高精度的IGBT开关脉冲直流稳流电源
高精度开关电源的设计

高精度开关电源的设计李亮; 陈广来【期刊名称】《《天津理工大学学报》》【年(卷),期】2019(035)005【总页数】6页(P23-28)【关键词】开关电源; Buck电路; 低功耗; 低纹波率; 稳压【作者】李亮; 陈广来【作者单位】天津理工大学机械工程学院天津市先进机电系统设计与智能控制重点实验室天津300384【正文语种】中文【中图分类】TN86开关电源是在电力电子技术的基础上,通过调节开关管的占空比使其输出稳定电压的一种电源[1].DC-DC 的降压方式有两种,第一种是线性降压(LDO)电路,第二种是Buck 电路.根据线性降压式电源,负载功率越大,效率越低;负载功率越小,效率越高[2];自身承担多余的电压实现降压的特点,针对大功率的工况下线性降压电压功耗大,发热量大,因此在工业控制领域以及电子技术领域,开关电源得到了广泛应用.例如,作为基准源以及给元器件提供精准稳定的电压[3];在该场合下,电路设计中需要输出稳定、低功耗的电压源作为基准电源使用.为满足上述设计要求,本设计以Buck 拓扑结构电路为基础,通过该电路的核心器件电感实现能量的搬运,实现输入24 V 电压到12 V 的稳定输出.1 原理分析Buck 拓扑结构电路,主要由开关S、电感L、电容C 和二极管D 组成,Buck 拓扑结构电路的原理图如图1所示.由于电感L 是阻碍电流变化的器件,电感上的电流变化会产生感应电动势.当开关S 闭合时,电感上的电流发生改变会产生感应电动势,此时输入电压通过电感L 对电容C 进行充电,电感上的电流持续增加,电容C 上的电压维持输出电压稳定,最终负载RZ 上的电压等于电容C 两端的电压.当开关S 断开时,电感L 上的电流发生改变,电感L 上会产生与原电感极性相反的感应电动势,电感上的电压通过负载RZ 和续流二极管D 回到电感自身,当负载RZ 发生变化时,所需的电流变大,电容通过放电来维持负载RZ 的电流稳定.图1 Buck 拓扑结构电路Fig.1 Buck topological circuit通过开关S 的闭合与关断,使Buck 电路工作在稳定状态[4],电感工作在连续模式[5-6]下,电感L 上的电流IL 波形如图2所示.由于电感上的电流不能激变,当开关S 闭合时,电感上的电流以一定的变化速率来维持电感L 上感应电压的不变,此时电感上的电流一直增加到Imax;当开关S 断开时,电感上的电流以一定的变化速率来维持电感L 上感应电压的不变,此时电感上的电流一直减小到Imin,再闭合开关S,当电感L 上的电流增加到Imax,再断开开关S 直到电感L 上的电流减小到Imin,往复进行.当开关S 闭合时,电源通过电感给电容充电,给负载提供能量;当开关S 断开时,电感上的能量还会继续给电容和负载提供能量,当电感L 上的能量为零时,负载上的能量需要电容来维持,保证输出稳定,这样负载上的纹波小.图2 电感工作在连续模式下电感上的电流波形图和对应的占空比Fig.2 Current waveform and duty cycle of inductor operating in continuous mode根据伏秒法则[7],当开关S 闭合时,其中,占空比为即其中:Von 为开关闭合加在电感两端的电压;ton 为电感的导通时间;toff 为电感的关断时间;VL 为开关闭合时电感两端电压;Vin 为输入电压;Vout 为输出电压;VD 为二极管两端电压;Voff为开关关断时电感两端电压.2 电路设计该系统主要由驱动电路、Buck 电路、PWM 波产生电路、过压保护电路、过流保护电路组成,电路的总体设计框图如图3所示.其中PWM 波产生电路模块包括软启动电路和三角波发生电路,该模块能够实现占空比可调,电平电位可调,PWM 波的频率为20 kHz.图3 电路的总体设计Fig.3 Overall design of circuit2.1 驱动电路和Buck电路MOS 管具有开关速度快,导通电流大,耐压高,功耗低的优点,故采用MOS 管做为开关管.为了加快MOS 管的开通速度和关断速度来降低开关损耗[8],故在开关管的前级加上驱动电路实现MOS 管的快速开关,如图4所示.比较器是OC 输出需要接上拉电阻R9,比较器输出为PWM 波,当比较器输出端的电压为高电平时三极管Q2 导通,大电流流经三极管Q2 和电阻R10,MOS 管快速开启.当比较器输出低电平时,三极管Q3 导通,MOS 管GS 之间的电压通过电阻R10,在三极管Q3 上产生大电流使MOS 管迅速关断.MOS 管的GS 之间可能会存在静电故在上电之前通过电阻R12 进行放电,避免上电过程中GS 之间的电压值过高影响MOS 管的寿命.在没有上电前比较器输出端是高阻态,假设比较器输出端电压为高电平时,三极管Q2 导通,通过限流电阻R10,使MOS 管的GS 间产生电压,该电压通过电阻R12 释放MOS 管GS 之间的电压.图4 Buck 电路和驱动电路Fig.4 Buck circuit and drive circuit当MOS 管开通24 V 电压通过电感时,由于电感的自感效应,电感上的电流持续增加,对电容充电,并为负载供电.