本: Y=y1+y2+z=(50x1+0.2x12)+(50x2+0.2x22)+(x1-80)*8其中:x1 +x2=200 80≤x1≤200综上所述,可建立如下数学模型:Min Y=(50x1+0.2x12)+(50x2+0.2x22)+(x1-80)*8 s.t 80≤x1≤200x 1 + x2=200四.求解用LINGO对模型直接求解,输入格式为:model:min=(50*x1+0.2*x1^2)+( 50*x2+0.2*x2^2)+8*(x1-80);x1>=80;x1<=200;x1+x2=200;end运行后结果为:Optimal solution found at step: 4Objective value: 14120.00Variable Value Reduced CostX1 90.00000 0.0000000X2 110.0000 0.0000000Row Slack or Surplus Dual Price1 14120.00 1.0000002 9.999998 0.2158310E-053 110.0000 0.00000004 0.0000000 -94.00000五.结果与分析由计算可知,当x1=90,x2=110时成本费最底,所以生产的最佳安排是第一月生产90把椅子,第二月生产110把椅子.。

数学建模作业

数学建模作业

一、摘要本文根据所给出的数据,运用excel软件并采用数据分析法,制定了一个具体可行的调整方案(其可靠性为95%)。

首先,本文对题中的12组数据,进行相关性分析,求出各观测站所测的年平均降雨γ>的观测站组合。

其次,对这量间的相关系数γj i,,找出满足,0.381i j些组合进行一元线性回归,得到一元回归模型,并作F检验。

经过检验进行优化选择,可先去掉5,9,11三个观测站。

通过对一元线性回归模型分析知,观测站8的年平均降雨量可由观测站6预测得到。

因此在满足足够大的信息量下,本模型可减少5,8,9,11四个观测站,而他们的信息均可由6观测站来预测,可靠性为95%。

由于降雨量具有随机性,为更精确预测该地区未来十年的年平均降雨量,本文利用精简后的数据建立时间序列模型。

对原数据列进行一阶差分处理,得到稳定的新时间序列。

分析新时间序列的自相关函数与偏自相关函数图像,然后采用自相关函数和偏相关函数检验法对模型进行识别,确定使用ARMA(1,1)模型。

借助于SPSS软件对数据进行处理,并对理论结果进行白噪声检验,结果表明ARMA(1,1)具有可靠性与实用性。

关键字:相关性分析数据分析一元线性回归时间序列自相关函数 arma(1,1)模型白噪声检验二、问题重述问题一:某地区内有12个气象观测站,根据27年来各观测站测得的年降雨量(见附表1),由于经费问题, 有关单位拟减少气象站数目以节约开支, 但又希望还能够尽量多地获取该地区的降水量信息。

现要求设计一个方案:尽量减少观测站,而所得到的年降水量的信息量仍足够大。

问题二:为研究该地区的降雨量特点,需要对该地区未来十年的降雨量进行预测分析。

三、模型假设1.该地区的地理特征具有一定的均匀性,而不是表现为复杂多变的地理特征。

2.不考虑其它区域及天气对本地区降雨量的影响3.该市的气候特征较稳定,不出现较大的自然灾害,27年的统计数据能够全面地反映该市的气候特征;4.该市的气候不会因环境的变化而发生较大的变化; 四、符号说明γji,为任意两个观测站间的相关系数)1(t --p n α为自由度n-p-1的t 分布双侧临界值y为欲预测值p 为p 元回归数px x x y s .....21为剩余标准差X t(,,,...12X X X n )为平稳时间序列X表示原始序列Y表示一阶差分序列白噪声序列方差a五、问题分析5.1 问题一的分析本案例实质上是个典型的预测问题,即用较少的测站来预测12个站的年降水量,本模型的基本思想是:如果某一观测站的年降水量可用其它观测站的年降水量来线性回归的话,就可删去这一观测站。

