光电传感器的发展及其应用论文
光电传感技术的发展与应用

光电传感技术的发展与应用随着科技的不断进步,光电传感技术的应用越来越广泛。
光电传感技术的发展也成为现代制造、物流、医疗等领域的重要技术。
本文将着重介绍光电传感技术的发展历程、现状以及应用领域。
一、光电传感技术的发展历程20世纪以前,光电传感技术并未受到重视,直到20世纪50年代,其技术才开始逐渐成熟,并用于战争中的远程敌情探测和导航。
随着技术的不断发展,光电传感技术在医疗、航空、制造、物流等领域的应用也日益广泛。
二、光电传感技术的现状通过对光传感技术的发展历程进行了解,可以发现,现在的光电传感技术已经相对成熟。
近年来,大量的技术研究和应用推广,让光电传感技术得到了迅速发展。
尤其是一些新型光学材料的应用,使得光电传感技术具备了更多种类的应用场景。
三、光电传感技术的应用领域1.医疗领域在医疗领域,光电传感技术的应用非常广泛。
例如,光电血糖仪、光电血氧仪等设备,不仅减轻了人们对血糖、血氧等检测项的担忧,而且还提高了健康生活的方便性和质量。
2.制造领域在制造领域,光电传感技术的应用也是比较多的。
例如,通过使用光学测量仪器对工件形状进行测量,可以大大提高制造精度和速度。
而且在机器人视觉识别等领域,光电传感技术也得到了广泛的应用。
3.物流领域在物流领域,光电传感技术的应用是非常广泛的。
例如,在自动运输、配送过程中,可以通过使用激光传感器,来控制货物的准确配送。
在现代物流时代,光电传感技术是实现智能化物流运营的重要核心技术。
四、光电传感技术的未来随着人们对科技创新和应用需求的不断增加,光电传感技术未来的应用前景是非常广阔的。
例如,在环保净化、生物分析、图像识别等方面,都可以通过光电传感技术来实现。
总体来看,光电传感技术是一种非常重要的技术,其应用范围非常广泛,并且在未来的科技创新中将发挥着越来越重要的作用。
我们相信,随着技术的不断发展,光电传感技术的应用将发生更多的变化和创新。
光电传感器的应用与发展趋势

光电传感器的应用与发展趋势在咱们如今这个科技飞速发展的时代,光电传感器那可是无处不在,就像一个默默无闻的小英雄,时刻发挥着大作用。
我记得有一次,我去参观一家现代化的工厂。
一进去,那场景可真是让我大开眼界!机器轰鸣,生产线快速运转。
其中,有个环节让我印象特别深刻。
在组装电子设备的时候,一个个小巧的光电传感器就像一双双敏锐的眼睛,精准地检测着零件的位置和状态。
每当有零件通过特定的位置,光电传感器就会迅速做出反应,发出信号,指挥机械臂准确无误地抓取和安装。
那速度,那精度,简直让人惊叹不已!咱们先来说说光电传感器在日常生活中的应用。
你想想,咱们每天用的智能手机,那里面可就有光电传感器的功劳。
它能根据周围环境的光线强弱,自动调节屏幕的亮度。
大白天在户外,屏幕亮度自动调高,看得清清楚楚;晚上在被窝里玩手机,亮度又自动降低,不会刺眼。
还有咱们家里的智能照明系统,也是靠光电传感器来感知光线变化,自动开灯关灯,节能环保又方便。
在工业领域,光电传感器更是大显身手。
比如在物流行业,货物的分拣和输送可离不开它。
光电传感器能够快速识别货物的形状、大小和颜色等特征,确保货物准确无误地被分类和运输。
在汽车制造厂里,光电传感器能监测到生产线上的每一个步骤,一旦发现问题,立即发出警报,避免出现次品。
再看看医疗领域,光电传感器在医疗器械中的应用也是至关重要。
像血糖仪、血压计等设备,都依靠光电传感器来准确测量生理指标。
还有在手术中,医生们使用的一些先进设备,也是通过光电传感器来精确定位和操作。
光电传感器在农业方面也有着出色的表现。
比如在温室大棚里,它可以监测光照强度、温度和湿度等环境参数,让农作物在最适宜的环境中生长。
还有在农业自动化灌溉系统中,根据光电传感器反馈的土壤湿度信息,合理控制灌溉水量,既节省了水资源,又保证了农作物的生长需求。
