ch4.1(zhu)实变函数第四章

合集下载

实变函数第四章答案

实变函数第四章答案

实变函数第四章▉▉第4章 Lebesgue (习题及参考解答)E E A 1.设是)(x f 上的可积函数,如果对于上的任意可测子集,有()0Af x dx =∫,试证:=0,)(x f ].[.E e a }1)(|{}0)(|{1kx f x E x f x E k ≥=≠∞=∪k ∀∈ 证明 因为,,而}1)(|{kx f x E ≥}1)(|{}1)(|{k x f x E k x f x E −≤≥=∪,由已知,有111{||()|}{|()}{|()}()()()E x f x E x f x E x f x kkkf x dx f x dx f x dx ≥≥≤−=+∫∫∫000=+=.又因为11{|(){|()}1110(){|()}E x f x E x f x kkf x dx dx mE x f x k k k≥≥0=≥=≥∫∫≥ 并且11{|()}{|()1110(){|()E x f x E x f x kkf x dx dx mE x f x k k k ≥−≥−⎛⎞=≤−−≤⎜⎟⎝⎠∫∫}0−≤ 所以,0}1)(|{}1)(|{=−≤=≥kx f x mE k x f x mE .故,0}1)(|{}1)(|{}1|)(|{=−≤+≥=≥kx f x mE k x f x mE k x f x mE因此,11{|()0}[{|()|}k mE x f x m E x f x k∞=≠=≥∪111{|()|}00k k mE x f x k ∞∞==≤≥==∑∑0)(=x f .从而,,.].[.E e a2. 设,f g 都是E 上的非负可测函数,并且对任意常数,都有a })(|{})(|{a x g x mE a x f x mE ≥=≥)()(x g x f =,试证:,从而,()Ef x dx =∫()Eg x dx ∫.证明 我们证与f g 是同一个简单函数序列的极限函数. ∞=1){m m ψ对于及,令m ∀∈ 12,,1,0−=mm k }21)(2|{,m m k m k x f k x E E +≤≤= })(|{2,m x f x E E mm m ≥=并且再令,则是互不相交的可测集,并且. 定义简单函数k m E ,k m m k E E m ,21==∪∑==mk m m k E m m x kx 20)(2)(,χψ. E x ∈)()(lim x f x m m =∞→ψ.下面证明:,m ∀∈ m m m E x 2,0∈E x ∈∀0+∞=)(0x f , 若. 事实上,,则,有)()(0∞→∞→=m m x m ψ)()(lim 00x f x m n =∞→ψ. 即, .所以, +∞<)(0x f 若,则可取正整数,当)(00x f m >0m m ≥∀时, 有}21)(2|{})(0|{1210mm m k k x f k x E m x f x E x m +<≤=<≤∈−=∪ 故,存在使得)120(−≤≤mm k k }21)(2|{0mm k x f k x E x +<≤∈ mm k x f k 21)(20+<≤. 因此, 即,m m k E m m kx k x mk m 2)(2)(20,==∑=χψ. 故000|()()|()()m m 0f x x f x x ψψ−=− 011()02222m m m m k k k f x +−<−=→=)()(lim 00x f x m n =∞→ψ.从而,实变函数第四章▉▉同理,对m ∀∈ ,定义简单函数列∑==mkm m k E m m x kx 20)(2)(*,χψ,其中:}21)(2|{*,mm k m k x g k x E E +<≤=,. 12,,1,0−=mm k 并且.})(|{*,m x g x E E k m ≥=E x ∈)()(lim 0x g x m n =∞→ψ.,同上一样,我们可以证明:因,有a ∀∈ })(|{})(|{a x g x mE a x f x mE ≥=≥,则,a ∀∈ })(|{b x f a x mE <≤})(|{b x g a x mE <≤=.从而,,有)120(−≤≤∀m m k k,1{|()}22m k m mk k mE mE x f x +=≤< *,1{|()}22m k m m k k mE x g x mE +=≤<=并且.即,,mm m m m m mEm x g x mE m x f x mE mE 2,*2,})(|{})(|{=≥=≥=N m ∈∀=)(x m ψ)(x m ϕ.)()(lim )(lim )(x g x x x f m m m m ===∞→∞→ϕψ.因此,⎪⎩⎪⎨⎧=为有理数,当为无理数,当x x x x x f 31)(3. 若,计算.∫1,0[)(dx x f x x E |]1,0[{0∈=01]1,0[E E −=为有理数},解 设,则∫]1,0[)(dx x f +=∫∫1)()(]1,0[E dx x f dx x f∫∫∫+==0111E EE dx xdx xdx x10E E E ==+∫∫∫ 2]2[11101]1,0[====∫∫x dx xdx x .4. 设是中n 个可测集,若内每一点至少属于个集中的个集,证明:中至少有一个测度不小于n 1,,n E E ]1,0[]1,0[nq 1,,q n E E . 证明 令,其中:∑==ni E x x f i1)()(χi E χ为上的特征函数并且,有i E ]1,0[∈∀x q x x f ni E i≥=∑=1)()(χ所以,. 又因为q qdx dx x f =≥∫∫]1,0]1,0[)(1[0,1][0,1]()()inE i q f x dx x χ=≤=∑∫∫dx1n.1110,1()()i i nnnE E i i i i E i x dx x dx mE χχ=======∑∑∑∑∫∫nqmE i <,则 如果每个∑∑===⋅=>ni n i i q nq n n qmE 11nqmE i ≥这与矛盾. 