数学建模作业题+答案

数学建模作业题+答案

数学建模MATLAB 语言及应用上机作业11. 在matlab 中建立一个矩阵135792468101234501234A ⎡⎤⎢⎥⎢⎥=⎢⎥-----⎢⎥⎣⎦答案:A = [1,3,5,7,9;2,4,6,8,10;-1,-2,-3,-4,-5;0,1,2,3,4]2. 试着利用matlab 求解出下列方程的解(线性代数22页例14)123412423412342583692254760x x x x x x x x x x x x x x +-+=⎧⎪--=⎪⎨-+=-⎪⎪+-+=⎩ 答案:A=[2 ,1,-5,1;1,-3,0,-6;0,2,-1,2;1,4,-7,6]; B=[8;9;-5;0]; X=A\B 或A=[2,1,-5,1;1,-3,0,-6;0,2,-1,2;1,4,-7,6] b=[8,9,-5,0]' X=inv(A)*b3. 生成一个5阶服从标准正态分布的随机方阵,并计算出其行列式的值,逆矩阵以及转置矩阵。

答案:A=randn(5) det(A) inv(A) A'4. 利用matlab 求解出110430002A -⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦的特征值和特征向量。

答案:A=[-1,1,0;-4,3,0;0,0,2] [V,D]=eig(A)5.画出衰减振荡曲线3sin3t y et -=在[0,4]π上的图像。

要求,画线颜色调整为黑色,画布底面为白色。

(在实际中,很多打印机时黑白的,因此大多数作图要考虑黑白打印机的效果。

) 给出恰当的x ,y 坐标轴标题,图像x 轴的最大值为4π。

6. 生成一个0-1分布的具有10个元素的随机向量,试着编写程序挑选出向量中大于0.5的元素。

数学建模和Matlab 上机作业2(2016-9-20)跟老师做(不用整合进作业中):上机演示讲解:函数,递归的两个例子的写法。

附:1. Fibonacci Sequence (斐波那契数列)在数学上,费波那西数列是以递归的方法来定义: F1= 1;F2= 1;F (n )=F (n-1)+F (n-2) 2. 阶乘举例:数学描述:n!=1×2×……×n ;计算机描述:n!=n*(n-1)!自己做(需要整合进作业中,提交到系统中):1. 写一个m 文件完成分值百分制到5分制的转换(即输入一个百分制,转换后输出一个5级对应的得分,联系条件控制语句)。

经济数学建模作业及答案

经济数学建模作业及答案

2、如果连续复利时,以什么利率才能使本金在8年内变成3倍?1、在每半年复利一次的情况下,以8%的利率,需要经过多长时间才能使现值增到2.5倍?3、连续收益流量每年按80万元持续5年,若以年利率5%贴现,其现值应是多少?T=11.68年r=13.73%55%00S 80353.92t e dt -==⎰8003S S re =4、某汽车使用寿命为10年,若购买此车需35000元,若租用此车每年租金为7200元,若资金的年利率为14%,按连续复利计算,问买车与租车哪一种方式合算。

计算租车资金流量总值的现值,然后与购买费相比。

租车租金流量总值的现值为所以买车比租车合算。

002.5S S +=2T0.08(1)2101014141172003875635000i i i i i S e e -%-%==≈>=∑∑5、一商家销售某种商品的价格满足关系x p 2.07-=(万元/吨),x 为销售量(单位:吨);商品的成本函数是C =3x +1(万元)。

(1) 若每销售一吨商品,政府要征税t (万元),求该商家获最大利润时商品的销售量;(2) t 为何值时,政府税收总额最大。

6、已知某企业生产的商品的需求弹性为1.2,如果该企业准备明年将价格降低15%,问这种商品的销量预期会增长多少?总收益会增长多少?2'5(2) 10 0 22T tx t t T t ==-=⇒=R18%,3%R Q Q∆∆==令2(70.2)31(4)0.21Px C Tx x x tx t x x --=----=---'''5()0,()0102L x L x x t=<⇒=-(1)利润L(x)=7、某消费者打算购买两种商品q 1和q 2,他的预算约束是240元,两种商品的单价分别是10元和2元,其效用函数为U=q 1q 2,消费者的最优商品组合是什么?一元钱的边际效用是多少?8、效用函数U (q 1,q 2) 应满足的条件是以下的A,B 之一:A. U (q 1,q 2) =c 所确定的函数q 2=q 2(q 1)单调减、下凸;0,0,0,0,0.B 21222221221>∂∂∂<∂∂<∂∂>∂∂>∂∂q q Uq U q U q U q U AB ⇒证明:对U (q ,q 2) =c 两端求q 1的一阶导和二阶导12102240q q +=1212MU MU P P =1212,60q q ==解建立方程组得解出一元钱边际效用为610、在确定性存贮模型中,在费用中增加购买货物本身的费用,确定不允许缺货的最优订货周期和订货批量。