那光电传感器未来的发展趋势会是怎样的呢?我觉得呀,它会变得越来越小巧、越来越灵敏。
就像一个不断进化的小精灵,能够更好地适应各种复杂的环境和需求。
浅谈光电传感器的发展与应用

浅谈光电传感器的发展与应用摘要:传光电传感器在工业上常用于非接触测量物位、距离和条码等信息,随着现代检测技术的发展出现了很多新型的光电传感器。
本文介绍了光电式传感器的分类,阐述了光电式传感器在高压大电流测试、转速测量系统、继电保护、烟尘浊度监测、军事领域等方面中的应用,对实际领域具有指导意义。
关键词:光电传感器继电保护烟尘浊度1前言所谓光电传感器(OTC)是采用光电元件作为检测元件的传感器,它首先把被测量的变化转换成光信号的变化,然后借助光电元件进一步将光信号转换成电信号。
光电传感器一般由光源、光学通路和光电元件三部分组成[1-2]。
光电传感器的敏感范围远远超过了电感、电容、磁力超声波传感器的敏感范围。
光电传感器的体积很小,而敏感范围很宽,加上机壳有很多样式,几乎可以到处使用。
随着技术的不断发展,光电传感器在价钱方面可以同用其他技术制造的传感器竞争。
2光电传感器的工作原理由光通量对光电元件的作用原理不同所制成的光学测控系统是多种多样的,按光电元件输出量性质可分二类,即模拟式光电传感器和脉冲(开关)式光电传感器。
模拟式光电传感器是将被测量转换成连续变化的光电流,它与被测量间呈单值关系。
模拟式光电传感器按被测量方法可分为透射式、漫反射式、遮光式三大类。
所谓透射式是指被测物体放在光路中,恒光源发出的光能量穿过被测物,部份被吸收后,透射光投射到光电元件上。
所谓漫反射式是指恒光源发出的光投射到被测物上,再从被测物体表面反射后投射到光电元件上。
所谓遮光式是指当光源发出的光通量经被测物光遮其中一部分,使投射刭光电元件上的光通量改变,改变的程度与被测物体在光路位置有关。
3光电传感器分类光电元件有光敏电阻、光电二极管、光电三极管、发光二极管、光电倍增管、光电池、光电耦合器件等。
由光通量对光电元件的作用原理不同所制成的光学测控系统是多种多样的,按光电元件输出量性质,光电传感器可分二类,即模拟式光电传感器和脉冲式光电传感器;模拟式光电传感器按被测量方法又可分为透射式、漫反射式、遮光式三大类[3]。
光电传感技术的发展与应用研究

光电传感技术的发展与应用研究随着科技的不断进步,光电传感技术已经逐渐成为人们生产、生活和科学研究中不可或缺的组成部分。
光电传感技术可以通过电子与光子的相互作用,实现对物理、化学和生物信息的测量、分析和监测,广泛应用于医疗、环保、制造等领域。
本文将重点介绍光电传感技术的发展历程和应用研究现状。
1. 光电传感技术的发展历程20世纪初光电传感技术的开端,主要采用的是光电子管,但该技术存在体积大、寿命短、灵敏度低等问题,限制了其广泛应用。
1947年,贝尔实验室研究员肯尼思·珀特尔发明了第一个晶体管,开启了半导体器件发展的新时代,光电传感技术也在此过程中得以发展。
20世纪50年代末,随着半导体技术的不断发展,光电传感技术开始采用光电二极管和光电晶体管,这些器件具有小体积、高灵敏度、长寿命等优点,使得光电传感器件在空间、电子和通信系统中得以大规模应用。
在90年代末,随着纳米级晶体管和量子点器件的发明,光电传感技术的灵敏度得到进一步提升。
2. 光电传感技术的应用研究现状2.1 医疗领域光电传感技术在医疗领域的应用非常广泛。
例如,光学成像技术可以实现对眼睛、耳朵等器官的检测和诊断。
在癌症筛查和治疗中,光电传感技术能够实现癌细胞的分析,支持癌症的早期筛查。
此外,光电传感技术还可用于呼吸器官和心血管系统的监测。
2.2 环保领域光电传感技术在环保领域的应用也非常广泛。
例如,在土壤污染和水质检测中,光谱技术可以实现对化学成分的高精度检测。
此外,气体传感技术可以实现对空气中的污染物的监测和控制,应用于工业、交通、城市空气质量等方面。
2.3 制造领域光电传感技术在制造领域的应用越来越广泛。