当MOS 管关断时,由于电感的自感效应,电感上的电压通过负载和二极管会产生续流作用,保证负载上的电流稳定输出.如此反复进行,能够使负载上的电压和电流维持在稳定状态.2.1.1 电感参数的计算电感上的电流纹波率为γ=ΔI/IL,如图2所示,电感上的感应电压由电感上的电流变化率引起的,根据该特性对电感参数的计算进行了详细的推导和计算说明,推导过程见公式(5).其中,γ 为电感上电流纹波率;IL 为电感上的电流;L为电感量;ΔIoff 为开关关断时电感上电流变化量;toff为电感的关断时间;T 为开关电源的周期;f 为开关电源的频率;Vc 为电容两端电压;VO 为输出电压.根据电感的计算公式(6)可以看出,电感量与开关电源的频率,占空比,输出电压,输出电流以及电感上的电流纹波率有关;为了保证输出电压的高精度,既要考虑实际MOS 管存在米勒效应,还要考虑电感上的电流纹波率的取值问题.当占空比一定的情况下,如果开关电源的频率越高,MOS 管的开通和关断的次数越多,MOS 管发热大,随着温度的升高,MOS 管导通,电流下降,负载电流仍然很大,会造成MOS 管损坏,温度更高处于极温下,寿命降低以及米勒效应的存在都会引起电感上的纹波率变大;当开关电源的频率过低时,MOS 管的开通和关断的次数低,这会直接引起电感上的电流纹波率变大;故开关电源的频率取为20 kHz,电感上电流的纹波率取0.1,电感上的电流纹波率小,保证电压输出电压纹波率低.输出电压为Vo=12 V,电感上电流纹波率γ=0.1,占空比D=0.5,输出最大电流IO=200 mA,开关电源频率f=20 kHz.计算得电感量L=15 mH,实际取值需要将电感量放1.2 倍的余量.电感上额定电流最小值IL=IO×(1+γ/2)=0.21 A,故电感取值L=60 mH,电感上额定电流取值IL=250 mA.2.1.2 输出电容参数的计算Buck 结构拓扑电路,输出电容上的电压纹波主要是由ESR 引起的,纹波率越大,发热越大,选择低ESR 成本高,体积大;低纹波率电容大,成本高;根据电源滤波输出波纹系数公式(7)[9]计算输出电容值.还要考虑输出电容的电流耐受能力,输出电容可以采用多个电容进行并联,这样既可以得到较小的ESR,还可以承受更大的纹波电流.纹波电流为纹波电压为输出电容的电容值为考虑实际情况下,系统可能出现瞬态过冲以及周围环境出现干扰,将电容值放一定的余量,将取电容值为100 μF,保证输出电压的纹波小.2.2 三角波发生电路设计三角波发生电路由OC 级输出的LM339 比较器组成,如图5所示.当比较器输出为高时,比较器正端的电压等效为R3 和R4 的串联,然后和R1 并联,再与电阻R2 串联,对电源进行分压.此时比较器正端输入电压为9V 并且电压源通过R4、R5 对电容C2 进行充电,当电容C2 两端的电压高于比较器正端电压时,比较器的输出为低,电容C2 开始放电.此时比较器正输入端的等效电压为电阻R2 和电阻R3的并联,再与电阻R1 串联,进行分压,比较器正输入端的电压为5V.通过改变电阻R1 到R5 的阻值以及电容C2 的容值,实现三角波频率可调[10].图5 三角波发生电路Fig.5 Triangular wave generating circuit2.3 软启动电路三角波发生电路电压上升速度低于电平电路的电压上升速度,比较器输出的PWM 波的占空比为100%,此过程中开关管会保持开通,导致电感上的电流持续增加,当电流过大时,会导致电感烧毁,为避免该现象的发生,故采用软启动电路[11].软启动电路如图6所示.在电路开始上电的过程中,电源通过R7 和R8 对电源进行分压,产生一个稳定的电压,其中三极管基极的电位可通过调节R7 的电阻值改变三极管基极电位,同时,电源通过电阻R6 对电容C3 进行充电[12].因此,刚开始上电的过程中,三角波电压上升速度高于电容C3 两端电压上升速度,故比较器不会输出高电平,避免了电感出现烧毁现象.由于三极管基极和发射极存在0.7 V 的压差,当电容电压上升到比三极管基极电压高0.7 V时,三极管导通,电容开始放电;当电容上的电压放到低于三极管基极电压时,三极管关断.该设计能够实现比较器正输入的电压稳定,使得比较器输出的PWM 波稳定且可调.图6 软启动电路Fig.6 Soft start circuit2.4 上电启动电路和自举充电电路上电启动电路和自举充电电路如图7所示.该电路采用MOS 管的N 管作为开关管,由于MOS 管的N 管开关速度和输出电流能力大于P 管,三极管的功耗大,IGBT 导通速度比MOS 管慢.采用悬浮电路可以大大简化MOSFET 驱动电路[13-14],故采用悬浮设计的思路.当MOS 管导通时,MOS 管的源极S 的电压约为24 V,此时电容C5 的电压会悬浮在24 V,当稳定工作时,电容C5 两端电压维持在12 V,此时,电容C5 正极的绝对电压为36 V,电容C5 负端的绝对电压为24 V.图7 上电充电电路和自举充电电路Fig.7 Power on charging circuit and bootstrap charging circuit自举电容C5 在达到稳定工作要保持驱动电路电压为12 V,PWM 波产生电路提供稳定的电压源.