数学建模作业及答案

数学建模作业及答案

数学建模作业姓名:叶勃学号:班级:024121一:层次分析法1、 分别用和法、根法、特征根法编程求判断矩阵1261/2141/61/41A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦11/2433217551/41/711/21/31/31/52111/31/5311A ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦的特征根和特征向量(1)冪法求该矩阵的特征根和特征向量 程序为:#include<iostream> #include<math.h> using namespace std;#define n 3 //三阶矩阵#define N 20 #define err 0.0001 //幂法求特征值特征向量 void main(){cout<<"**********幂法求矩阵最大特征值及特征向量***********"<<endl; int i,j,k;double A[n][n],X[n],u,y[n],max;cout<<"请输入矩阵:\n"; for(i=0;i<n;i++) for(j=0;j<n;j++)cin>>A[i][j]; //输入矩阵 cout<<"请输入初始向量:\n"; for(i=0;i<n;i++)cin>>X[i]; //输入初始向量 k=1; u=0;while(1){ max=X[0]; for(i=0;i<n;i++) {if(max<X[i]) max=X[i]; //选择最大值 }for(i=0;i<n;i++)y[i]=X[i]/max; for(i=0;i<n;i++)X[i]=0;for(j=0;j<n;j++)X[i]+=A[i][j]*y[j]; //矩阵相乘}if(fabs(max-u)<err){cout<<"A的特征值是 :"<<endl; cout<<max<<endl; cout<<"A的特征向量为:"<<endl; for(i=0;i<n;i++) cout<<X[i]/(X[0]+X[1]+X[2])<<" ";cout<<endl;break;}else{if(k<N) {k=k+1;u=max;} else {cout<<"运行错误\n";break;}}} }程序结果为:(2)和法求矩阵最大特征值及特征向量程序为:#include<stdio.h>#include<iostream>#include<math.h> using namespace std;#define n 3 //三阶矩阵#define N 20void main(){int i,j,k;double A[n][n],w[n],M[n],u[n],W[n][n],max;cout<<"********和法求矩阵的特征根及特征向量*******"<<endl;cout<<"请输入矩阵:\n";for(i=0;i<n;i++)for(j=0;j<n;j++)cin>>A[i][j]; //输入矩阵 //计算每一列的元素和M[0]=0;M[1]=0;M[2]=0;for(i=0;i<n;i++)for(j=0;j<n;j++){M[i]+=A[j][i];}//将每一列向量归一化for(i=0;i<n;i++)for(j=0;j<n;j++){W[j][i]=A[j][i]/M[i];}//输出按列归一化之后的矩阵Wcout<<"按列归一化后的矩阵为:"<<endl;for(i=0;i<n;i++)for(j=0;j<n;j++){cout<<W[i][j]<<" ";if(j==2)cout<<endl;} //求特征向量w[0]=0;w[1]=0;w[2]=0;for(i=0;i<n;i++)for(j=0;j<n;j++){w[i]+=W[i][j];}cout<<"特征向量为:"<<endl; for(i=0;i<n;i++){u[i]=w[i]/(w[0]+w[1]+w[2]);cout<<u[i]<<" "<<endl;}//求最大特征值max=0;for(i=0;i<n;i++){w[i] = 0;for(j=0;j<n;j++){w[i] += A[i][j]*u[j];}}for(i = 0;i < n;i++){max += w[i]/u[i];}cout<<"最大特征根为:"<<endl;cout<<max/n<<endl; }运行结果为:(3)根法求矩阵最大特征值及特征向量:程序为:#include<stdio.h>#include<iostream>#include<math.h>using namespace std;#define n 3 //三阶矩阵#define N 20void main(){int i,j;double A[n][n],w[n],M[n],u[n],W[n][n],max;cout<<"********根法求矩阵的特征根及特征向量*******"<<endl; cout<<"请输入矩阵:\n";for(i=0;i<n;i++)for(j=0;j<n;j++)cin>>A[i][j]; //输入矩阵//计算每一列的元素和M[0]=0;M[1]=0;M[2]=0;for(i=0;i<n;i++)for(j=0;j<n;j++){M[i]+=A[j][i];}//将每一列向量归一化for(i=0;i<n;i++)for(j=0;j<n;j++){W[j][i]=A[j][i]/M[i];}//输出按列归一化之后的矩阵Wcout<<"按列归一化后的矩阵为:"<<endl;for(i=0;i<n;i++)for(j=0;j<n;j++){cout<<W[i][j]<<" ";if(j==2)cout<<endl;}//求特征向量//w[0]=A[0][0];w[1]=A[0][1];w[2]=A[0][2];w[0]=1;w[1]=1;w[2]=1;for(i=0;i<n;i++){for(j=0;j<n;j++){w[i]=w[i]*W[i][j];}w[i]=pow(w[i], 1.0/3);}cout<<"特征向量为:"<<endl;for(i=0;i<n;i++){u[i]=w[i]/(w[0]+w[1]+w[2]);cout<<u[i]<<" "<<endl;}//求最大特征值max=0;for(i=0;i<n;i++){w[i] = 0;for(j=0;j<n;j++){w[i] += A[i][j]*u[j];}}for(i = 0;i < n;i++){max += w[i]/u[i];}cout<<"最大特征值为:"<<endl; cout<<max/n;}运行结果为:2、编程验证n阶随机性一致性指标RI:运行结果:3、考虑景色、费用、居住、饮食、旅途五项准则,从桂林、黄山、北戴河三个旅游景点选择最佳的旅游地。