例如,在汽车制造和控制行业,众多的检测技术和控制技术需要光电传感器件的支持。
在工业机器人行业,光电传感技术也可以实现机器人的高精度定位。
3. 光电传感技术的未来展望随着科技不断发展,光电传感技术在未来仍将继续得到广泛应用,其应用领域也将越来越多元化、细分化。
光电传感器的应用及其发展趋势

光电传感器的应用及其发展趋势摘要:光电传感器是把被测量的变化转换成光信号的变化,然后,借助光电元件把光信号转换成电信号来实现控制。
如光电开关、光感电阻、光感二极管、光电池、光纤等。
光电式传感器在检测和控制领域中应用非常广泛,它是采用光电元件作为检测元件的传感器,具有反应快、精度高、非接触等优点,而且可测参数多,结构简单,形式灵活多样。
本文列举了光电传感器技术在一些领域里的应用。
并阐述了当前传感器技术的发展现状以及发展趋势。
关键词:光电效应;光电器件;常见故障;检测控制;发展趋势光电传感器,一般由光源、光学通路和光电元件等3部分组成,是通过将光电信号转换为电信号检测被测目标的一种装置。
近年来,新的光电器件不断涌现,光电传感器的应用范围更加广泛。
一、光电传感器的原理光电传感器的工作原理是:首先把被测量的变化转换成光信号的变化,然后通过光电转换元件变换成电信号。
光电传感器的工作基础是光电效应。
由光通量对光电元件作用的不同原理所制成光学测控系统是多种多样的,按光电元件输出量性质可分为两类,即模拟式光电传感器和脉冲式光电传感器,前者是将被测量转换成连续变化的光电流,它与被测量问呈单值关系。
按被测量方法可分为透射式、漫反射式、遮光式三类:①透射式。
被测物体放在光路中,恒光源发出的光能量穿过被测物,部分被吸收后,透射光投射到光电元件上;②漫反射式。
恒光源发出的光投射到被测物上,再从被测物体表面反射后投射到光电元件上;③遮光式。
当光源发出的光通量经被测物遮挡其中一部分,使投射到光电元件上的光通量改变,改变的程度与被测物体在光路位置相关。
光敏二极管是最常见的光传感器,不同于一般二极管的是其管壳上开有一个嵌着玻璃的窗口,为增加射入光线的受光面积,PN结的面积做得较大。
光敏二极管工作在反向偏置的状态下,并与负载电阻相串联。
当无光照时,它与普通二极管一样,反向电流很小,称为光敏二极管的暗电流;当有光照时,载流子被激发,产生电子-空穴,称为光电载流子。
光电传感器的应用及其发展

光电传感器的应用及其发展首先,光电传感器在工业自动化领域有着广泛的应用。
例如,在自动化生产线上,光电传感器可以用于检测物体的存在、位置、颜色等信息,实现自动化的操控和控制。
它可以用于物体的检测与分类,比如物体的尺寸、形状、颜色等特征检测。
还可以用于检测物体的运动和速度,实现精确的定位和追踪。
光电传感器还可以用于测量温度、压力、湿度等参数,实现对生产过程的监控和调控。
此外,光电传感器还可以用于检测环境中的污染物,比如检测大气中的PM2.5、CO2等有害气体。
其次,光电传感器在医疗领域也有着重要的应用。
光电传感器可以用于血氧测量,实时监测患者的血氧饱和度,提供给医生做出准确的判断和决策。
光电传感器还可以用于心率监测,可以通过皮肤表面的光学信号来记录和分析患者的心率情况。
此外,光电传感器还可以用于人体成像,比如脑电图(EEG)、心电图(ECG)、眼底成像等。
再次,光电传感器在军事领域也有着重要的应用。
光电传感器可以用于远程探测和监测目标,实时获取目标的位置、速度、距离等信息,为军事作战提供支持。
光电传感器还可以用于无人机、导弹等武器系统的导航和目标识别,提高对目标的精确打击能力。
此外,光电传感器还可以用于夜视设备,提供强大的夜间作战能力。
最后,光电传感器还在环保领域有着重要的应用。
光电传感器可以用于检测大气中的有害气体,提供给环保监测部门准确的数据,监测大气的污染情况。
光电传感器还可以用于水质监测,检测水中的溶解氧、PH值、浊度等参数,实时监测水体的质量。