当开始上电时,24 V 电压通过电阻R16 给自举电容C5 进行充电,由于三极管be 之间存在10 V 稳压管以及0.7 V 的压降,当自举电容上的电压充到11.7 V时,三极管Q5 开始导通,三极管Q5 的集极电压为11.4 V,此时电压通过电阻R14 到三极管Q4,使三极管Q4 导通,此时三极管Q4 的集电极一直保持在0.3 V,自举电容能够给驱动电路和PWM 波产生电路进行供电.刚开始上电过程中,PWM 波产生电路的速度远大于上电充电电路中自举电容电压电压下降的速度,这样可以保证开关电源稳定输出.当开关管闭合时,自举电容的绝对电压为36 V,高于12 V,由于电容C4 上的电压一直保持在绝对的12 V 不变,无法实现对自举电容充电.但是当开关管断开时,自举电容上的绝对电压值低于12 V,此时电容C4 上12 V 的电压通过二极管对自举电容充电.图8 过压保护电路和过流保护电路Fig.8 Overvoltage protection circuit and over-current protection circuit2.5 过压保护电路和过流保护电路过压保护电路和过流保护电路如图8所示.当开关管开通时,电感上的电流持续上升,此时电感上的电流等于电阻R13 上的电流,故采用电阻R13 进行电流采样.为了降低功耗,采用2Ω 的电阻进行采样.当电阻R13 上的电流过大时,电阻R13 上的电压上升,使三极管Q7 导通,此时三极管Q7 集电极上的电压会迅速降到0.3V,使PWM 波输出为低电平,开关管断开,此时电感上的电流下降,避免电感上电流过大,导致烧毁[15].自举充电电路采用悬浮设计思想,直接检测电容C4 的电压会导致电路过于复杂.当开关管闭合时,电容C4 上的电压高于自举电容C5 上的电压值,对自举电容C5 进行充电,自举电容C5 上的电压值最终等于电容C4 上的电压值,故可以通过检测自举电容上的电压值进行过压保护.当输出电压过高时,自举电容上的电压升高,当电压值高于稳压管D4 的导通电压时,三极管Q8 导通时,集电极电压会降为0.3 V,使比较器AR2 的正输入端降低,PWM 波产生电路的输出为低电平,开关管闭合,故电容C4 上的输出电压降低[16].3 结论根据电源要满足低纹波率,高可靠性以及低功耗等应用场合,本文设计了一种基于Buck 电路的降压式开关电源.本设计由Buck 电路、驱动电路、三角波产生电路、软启动电路、自举充电电路、过压保护电路和过流保护电路组成.Buck 电路实现能量的搬运.驱动电路起到MOS 管的快速关断和开通作用.三角波电路和软启动电路实现频率和占空比可调的PWM 波.自举充电电路为驱动电路和三角波产生电路进行供电.过压保护电路为避免输出电压过高导致被供电系统出现故障.过流保护电路为避免电感上电流过大,导致电感烧毁.该开关电源电感上电流纹波率控制在10%,最终输出电压纹波率小于0.8%.输入电压为24 V,输出电压为12 V,最大输出电流在0.2 A.该开关电源具有纹波率低,稳压精度高、稳流,功耗低,成本低,体积小,重量轻,过流保护和过压保护等特点.该开关电源可以广泛应用于工业自动化控制、仪器仪表、医疗设备、通讯设备等领域.参考文献:【相关文献】[1]Luo P,Wang D,Peng X L.An adaptive voltage scaling buck converter with preset circuit[J].Chinese Journal of Electronics,2019,28(2): 229-236.[2]魏泰鸣,杨毅.一种高效率低纹波的Buck 电路改进方案[J].价值工程,2018,37(22):176-178.[3]Paul F.Buck converter powers 5-v circuits from 12-v solar-cell array[J].Electronic Design,2009,57(19):45-46.[4]张宏伟,张九根,施丹.基于 L4970A 芯片的直流电源设计[J].电子器件,2019,42(01): 126-131.[5]张双,冀苗苗,李怡潜,等.基于 TL494 的开关稳压电源设计[J].电脑与电信,2019(Z1): 9-12,24.[6]王兵,梅盼,陈跃.基于 LM5117 芯片的降压电路设计与性能优化[J].通信电源技术,2016,33(6):101-103.[7]王学梅,易根云,丘东元,等.基于伏秒平衡原理的Buck-Boost 变换器分析[J].电气电子教学学报,2012,34(2):61-64.[8]Bhattacharya R,Kumar S,Biswas S.Resource optimization for emulation of behavioral models of mixed signal circuits on FPGA: a case study of DC-DC buck converter[J].International Journal of Circuit Theory and Applications,2017,45(11):1701-1741.[9]刘丽媗.Buck 电路的分析及其输出参数的设计[J].嘉应学院学报,2016,34(2): 45-48.[10]廖良,王敬,许云,等.