数学建模课后习题作业

数学建模课后习题作业

选修课——数学建模部分习题详细解答【陈文滨】1、在稳定的椅子问题中,如设椅子的四脚连线呈长方形,结论如何?【模型假设】(1)椅子四条腿一样长,椅脚与地面接触处视为一点,四脚的连线呈长方形.(2)地面高度是连续变化的,沿任何方向都不会出现间断 (没有像台阶那样的情况),即从数学的角度看,地面是连续曲面.这个假设相当于给出了椅子能放稳的必要条件.(3)椅子在任何位置至少有三只脚同时着地.为保证这一点,要求对于椅脚的间距和椅腿的长度而言,地面是相对平坦的.因为在地面上与椅脚间距和椅腿长度的尺寸大小相当的范围内,如果出现深沟或凸峰(即使是连续变化的),此时三只脚是无法同时着地的。

【模型建立】在上述假设下,解决问题的关键在于选择合适的变量,把椅子四只脚同时着地表示出来.首先,引入合适的变量来表示椅子位置的挪动.生活经验告诉我们,要把椅子通过挪动放稳,通常有拖动或转动椅子两种办法,也就是数学上所说的平移与旋转变换.然而,平移椅子后问题的条件没有发生本质变化,所以用平移的办法是不能解决问题的.于是可尝试将椅子就地旋转,并试图在旋转过程中找到一种椅子能放稳的情形.注意到椅脚连线呈长方形,长方形是中心对称图形,绕它的对称中心旋转180度后,椅子仍在原地.把长方形绕它的对称中心O旋转,这可以表示椅子位置的改变。

于是,旋转角度θ这一变量就表示了椅子的位置.为此,在平面上建立直角坐标系来解决问题.如下图所示,设椅脚连线为长方形ABCD,以对角线AC所在的直线为x轴,对称中心O为原点,建立平面直角坐标系.椅子绕O点沿逆时针方向旋转角度θ后,长方形ABCD转至A1B1C1D1 的位置,这样就可以用旋转角θ(0≤θ≤π)表示出椅子绕点O旋转θ后的位置.其次,把椅脚是否着地用数学形式表示出来.我们知道,当椅脚与地面的竖直距离为零时,椅脚就着地了,而当这个距离大于零时,椅脚不着地.由于椅子在不同的位置是θ的函数,因此,椅脚与地面的竖直距离也是θ的函数.由于椅子有四只脚,因而椅脚与地面的竖直距离有四个,它们都是θ的函数.而由假设(3)可知,椅子在任何位置至少有三只脚同时着地,即这四个函数对于任意的θ,其函数值至少有三个同时为0.因此,只需引入两个距离函数即可.考虑到长方形ABCD是中心对称图形,绕其对称中心 O沿逆时针方向旋转180°后,长方形位置不变,但A,C和B,D对换了.因此,记A、B两脚与地面竖直距离之和为f(θ),C、D两脚与地面竖直距离之和为g(θ),其中θ∈[0,π],从而将原问题数学化。