此外,光电传感器还可以用于垃圾分类、环境噪声监测等。
总之,光电传感器在各个领域的应用越来越广泛,并且随着技术的不断进步和应用领域的扩大,光电传感器的发展也越来越迅速。
未来,随着人们对于精确度和高性能的要求不断提高,光电传感器将会更加广泛地应用于不同的领域,并且不断提升自身的性能和功能,为各个行业带来更大的发展和创新。
论光电传感器的发展趋势及应用

论光电传感器的发展趋势及应用摘要:光电传感器因其体现出的响应时间短、非接触检测、精度较高、可靠性强等优势特点,在工业生产、国防事业、信息自动监测等领域得到十分广泛应用,并且随着现代科学技术不断发展,光电传感器智能化、模块化、多能化等发展趋势也会更加明显,推动其在更多领域中应用。
本文联系光电传感器概述,对光电传感器的发展趋势进行细致分析,并尝试从宏观和微观层面入手,对光电传感器的实践应用进行深入探讨,以供参考。
关键词:光电传感器;发展趋势;应用;分析在现代科学技术不断发展背景下,各种电子设备在实际生产生活中也得到较为广泛应用,而光电传感器作为一项重要的感测传输设备,可以利用自身感知能力,将相关数据信息有效传递出去,并且可以同时满足信息记录、存储、显示等多种功能需求,相应信号传输速度也非常快,光电传感器现已经渗透到各行各业领域中,加强光电传感器发展趋势及应用分析也显得十分有必要,不仅可以完善光电传感器监测、自动调节等功能,还能促进其应用范围进一步扩大[1]。
鉴于此,本文对光电传感器的发展趋势及应用展开深入探究。
1光电传感器概述光电传感器主要是通过把光强度的变化转化为电信号的变化来达到控制的目的,并且光电传感器的物理基础就是光电效应,简单来说就是半导体材料的许多电学特性都会受到光照射影响而发生变化,通常是由发送器、接收器和检测电路所构成。
其中,发送器所对准的目标是发射光束,而光束多来源于半导体光源,在光束不间断的发射下,就会使脉冲宽度发生改变,而接收器包含光电二极管、光电池等内容,其后是检测电路,可以滤出有效信号[2]。
由于光电传感器所使用的光敏元件是光敏电阻、光敏二极管等,因此具有抗干扰能力强、精度较高等优点,并且通过设计使投光光束集中,可以实现无机械接触地检测物体,整个过程也不会对传感器造成破坏,甚至还可以利用被投光光线波长和检测物体颜色组合有所差异这一性质,实现检测物体颜色有效辨别。
2光电传感器的发展趋势光电传感器的发展趋势有:(1)技术层面朝着智能化方向迈进,光电传感器智能化发展,主要是以传统光电传感器作为基础,使之与计算机、微处理器等技术有效结合起来,在实现传感器自身检测技术有效利用的同时,使光电传感器还具备计算机计算、储存等功能,不仅可以对数据进行分析计算,还能结合数据分析结果,对内部检测系统进行完善优化,最终数据信息也会更具有说服力。
光电传感器的应用研究与发展趋势

光电传感器的应用研究与发展趋势光电传感器是一种基于光电效应的传感器,可以将光信号转化为电信号。
它具有灵敏度高、精度高、响应速度快等特点,在许多领域有着广泛的应用。
本文将就光电传感器的应用研究和发展趋势进行探讨。
一、光电传感器的应用领域1. 工业自动化在工业自动化中,光电传感器常被用于检测物体的位置、形状、颜色等属性。
例如,在生产线上检测产品是否正常、货物是否到位等场合,都可以使用光电传感器。
2. 智能家居随着智能家居概念的普及,光电传感器也逐渐被应用于家居智能化。
它可以实现自动控制家居电器、保持室内环境舒适、提高生活质量和安全性等功能。
3. 医疗器械光电传感器在医疗器械领域中有着丰富的应用,例如,口腔医疗设备、心电图设备等。
它可以精准地检测生命信号,为医疗工作提供精确的支持。
4. 其他领域在军事、安防、交通等领域中,光电传感器也有很多应用。
它可以实现夜视功能、提高安全性、解决交通问题等。
二、光电传感器的发展趋势1. 小型化、集成化随着科技的进步,光电传感器也在不断发展。