一种用于 DC/DC 控制器的三角波发生电路[J].微电子学,2007(5): 696-699.[11]Li J,Yang M,Sun W F,et al.A fast novel soft-start circuit for peak current-mode DC-DC buck converters[J].Journal of Semiconductors,2013,34(2): 93-97.[12]付贤松,张明哲.一种用于升压型 DC-DC 变换器的新型软启动电路[J].固体电子学研究与进展,2018,38(5): 367-371,387.[13]秦杨,田民.一种基于分立元件的低成本自举驱动电路[J].电子元器件与信息技术,2019(1): 45-47,64.[14]栾盈盈,王省科,廖仲伟.直流无刷电机自举驱动控制研究[J].工业控制计算机,2018,31(5): 157-158.[15]熊浩.开关电源过流保护电路设计[J].江苏科技信息,2019,36(1):49-51,62. [16]冯庆胜,沈培富,戴淑军.基于有源钳位和动态负反馈相结合的IGBT 过压保护[J].大连交通大学学报,2018,39(1): 115-120.。
脉冲电源中IGBT_模块功耗及内部瞬时结温升研究

脉冲宽度、输出电压、输出电流、峰值功率以及脉冲重复频率是脉冲电源常用的几个重要技术指标,不同的应用场合对技术指标的要求不同。
脉冲电源在电除尘领域应用已有很长的历史。
在国外,丹麦FLSmidth 公司长期以来都将脉冲电源应用在电除尘领域。
在国内,随着超低排放标准实施,脉冲电源凭借其突出的节能提效优势在电除尘领域迅速推广,从2014年开始,该文提到的脉冲电源在国内应用已超过1 000台,广泛应用于电力、冶金以及建材等工业领域[1]。
开关器件是脉冲电源的核心器件,同时也是制约脉冲电源性能提高的瓶颈。
除尘用脉冲电源为了满足工业现场自动控制的需求,通常采用晶闸管或IGBT 等可控半导体器件作为开关。
在脉冲产生的过程中,开关器件在短时间内需要承受极大的电流;而在脉冲电源工作的间隙时间内,即2个脉冲之间,开关器件处于关断状态。
而通常脉冲电源的占空比较低,要在开关电源通流能力的可靠性与经济性之间取得平衡,就需要准确计算开关器件的发热情况,即功耗计算和热阻计算,这样既可以保证芯片结温不超过规格书规定的上限,也可以合理对器件载流能力进行选型,避免成本增加。
1 IGBT 模块功耗计算如果需要计算开关器件在单次脉冲输出过程中的功耗,就需要确定开关器件的电流以及其开通时间。
1.1 电路拓扑及峰值电流计算除尘用脉冲电源主回路原理如图1所示。
左半部分是脉冲发生单元(Pulse Unit ),负责产生80 kV 的负高压脉冲;右半部分是直流负高压输出单元(DC Unit ),产生60 kV 的基础直流负高压。
负载为电除尘器,其内部物理结构为板线式。
当计算脉冲电源参数时,可以将其简化等效为1个等效电容,其容量通常为100 nF ,该文中提到的脉冲电源的额定负载为115 nF 。
各主器件功能分别如下:扼流圈(Choke ),用于抑制一次侧直流母线电压向谐振电容C p 充电的电流;一次侧谐振电容(C p ),提供单次脉冲输出所需的能量;隔脉冲电源中IGBT模块功耗及内部瞬时结温升研究卢裕明(福建龙净环保股份有限公司,福建 龙岩 364000)摘 要:绝缘栅双极晶体管(IGBT)的结温升是考察电源的重要参数,其指标直接影响系统的可靠性。
单片机在可调直流斩波稳压电源中的应用

单片机在可调直流斩波稳压电源中的应用【摘要】基于单片机控制技术,设计出一种可调直流斩波稳压电源。
它的主电路由三相桥式不可控整流电路、采用IGBT作为开关功率管的降压斩波电路和电容滤波电路组成。
它的控制电路以AT89s52单片机为控制核心,通过反馈电压与基准电压比较来调制PWM波,PWM波作为EXB841的输入信号,实现对IGBT器件的导通关断控制,从而实现可调直流稳压。
系统软件采用混合语言编程,对系统实时性要求较高的部分采用汇编语言编程,以提高运行速度,其他部分,采用C语言编程。
实验证明,该稳压电源,性能稳定,抗干扰能力强,简单易于操作。
【关键词】稳压电源;斩波电路;单片机;PWM;IGBT直流稳压电源是一种常见的电子设备,被广泛的应用与各个领域。
目前市面上使用的直流电源大部分是线性电源,而线性直流稳压电源由分立器件组成,存在体积大、效率低、可靠性差、操作不便、故障率高等缺点。
随着电子技术的迅猛发展,各种电子设备对电源性能的要求越来越高。
稳压电源日益朝着小型化、高效率、模块化、智能化方向发展。
本文介绍了一种以单片机系统为核心的新型可调直流稳压电源的设计,他主要由斩波电路和AT89S52单片机控制系统构成。
它具有体积小、重量轻(体积和重量只有线性电源的20~30%)、效率高(一般为60~70%,而线性电源只有30~40%)、自身抗干扰性强、输出电压范围宽、模块化等优点。
而且价格低廉,操作简单。
具有较高的应用价值。
1.系统的总体设计该系统由两部分组成,即主电路和控制电路。
如图 1 所示,主电路由整流滤波电路、IGBT斩波电路、滤波电路组成;控制电路由控制电源、AT89S52单片机系统、IGBT驱动电路、ADC模数转换电路、8279键盘显示电路、检测保护电路组成。