(0349)《数学建模》网上作业题及答案

(0349)《数学建模》网上作业题及答案

(0349)《数学建模》网上作业题及答案1:第一批次2:第二批次3:第三批次4:第四批次5:第五批次6:第六批次1:[填空题]名词解释13.符号模型14.直观模型15.物理模型16.计算机模拟17.蛛网模型18.群体决策参考答案:13.符号模型:是在一定约束条件或假设下借助于专门的符号、线条等,按一定形式组合起来描述原型。

14.直观模型:指那些供展览用的实物模型以及玩具、照片等,通常是把原型的尺寸按比例缩小或放大,主要追求外观上的逼真。

15.物理模型:主要指科技工作者为一定的目的根据相似原理构造的模型,它不仅可以显示原型的外形或某些特征,而且可以用来进行模拟实验,间接地研究原型的某些规律。

16.计算机模拟:根据实际系统或过程的特性,按照一定的数学规律用计算机程序语言模拟实际运行情况,并依据大量模拟结构对系统或过程进行定量分析。

17.蛛网模型:用需求曲线和供应曲线分析市场经济稳定性的图示法在经济学中称为蛛网模型。

18.群体决策:根据若干人对某些对象的决策结果,综合出这个群体的决策结果的过程称为群体决策。

2:[填空题]名词解释7.直觉8.灵感9.想象力10.洞察力11.类比法12.思维模型参考答案:13.符号模型:是在一定约束条件或假设下借助于专门的符号、线条等,按一定形式组合起来描述原型。

14.直观模型:指那些供展览用的实物模型以及玩具、照片等,通常是把原型的尺寸按比例缩小或放大,主要追求外观上的逼真。

15.物理模型:主要指科技工作者为一定的目的根据相似原理构造的模型,它不仅可以显示原型的外形或某些特征,而且可以用来进行模拟实验,间接地研究原型的某些规律。

16.计算机模拟:根据实际系统或过程的特性,按照一定的数学规律用计算机程序语言模拟实际运行情况,并依据大量模拟结构对系统或过程进行定量分析。

17.蛛网模型:用需求曲线和供应曲线分析市场经济稳定性的图示法在经济学中称为蛛网模型。

18.群体决策:根据若干人对某些对象的决策结果,综合出这个群体的决策结果的过程称为群体决策。

数学建模作业完整版

数学建模作业完整版

数学建模作业HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】《数学建模》作业学号姓名工作量 100 %专业所属学院指导教师二〇一七年六月数学建模作业第一部分:请在以下两题中任选一题完成(20 分)。

1、(马王堆一号墓入葬年代的测定建模问题)湖南省长沙市马王堆一号墓于 1972 年 8 月发掘出土,其时测得出土的木炭标本中碳-14 平均原子蜕变数为次/分钟,而新烧成的同种木材的木炭标本中碳-14(C-14)原子蜕变数为次/分钟. 又知碳-14 的半衰期为 5730 年,试推断该一号墓入葬的大致年代。

问题分析:放射性元素衰变的速度是不受环境影响的,它总是和该元素当前的量成正比,运用碳—14测定文物或化石年代的方法是基于下面的理由:(1)宇宙射线不断轰击大气层,使大气层中产生碳—14而同时碳—14又在不断衰变,从而大气层中碳—14含量处于动态平衡中,且其含量自古至今基本上是不变的;(2)碳—14被动植物体所吸收,所以活着的生物体由于不断的新陈代谢,体内的碳—14也处于动态平衡中,其含量在物体中所占的百分比自古至今都是一样的;(3)动植物的尸体由于停止了从环境中摄取碳—14,从而其体内碳—14含量将由于衰变的不断减少,碳定年代法就是根据碳—14的减少量来判断物体的大致死亡时间。

模型建立设t 时刻生物体中碳—14的含量为x (t ),放射性物质的半衰期(即放射性物质的原子数衰减一半所需的时间)为T ,生物体死亡时间为t0,则由放射性物质衰变规律得数学模型⎪⎩⎪⎨⎧=-=,)(,00x t x x dtdx λ ① 其中0>λ称为衰变系数,由放射性物质所决定,x 0为生物体在死亡时刻t 0时的碳—14含量。