未来,光电传感器的趋势将是小型化、集成化。
它们将体积更小,能耗更低,应用更普遍。
2. 精度的提高精度是传感器的关键指标之一,光电传感器在未来发展中,也会注重精度的提高。
同时,它们将会更加智能化,能够实现更复杂的测量和控制任务。
3. 应用于人机交互随着智能家居和智能穿戴设备的普及,光电传感器也将应用于人机交互领域。
例如,手势识别、眼动识别等技术,都离不开光电传感器的支持。
4. 传感器网络的应用传感器网络是新一代的物联网,它利用传感器和通信技术连接起来的物体,可以实现多个终端设备间的联动。
光电传感器也将成为传感器网络中的重要组成部分,为人们提供更加便捷、智能化的生活方式。
三、光电传感器的市场前景随着科技的进步和应用范围的扩大,光电传感器的市场前景非常广阔。
据市场研究机构预测,全球光电传感器市场规模将在未来几年内增长迅猛。
尤其在工业自动化和智能家居方面,光电传感器的市场需求将大幅增加。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光电传感器的发展及其应用摘要:光电式传感器(photoelectric transducer),基于光电效应的传感器,在受到可见光照射后即产生光电效,将光信号转换成电信号输出。
它除能测量光强之外,还能利用光线的透射、遮挡、反射、干涉等测量多种物理量,如尺寸、位移、速度、温度等,因而是一种应用极广泛的重要敏感器件。
本文重点阐述光电传感器的发展与应用。
关键词:光电传感器、光电效应、发展、应用实例1前言1.1光电式传感器光电传感器又称光传感器其基本原理是以光电效应为基础,通过把光强度的变化转换成电信号的变化来实现控制的,它的基本结构如图1,它首先把被测量的变化转换成光信号的变化,然后借助光电元件进一步将光信号转换成电信号。
光电传感器一般由光源,光学通路和光电元件三部分组成。
光电检测方法具有精度高,反应快,非接触等优点,而且可测参数多,传感器的结构简单,形式灵活多样,因此,光电式传感器在检测和控制中应用非常广泛[1]。
图2光电传感器的电源要是一个恒光源,电源稳定性的设计至关重要,电源的稳定性直接影响到测量的准确性,常用光源有以下几种:1、发光二极管是一种把电能转变成光能的半导体器件。
它具有体积小、功耗低、寿命长、响应快、机械强度高等优点,并能和集成电路相匹配。
因此,广泛地用于计算机、仪器仪表和自动控制设备中。
2、丝灯泡这是一种最常用的光源,它具有丰富的红外线。
如果选用的光电元件对红外光敏感,构成传感器时可加滤色片将钨丝灯泡的可见光滤除,而仅用它的红外线做光源,这样,可有效防止其他光线的干扰。
3、激光激光与普通光线相比具有能量高度集中,方向性好,频率单纯、相干性好等优点,是很理想的光源。
由光源、光学通路和光电器件组成的光电传感器在用于光电检测时,还必须配备适当的测量电路。
测量电路能够把光电效应造成的光电元件电性能的变化转换成所需要的电压或电流。
不同的光电元件,所要求的测量电路也不相同。
下面介绍几种半导体光电元件常用的测量电路。
半导体光敏电阻可以通过较大的电流,所以在一般情况下,无需配备放大器。
在要求较大的输出功率时,可用图2所示的电路。
图3(a)给出带有温度补偿的光敏二极管桥式测量电路。
当入射光强度缓慢变化时,光敏二极管的反向电阻也是缓慢变化的,温度的变化将造成电桥输出电压的漂移,必须进行补偿。
图中一个光敏二极管做为检测元件,另一个装在暗盒里,置于相邻桥臂中,温度的变化对两只光敏二极管的影响相同,因此,可消除桥路输出随温度的漂移。
光敏三极管在低照度入射光下工作时,或者希望得到较大的输出功率时,也可以配以放大电路,如图3所示。
图2 图3 由于光敏电池即使在强光照射下,最大输出电压也仅0.6V,还不能使下一级晶体管有较大的电流输出,故必须加正向偏压,如图3(a)所示。
为了减小晶体管基极电路阻抗变化,尽量降低光电池在无光照时承受的反向偏压,可在光电池两端并联一个电阻。