主电路中整流滤波电路采用常用的三相桥不可控整流器,将电网的三相交流电压转换成直流,再经电容滤波得到平滑的直流电压。
稳压电路是由大功率器件IGBT实现的降压斩波电路。
igbt的固态高压脉冲电源的设计原理

IGBT的固态高压脉冲电源的设计原理由于脉冲电源有断续供电的特性,在很多领域都获得了广泛的应用,其中高压脉冲电源是系统的核心组成部分。
为了获取高重复频率、陡前沿高压脉冲电源,文中提出了一种基于IGBT的高压脉冲电源,系统主要由高压直流充电电源和脉冲形成电路两部分组成,由DSP作为主控制芯片,控制IGBT的触发和实现软开关技术,并用仿真软件PSIM对高压脉冲电源进行仿真分析,验证了设计思想的正确性。
由于脉冲电源有断续供电的特性,在很多领域都获得了广泛的应用。
比如说高能量物理、粒子加速器、金属材料的加工处理、食品的杀菌消毒、环境的除尘除菌等方面,都需要这样一种脉冲能量--可靠、高能量、脉宽和频率可调、双极性、平顶的电压波形。
无论将此高功率脉冲电源用于何种用途,高压脉冲电源均是其设计的核心部分。
传统的高功率脉冲电源一般采用工频变压器升压,然后采用磁压缩开关或者旋转火花隙来获取高压脉冲,因而大都比较笨重,且获得的脉冲频率范围有限,其重复频率难以调节,脉冲波形易变化,可靠性较低,控制较困难,成本较高。
文中采用固态电器--IGBT来获取高压脉冲波形。
将IGBT 作为获取高压脉冲的电子开关,利用IGBT构成LCC串并联谐振变换器作为高压脉冲电源的充电电源,同时利用IGBT构成全桥组成脉冲形成电路,输出双极性高压脉冲波形。
文中给出了系统结构、系统各个部分功能说明,通过仿真电力电子仿真软件PSIM对LCC充电过程和脉冲形成电路进行仿真分析。
1 高压脉冲电源系统结构1.1 高压脉冲电源的拓扑结构高压脉冲电源常用的主电路拓扑可以归纳为两类:电容充放电式和高压直流开关电源加脉冲生成的两级式两种。
电容充放电式是通过长时间充电、瞬间放电,即通过控制充放电的时间比例,达到能量压缩、输出高压大功率脉冲的目的。
优点是可以输出的脉冲功率和电压等级较高,脉冲上升沿较陡;但是,输出脉冲的精度难以控制,而且重复频率低,因而应用范围比较有限,主要应用在核电磁物理研究、烟气除尘、污水处理、液体杀菌等场合。
ADS1251在高精度稳流电源中的应用

ADS1251在高精度稳流电源中的应用谢小峰;郭宏林;杨永锋【摘要】ADS1251是一种高精度、宽动态范围的24位△-∑结构模数转换器.介绍了AD S1251的功能特点,并给出了ADS1251芯片在数字化高精度稳流电源中用于采集转换闭环电流反馈信号的硬件电路,与微处理器的接口方法及其时序控制.【期刊名称】《电气传动自动化》【年(卷),期】2011(033)005【总页数】5页(P37-41)【关键词】ADS1251;高精度稳流电源;串行接口;时序控制【作者】谢小峰;郭宏林;杨永锋【作者单位】南京禄口国际机场动力技术部,江苏南京210029;天水电气传动研究所有限责任公司,甘肃天水741020;甘肃烟草工业有限责任公司天水分厂,甘肃天水741020【正文语种】中文【中图分类】TN71 引言在高精度电源的控制电路中,全数字化的控制调节器已逐步取代传统的模拟控制电路。
而在数字控制器用于调节闭环的反馈回路中,负责电流及电压等模拟信号采样的模数转换器(ADC)成为影响数字调节器性能的关键硬件。
通常,在数字化高精度电源中,其数字调节器至少应包含两个调节环,即电流闭环和电压闭环。
每个调节闭环的反馈回路都需要一个能满足其精度及速度要求的A/D转换器。
一般来说,电流环和电压环对于A/D转换器的需求是不同的,电流环的带宽窄但是要求的分辨率和稳定度高;电压环的带宽比较宽,而对稳定度的要求低于电流环。
对于高精度稳流电源,电流环对输出电流信号的采集精度及稳定度提出了极高的要求。
电流闭环反馈回路中所需的模数转换器件(ADC)需要尽可能高的分辨率和稳定度。
稳流电源中,受调节器带宽的影响,电流环对速度的要求并不很高。
因此△-∑型A/D转换器是最佳的选择。
从通用的角度考虑,需要选择允许双极性输入的A/D转换器;而考虑到PCB板的设计及控制软件设计过程中,具备串行数据接口的A/D转换器相对更易于实现。
2 ADS1251简介△-∑型模数转换器ADS1251具有高精度、宽动态范围、低功耗等特点,非常适合用于非高速变化信号的高精度数据实时采集转换。
高性能大电流脉冲电源的设计与实现

高性能大电流脉冲电源的设计与实现曹海源胡婷婷韦尚方万强孙斌卢常勇(武汉军械士官学校光电技术研究所,湖北武汉 430075)摘要 本文针对高功率脉冲DPSSL对激光电源的要求,综合运用了ARM7单片机控制技术、串联VICOR模块可调稳压源、IGBT功率器件及各种保护电路,设计并实现了小型、高效的半导体泵浦激光器驱动电源,具有电压调节范围宽、峰值电流高、控制精度高、良好的稳定性和高低温环境适应性等特点。
测试表明:电源整机运行稳定可靠,达到了很高的技术指标要求,可广泛应用于军用激光测距、激光雷达、激光对抗等领域。