模型求解对所得的一阶线性微分方程模型①采用同变量分离法求解,得 e x t t x t )(00)(--=λ??由于T t t =-0时,有 0021)()(x T t x t x =+=??代入上式,有 T e T 2ln ,212==-λ????? 所以得 ? T t t e x t x )(2ln 00)(--= ②这就是生物体中碳—14的含量随时间衰变的规律,由之易解得 )()(ln 2ln 00t x t x T t t =- ③ 将所得的数学模型的一般解应用于本例,此时以T=5730,37.380=x (新木炭标准中碳—14原子蜕变数),X(1972)=(出土的木炭标本中碳—14原子蜕变数) 代入到③式,得 ?209578.2937.38ln 2ln 57300≈=-t t 年 于是得??1232095197220950-=-=-≈t t 年结果表明,马王堆墓入葬年代大约在公元前123年左右的西汉中期,该结论与马王堆出土文物的考证结果相一致。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学建模作业(三)第三章习题
2013/04/09
速度为v 的风吹在迎风面积为s 的风车上,空气的密度是ρ,用量纲分析法确定风车获得的功率p 与v ,s ,ρ的关系。

● 对于风车获得的功率p 与v ,s ,ρ的关系我们假设:
1.忽略其它因素对功率的影响
2.将其视为理想化模型
● 在这些假设下,风车获得的功率与以下物理量有关:
风车获得的功率p ,风速v ,迎风面积s ,空气密度ρ。

● 它们的量纲分别是
23[]p MLT
-=,1[]v LT -=,23[],].[L L s M ρ-== ● 设1234
=p v s ααααπρ,有 1234
1412341223123+2++2-3-3-[]()()()()MLT LT L ML M L T ααααααααααααπ---==
由[]1π=得到以下线性方程组
141234*********
αααααααα⎧+=⎪++-=⎨⎪--=⎩
不难验证,这个方程组的秩为3.
因此方程组的解空间是4维。


()()1
=1α 可得方程组的基本解:
1(1,3,1,1),=---e
于是,与这四个参数有关的量纲乘积为
3111=,pv s πρ---
● 四个物理量之间的关系为()10.f π=即
()
3110.f pv s ρ---=
● 根据隐函数运算法则,得
● 3p s v λρ=,
其中λ为无单位的常比例系数。

俗话说“大饺子能装馅”,试自建一个“包饺子”的数学模型并进行分析,判断这一说法是否正确。

● “大饺子能装馅”考虑到实际是相同面积的饺子皮可以用掉更多体积的饺子馅。

● 为了简化模型,我们做出以下假设
1. 饺子都是标准球形
2. 饺子大小全部一致
3. 饺子皮的厚度相同
4. 饺子皮的厚度忽略不计
● 涉及到的物理量:
饺子皮总面积S ,一个饺子皮的面积s ,饺子数n ,饺子半径r ,所包馅的总体积V ,一个饺子包含馅的体积v
● 这些物理量有以下关系:
2
3
s=443
/r v r n S s
V nv
ππ===
可得V =● 因此,大饺子能装馅,这一说法正确。

考察一个模拟水下爆炸的实验,爆炸物的质量m 在距爆炸点的距离为r 处接受冲击波,产生压强为p 。

记大气初始压强为p 0,水的密度为ρ,水的体积弹性模量为k 。

由量纲分析法已经得到300(/,/)p p p k r m ϕρ=。

设模拟现场与现场的p 。

,ρ,k 相同,而爆炸物模型的质量为原型的1/10000.为使实验中接受到与现场相同的压强,试计算接受冲击波仪器的相对位置(是现场仪器与爆炸点之间距离的多少倍)。

● 设模拟实验时现场仪器与爆炸点之间距离为r 1,爆炸物质量为m 1.现场爆炸时现场仪器
与爆炸点之间距离为r 2,爆炸物质量为m 2.
● 根据题目假设有模拟现场与现场的p 。

,ρ,k 相同,而爆炸物模型的质量为原型的
1/10000。

● 根据量纲分析法得到的公式有300(/,/)p p p k r m ϕρ=。

为使实验中接受到与现
场相同的压强,需要使得
331122//r m r m ρρ=,因此有1
3
22111.m r r m ⎛⎫== ⎪⎝⎭
● 即132211r m r m ⎛⎫== ⎪⎝⎭。

相关文档
最新文档