或者象图3(b)所示的那样利用锗二极管产生的正向压降和光电池受到光照时产生的电压叠加,使硅管e、b极间电压大于0.7V,而导通工作。
这种情况下也可以使用硅光电池组,如图4(c)所示。
半导体光电元件的光电转换电路也可以使用集成运算放大器。
硅光敏二极管通过集成运放可得到较大输出幅度,如图11(a)所示。
当光照产生的光电流为时,输出电压为了保证光敏二极管处于反向偏置,在它图4的正极要加一个负电压。
图11(b)给出硅光电池的光电转换电路,由于光电池的短路电流和光照成线性关系,因此将它接在运放的正、反相输入端之间,利用这两端电位差接近于零的特点,可以得到较好的效果。
在图中所示条件下,输出电压由光通量对光电元件的作用原理不同所制成的光学测控系统是多种多样的,按光电元件(光学测控系统)输出量性质可分二类,即模拟式光电传感器和脉冲(开关)式光电传感器.模拟式光电传感器是将被测量转换成连续变化的光电流,它与被测量间呈单值关系.模拟式光电传感器按被测量(检测目标物体)方法可分为透射(吸收)式,漫反射式,遮光式(光束阻档)三大类.所谓透射式是指被测物体放在光路中,恒光源发出的光能量穿过被测物,部份被吸收后,透射光投射到光电元件上,如测液体、气体透明度和混浊度的光电比色计等;所谓漫反射式是指恒光源发出的光投射到被测物上,再从被测物体表面反射后投射到光电元件上,如光电比色温度计和光照度计等;所谓遮光式是指当光源发出的光通量经被测物光遮其中一部份,使投射刭光电元件上的光通量改变,改变的程度与被测物体在光路位置有关,如振动测量、工件尺寸测量;而在脉冲式光电传感器中在这种传感器中,光电元件接受的光信号是断续变化的,因此光电元件处于开关工作状态,它输出的光电流通常是只有两种稳定状态的脉冲形式的信号,多用于光电计数和光电式转速测量等场合。
光电测量时不与被测对象直接接触,光束的质量又近似为零,在测量中不存在摩擦和对被测对象几乎不施加压力。
因此在许多应用场合,光电式传感器比其他传感器有明显的优越性。
1.2光电效应光照在照在光电材料上,材料表面的电子吸收的能量,若电子吸收的能量足够大是,电子会克服束缚脱离材料表面而进入外界空间,从而改变光电子材料的导电性,这种现象成为外光电效应。
光电效应又可分为外光电效应和内光电效应,外光电效应由爱因斯坦光电效应方程描述: hv=1/2*mv0的平方式中hv为光子具有能量,h为普朗克常数,v为光频率。
m为电子质量,v0为电子逸出速度。
当光子能量等于或大于逸出功时才能产生外光电效应。
因此每一种物体都有一个对应于光电效应的光频极限。
2光电传感器的发展状况1839年A.E.贝可勒尔发现当光线落在浸没于电介液中的两个金属电极上,它们之间就产生电势,后来称这种现象为光生伏特效应[2]。
1873年W.史密斯和Ch.梅伊发现硒的光电导效应[2]。
1887年H.R.赫兹发现外光电效应[2]。
基于外光电效应的光电管和光电倍增管属真空电子管或离子管器件,曾在50~60年代广泛应用,直到目前仍在某些场合继续使用。
虽然早在1919年T.W.凯斯就已取得硫化铊光导探测器的专利权[3],但半导体光敏元件却是在60年代以后随着半导体技术的发展而开始迅速发展的。
在此期间各种光电材料都得到了全面的研究和广泛的应用。
它们的结构有单晶和多晶薄膜的,也有非晶的,它们的成分有元素半导体的和化合物半导体的,也有多元混晶的。
其中最重要的两种是硅和碲镉汞。
硅的原料丰富,工艺成熟,是制造从近红外到紫外波段光电器件的优良材料。
碲镉汞是碲化汞和碲化镉的混晶,是优良的红外光敏材料。
通过对光电效应和器件原理的研究已发展了多种光电器件(如光敏电阻、光电二极管、光电三极管、场效应光电管、雪崩光电二极管、电荷耦合器件等),适用于不同的场合。
光电式传感器的制造工艺也随薄膜工艺、平面工艺和大规模集成电路技术的发展而达到很高的水平,并使产品的成本大为降低。