关键词 驱动电源;ARM7;电流脉冲;IGBT;VICOR模块中图分类号 TN248.4 文献标识码 BDesign and Realization of High Performance and Strong Current Pulse Power Supply Cao,Hai-yuan Hu,Ting-ting Wei,Shang-fang Wan,Qiang Sun,Bin Lu,Chang-yong(Opto-electronics Facility, Wuhan Ordnance Noncommissioned Officers School,Wuhan, Hubei, 430075, P.R.China)Abstract: In this paper, according to the request of the high power pulse DPSSL, we design and implement a compact, high efficiency power supply for DPSSL, which combines the control technology of ARM7 MCU, tunable voltage stabilizer using VICOR modules in series structure, IGBT power components, closed loop adjusting circuit, and various protective measures. It is specified as wide tuning range of the voltage, high peak current, high control precision, high stability, high adaptability to the high-low temperature, and so on. Test and measurement results show that our power supply operates steadily and reliably, and well meets the request of the performance index in the project. It can be widely applied in military laser rangefinder, Lidar, laser counterwork, and so on.Keywords: power supply; ARM7; current pulse; IGBT;VICOR module1 引言DPSSL(Diode Pumped Solid-State Laser)出现于八十年代末,与传统的灯泵固体激光器相比,它具有效率高、寿命长、结构紧凑、稳定性高等特点,广泛应用于军事、航空航天等领域中。
一种大功率直流开关电源的主电路设计

一种大功率直流开关电源的主电路设计马丽丽;夏加宽;李洋【摘要】开关电源设计最重要的2部分是主电路和控制电路.根据大功率直流开关电源的设计要求,结合大功率直流开关电源的工作原理、电路的拓扑结构、运行模式的特点及相关技术参数,本文进行性能分析并计算各项参数,通过计算所得的数据结果选择各元器件,设计出各个独立模块,最后组装成大功率直流开关电源的主电路.【期刊名称】《现代仪器与医疗》【年(卷),期】2012(018)005【总页数】3页(P43-44,51)【关键词】大功率;直流开关电源;拓扑结构;运行模式【作者】马丽丽;夏加宽;李洋【作者单位】辽宁石油化工大学信息与控制工程学院抚顺113001;沈阳工业大学电气工程学院沈阳110870;辽宁石油化工大学信息与控制工程学院抚顺113001【正文语种】中文【中图分类】TM93引言随着电力电子技术的发展和新型功率元器件的不断出现,开关电源技术得到飞速的发展,在计算机、通讯、电力、家用电器、航空航天等领域得到广泛应用[1~7]。
开关电源是利用现代电子技术,通过控制开关晶体管开通和关断的时间比率,维持稳定输出电压的一种电源,一般由脉冲宽度调制电路和场效应管构成[8~13]。
开关电源比普通的线性电源效率高,因而开关电源的发展与应用在节约能源、节约资源及保护环境方面都具有重要的意义[14~16]。
本文分析高性能、大功率直流开关电源的工作原理,并提出主电路的详细设计方案。
在此基础上,完成硬件电路设计,并对主电路进行调试。
1 主电路组成框图根据大功率开关电源的设计技术要求,本文进行方案的验证与比较,设计基于软开关直流开关电源的主电路(见图1)。
主电路主要分为输入整流滤波、逆变开关电路、逆变变压器和输出整流滤波。
本电源采用ZVZCS- PWM拓扑、原边加钳位二极管、三相交流输入整流后,加LC滤波,以提高输入功率因数,主功率管选用IGBT,具体设计主电路包括3个部分:(1) 输入整流滤波电路;(2) 单相逆变桥;(3) 输出整流滤波电路。
igbt真空炉专用电源

igbt真空炉专用电源
IGBT真空炉专用电源是一种高性能的电源,它采用IGBT技术,可以提供高效率、高精度、高可靠性的电源。
它可以满足真空炉的高精度、
高可靠性的要求,并且可以提供更高的稳定性和可靠性。
IGBT真空炉专用电源的输出电压可以调节,可以根据实际需要调节输