被称为新一代摄像器件的聚焦平面集成光敏阵列正在取代传统的扫描摄像系统。
光电式传感器的最新发展方向是采用有机化学汽相沉积、分子束外延、单分子膜生长等新技术和异质结等新工艺。
光电式传感器的应用领域已扩大到纺织、造纸、印刷、医疗、环境保护等领域。
在红外探测、辐射测量、光纤通信,自动控制等传统应用领域的研究也有新发展[10]。
例如,硅光电二极管自校准技术的提出为光辐射的绝对测量提供了一种很有前途的新方法[4]。
3光电传感器的分类光电元件有光敏电阻、光电二极管、光电三极管、发光二极管(LED)、光电倍增管、光电池、光电耦合器件等。
由光通量对光电元件的作用原理不同所制成的光学测控系统是多种多样的,按光电元件(光学测控系统)输出量性质,光电式传感器可分二类,即模拟式光电传感器和脉冲(开关)式光电传感器;模拟式光电传感器按被测量(检测目标物体)方法又可分为透射(吸收)式、漫反射式、遮光式(光束阻挡)三大类。
4光电传感器的应用4.1光电传感器的应用特点①检测距离长。
②对检测物体的限制少。
③响应时间短。
④分辨率高。
能通过高级设计使投光光束集中在小光点,或通过构成特殊的受光光学系统,来实现高分辨率。
也可进行微小物体的检测和高精度的位置检测。
⑤可实现非接触的检测。
可无机械接触地检测物体,因此不会对检测物体和传感器造成损伤。
因此,传感器能长期使用。
⑥可实现颜色判别。
通过检测物体形成的光的反射率和吸收率根据被投光的光线波长和检测物体的颜色组合而有所差异。
利用这种性质,可对检测物体的颜色进行检测。
⑦便于调整。
在投射可视光的类型中,投光光束是眼睛可见的,便于对检测物体的位置进行调整。
4.2光电传感器的应用实例4.2.1测量工件表面的缺陷[5]用光电传感器测量工件表面缺陷的工作原理如图1 所示,激光管1 发出的光束经过透镜2 和3 变为平行光束,再由透镜4 把平行光束聚焦在工件7的表面上,形成宽约0.1mm 的细长光带。
光栏5 用于控制光通量。
如果工件表面有缺陷( 粗糙、裂纹等) ,则会引起光束偏转或散射,这些光被硅光电池6 接收,即可转换成电信号输出。
4.2.2 测量转速[6]如图2所示为用光电传感器测量转速的工作原理。
在电动机的旋转轴上涂上黑白两种颜色,当电动机转动时,反射光与不反射光交替出现,光电元件1相应地间断接收光的反射信号,并输出间断的电信号,再经放大器及整形电路2放大整形输出方波信号,最后由电子数字显示器输出电机的转速。
4.23 烟尘浊度连续检测仪[7]如图3 所示为吸收式烟尘浊度检测仪框图。
白炽平行光源通过烟筒由光检测器接收,转换成随浊度变化的相应电信号,运算放大器接收此信号,当运算放大器输出的浊度信号超出规定值时,多谐振荡器工作,其信号经放大推动喇叭发出报警信号。
4.2.4 光电式数字转速表[8]光电数字转速表如图4 所示,发光二极管发出的恒定光调制成随时间变化的调制光。
同样经光电元件1 接收,放大整形电路2 放大整形,输出整齐的脉冲信号,转速可由该脉冲信号的频率来决定。
4.2.5光学传感器阵列在水硬度中的应用[1]西北工业大学自动控制系的孙广清设计了一个传感器用于测定水的硬度。
目前,测定水中钙镁总含量的方法通常用乙二胺四乙酸(EDTA)络合滴定法或分光光度法,但是这两种方法各有缺点,不是费时很难实时测量,就是只能单一测定,不能简便快速地综合测定。
该传感器是由激光二极管和光电二极管组成的3通道光学阵列。
所有器件集成在一个芯片上,每个芯片上集成三个如图2所示的功能单元。
图中E1,S1,R1,MI及数字均为传感器芯片引脚标号。
4.2.6 转速测量[11]将转速变换成光通量的变化,再经过光电元件转换成电量的变化即可得到转速。
如下图所示。
被测转轴上装有调制盘(带孔或带齿的圆盘),调制盘的一边设置光源,另一边设置光电元件。
调制盘随轴转动,当光线通过小孔或齿缝时,光电元件就产生一个电脉冲。