出电压,以满足不同的真空炉的工作要求。
此外,它还具有良好的电
流控制能力,可以提供更精确的电流控制,以满足真空炉的工作要求。
IGBT真空炉专用电源还具有良好的安全性能,可以有效防止过载、短
路等情况的发生,从而保证真空炉的安全运行。
此外,它还具有节能
效果,可以有效降低真空炉的能耗,从而节约能源。
IGBT真空炉专用电源具有良好的可靠性,可以提供长期稳定的电源,
从而保证真空炉的正常运行。
此外,它还具有良好的维护性,可以有
效减少维护成本,从而降低运行成本。
总之,IGBT真空炉专用电源具有高效率、高精度、高可靠性、良好的
安全性能、节能效果、良好的可靠性和维护性等优点,是真空炉的理
想电源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2003年第25卷第5期第11页电气传动自动化E LECTRIC D RIVE AUTOMATI O NV ol.25,N o.52003,25(5):11~13文章编号:1005—7277(2003)05—0011—03高精度的IG B T开关脉冲/直流稳流电源万国华,党怀东,郭宏林,王有云(天水电气传动研究所,甘肃天水741018)摘要:介绍了一种高精度的大功率IG BT脉冲/直流稳流电源,分析并讨论了IG BT电源的电流快速性和IG BT 线性控制技术。
关键词:电流稳定度;纹波;脉冲;高精度;电源;IG BT斩波;线性控制中图分类号:T M91文献标识码:BHi g h-p recision IGBT switch p ulse/DC current stabilized p ow er su pp l yWAN Guo-hua,DANG Huai-don g,GUO Hon g-lin,WANG Y ou-y un(T ianshui Electr ic Dr iv e Resear ch Institute,T ianshui741018,China) Abstract:A hi g h-p recision bi g-p ow er IG BT p ulse/DC current stabilized p ow er su pp l y is p resented.T he IG BT p ow er su pp l y w ith hi g h s p eed character and IG BTlinearit y control technolo gy are anal y zed and discussed.K e y w ords:current stabilit y;ri pp le;p ulse;hi g h-p recision;p ow er su pp l y;IG BT cho pp er;linearit y control1引言近几年,随着我国在高、精、尖技术的不断发展,特别是高能物理研究和重离子加速器在工业和医疗上越来越多的应用,需要许多高性能的加速器磁铁电源。
在离子加速器中,要求磁场建立和离子注入严格同步,离子注入时磁场迅速建立,离子去时磁场迅速消失,因而需快速响应无滞后的脉冲电流源。
同时因离子质量轻,电流的波动将影响磁系统的束流能力,故电源电流必须满足极低的纹波(10-4-10-5)和高稳定度的要求(10-4-10-5)。
随着近几年IG BT开关器件的不断发展,其电流、电压等级不断提高,可以使用IG BT开关器件组成同步加速器磁铁电源(大、中、小容量均可),这种电源采用H桥PWM斩波来调节输出电压和电流,经无源LC滤波(因IG BT器件工作开关频率高,电源输出频率可达20kH z左右,这样无源滤波容量较小),负载上就能得到电流纹波极小的直流电流。
由于IG BT开关频率可达20kH z,其滞后时间约为0.05ms,远小于晶闸管整流的滞后时间,缩短了系统调节时间,为电流调节提供了一个快速调节通道,使得系统实际电流近似于无滞后的跟踪给定电流。
本文提出了一种用IG BT开关器件组成的大电流、高精度的快脉冲/直流稳流电源,并进行系统设计和实验。
结果表明该系统设计合理,动态响应快、精度高、效率高、成本低、体积小,可以满足重离子加速器对负载电源的要求。
2系统主回路系统主回路结构如图1所示,由于电源工作模式为脉冲/直流,当电源电流快速上升(或下降)到给定电流时,系统开始长期稳定运行直至下一个脉冲开始。
因此为了节约能源,提高效率及降低成本,采用如图1所示的方案。
IG BT5仅作为二极管使用,其目的是为了方便叠层母排的设计,以便更好地抑制IG BT开通关断时产生的尖峰电压。
由变压器(T2)、整流器(A2)、L2、C2、IG BT5组成稳流工作时PWM斩波电路的供电源,输出电压为U2;T1、A1、L1、C1、IG BT6组成脉冲工作时PWM斩波电路的强触发供电电源,其输出电压为U1。
当电流上升时,IG BT6开通,U1电压作用到H桥PWM电路;当电流上升到给定电流时,IG BT6关断,此时H桥PWM电路的电气传动自动化・12・2003年第5期供电电压为U2。
系统中,若负载电阻为R fz,电感为L fz,负载电流为I fz。
U2=[(I fz×R fz)+3U T]×α1U1=[(I fz×R fz)+L fz×(d i/d t)+3U T]×α2式中:U T为IG BT导通压降。
α1、α2为系数,包括IG2 BT导通的占空比,LC滤波消耗的电能等。
α1、α2一般取1.1~1.5,若α取太大,则占空比一定小,这样输出纹波增大,滤波容量大。
当负载需要正电流(负载上正下负)时,IG BT2、IG BT3工作;负载需要负电流(下正上负)时,IG BT1、IG BT4工作,高频开关器件IG BT工作频率为5~10kH z,这种输出载波频率为10~20kH z。
3系统控制结构系统控制结构如图2所示。
电流给定(Ig)与电流反馈比较后,经过PI运算,来控制PWM脉冲信号(A7、A10),再根据A5判断的给定信号的正负来判断IG BT1、IG BT4工作或IG BT2、IG BT3工作,从而使负载得到正或负的输出电流,图2中电流反馈用于保证系统的精度和稳定度。
但这种输入为脉冲信号的工作状态下,单靠反馈控制满足系统跟踪性和快速性是困难的,为此引入前馈控制构成复合控制来缩短系统的调节时间。
图2中PWM前馈(A6)是为了改善系统的跟踪性能;A3为微分判断,主要以微分判断给定的变化率是否满足设定的变化率,以及判断给定电流是否在上升时满足设定的变化率条件,从而给出一个IG BT6导通的条件;A2(实际电流判断)判断实际电流是否达到设定值,若没有达到,则给出一个IG BT6导通的另一个条件,若实际电流达到设定值,则控制A3线性关断IG BT6。
一般来说IG BT为开关器件,它不象调整管那样工作在线性区,但在特殊场合IG BT要求工作在线性区。
在此方案中,若将IG BT作为开关器件使用,当实际电流达到给定电流时,IG BT6关断,电流波形会出现一个向下的缺口。
这是由于突然去掉强触发电压U1,而稳态工作电压U2不能维持磁铁负载的大电流。
因此,IG BT6在此类电源中不能作为开关器件工作,在IG BT6关断时必须作为线性器件工作。
FZ1600R12K F4(1600A/1200V)IG BT的V G E与I C之间的关系如图4所示。
由图4可知,当IG BT工作控制电压V G E在6.8V~10.4V之间时,I C的电流在线性变化。
当A4控制单元得到让IG BT6线性关断的信号后,通过实际电流信号与给定的电流信号比较,来控制IG BT6线性关断,从而避免IG BT6关断时的电流波形缺口。
4系统设计及试验结果以下是根据上述方案为某研究所设计的一台重离子加速器磁铁电源。
其参数如下,工作模式:脉冲/直流;磁铁电感l=0.0187H;电阻R l=0.0282Ω;输出电压U L=0~130V;电流0~1050A;电流长期稳定度(S I)小于:1×10-4/8h(1050A时)。
S I=[(I M AX-I MI N)/(I M AX+I MI N)]×2式中:I M AX为8小时内的电流最大值;I MI N为8小时内的电流最小值;电流纹波小于为1×10-4(1050A 时);电流上升时间为0.2s。
从参数中可以得出,电流稳定时供电电压U2=30V;电流上升时供电电压U1=130V。
电流稳2003年第5期・13・万国华,党怀东,郭宏林等高精度的IG BT开关脉冲/直流稳流电源定度采用8位半7081数字电压表测得,实际波形及傅立叶分析采用T MS3052500MH z示波器测得。
4.1纹波测定及分析如图4所示+500A时PWM桥输出波形,图5为+1050A时PWM桥输出波形。
对负载波形进行傅立叶分析,500A时,电流纹波为5.4×10-5;1050A时电流纹波为3.3×10-5。
4.2长期稳定度如图6所示为1050A时8小时电流稳定度波形,共测得570个数值。
经测算可得:负载电流在500A时,稳定度为7.55×10-5;负载电流在1050A时;稳定度为6.19×10-5。
4.3脉冲跟踪性0~+1050A和0~-1050A的脉冲跟踪波形如图7、8所示,CH1为实际电流波形,CH2为给定电流波形。
从图中可以明显看出,当给定电流上升时间小于0.2s时,实际电流上升时间也小于0.2s 时,且在强触发电压U1和稳定电压U2切换时无电流波动。
5结束语本文提出了一种新的重离子加速器磁铁电源,具有长期稳定度好、纹波低、电流大、跟踪性好等特点,采用前馈控制提高了系统的快速性。
在此基础上提出了一种IG BT的新的使用方法,即IG BT的线性控制。
由于采用1600A、1200V的大容量IG BT,实验及现场运行表明了理论分析的正确性,从而为该产品的批量生产奠定了坚实的基础。
参考文献:[1]J lisser,k Bounkne g t.H i g h-s p eed H i g h-p recision Pro g ramm ableM a g net P ow er Su pp l y for a W ide Ran g e of M a g net T im e C onstant [J].IEE T rascation on Neclear S cience,1981,NS-28(3).[2]王永安,黄俊.电力电子技术.[3]张占松,蔡三.开关电源的原理与设计.作者简介:万国华男,工程师,研究方向为电气传动、高精度特种电源。
收稿日期:2002-09-18。