从而,存在∑=≤ni i mE q 1(1)i i n ≤≤. 使得5. 设与都是f g E 上的可积函数,试证明:22g f +E 也是上可积函数.E 证明:(1)先证:设与都是)(x f )(xF 0()f x ≤上的可测函数并且E E ()F x ≤ ,若在].[.E e a )(x F 可积,则在)(x f 可积.N m l ∈∀,)()(0x F x f ≤≤ ,故].[.E e a ,因为事实上,l l x F x f )}({)}({0≤≤.因此,+∞<≤≤≤∫∫∫EE llE ldx x f dx x F dx x F dx x f mm)()}({)}({)}({,其中:m m S E E ∩=,}||||{∞<=x x S m . 从而,是∞=∫1})}({{l l E dx x F m实变函数第四章▉▉单调递增有上界的数列,故∫Edx x F )(∫∫∫≤=∞→EE ll E dx x F dx x f dx x f mm)()}({lim )(.又因单调递增有上界,所以存在,并且∫∞=mE m dx x f 1})({∫∞→mE l dx x f )(lim∫∫∫+∞<≤=∞→EE ll Edx x F dx x f dx x f m)()}({lim )(即. 所以,在+∞<≤∫dx x f E)(∫∞→∞→mE l l m dx x f )}({lim lim E )(x f 可积.E (2上可积.在E E 事实上,因为与在f g 上都可积. 所以, 与在||f ||g 上可积. 从而, +在E ||f ||g 上可积.||||f g ≤+E ,由(1)上可积.在6. 设+∞<mE ,是)(x f E 上的非负可测函数,,∞+<∫Edx x f )(})(|{k x f x E E k >=0lim =⋅∞→dx mE k k l .,试证明:k ∀∈ 证明 ,因为+∞<≤≤≤∫∫EE k dx x f dx x f kmE k)()(0所以)(0)(10∞→→≤≤∫k dx x f k mE Ek lim 0k k mE →∞=.故,又因为,由积分的绝对连续性(即,P85,定理4), 对于∫+∞<Edx x f )(δ<mA 0>∀ε0>∃δE A ⊂,,使得对于任何可测集,恒有,∫Adx x f |)(|∫<=Adx x f ε)(.0>δN k ∈0对于,根据,存在0lim =∞→k k mE ,0k k ≥∀时,δ<k mE ,有ε<≤⋅≤∫dx x f mE k kE k )(0.0lim =⋅∞→k k mE k .从而, +∞<mE E E 7. 设为可测集,并且,为)(x f 上的非负可测函数,,试证:在}1)(|{+<≤=∧k x f k x E E k E )(x f 上可积当且仅当级数收敛.∧∞=∑kk Ekm 1证明 设,k }1)(|{+<≤=∧k x f k x E E k ∈ )(⇒,因为在)(x f E 可积,故111()()kkk k k k EE E f x dx f x dx k dx k mE ∞∞∞====≥=∑∑∑∫∫∫⋅即,级数收敛.∑∞=∧⋅1k kEm k k ∀∈ )(⇐, 因为,则}1)(|{+<≤=k x f k x E E k k E k k E mE kmE mE k dx k dx x f kk+=+=+≤∫∫)1()1()(.又因并且,根据Lebesgue 基本定理,有∑∞==1)()()(k E x x f x f k χdx x x f dx x f m kE EE )()()(χ∫∫=1()()()kE k EE f x dx f x x dx χ∞==∑∫∫11()()kk k k k E f x dx kmE mE ∞∞===≤+∑∑∫+∞<+=+=∑∑∑∞=∞=∞=k k k k k k k mE kmE mE kmE 111.E 从而,在)(x f 上可积.8. 设是 上的可积函数,证明:.∫=−+→],[00|)()(|limb a k dx x f b x f f实变函数第四章▉▉R ′0>∀ε)(x ϕ证明 (1)先证:,使得,存在时直线上的连续函数∫<−+→],[0|)()(|limb a k dx x f b x f ε.对于,记:N ∀∈ ⎪⎩⎪⎨⎧−<−>≤=N x f N N x f N N x f x f x f n )(,)(,|)(|,)()]([],[b a E x =∈,其中则0,|()|()[()](),()(),()N f x N f x f x f x N f x N f x N f x N≤⎧⎪−=−>⎨⎪+<−⎩因此,[,]|()[()]|N a b f x f x d −∫x=+dx x f x f N f E n|)]([)(|)|(|∫≤−dx x f x f N f E n|)]([)(|)|(|∫>−(||)|()[()]|N E f N f x f x d >−∫x =dx N x f N f E |)(|)|(|∫>+≤dx x f N f E |)(|)|(|∫>≤.0>∀ε0>∃δ因为在上是Lebesgue 可积的,故对于)(x f ],[b a ,,使∀δ<mA E A ⊂,恒有:Adx x f Aε<∫|)(|又因是单调的集列并且,则)|(|)|(|1+∞==>∞=f E n f E n ∩∞=1|)}(|{n f E =>=>∞→∞→)]|(|lim [)|(|lim n f E m n f mE n n 0)|(|=+∞=f mE .4|)(|)|(|ε<∫>dx x f N f E 0>δN ∃∈ .所以,对于,使得现在对于,取04>=NεηN x f )]([,由连续扩张定理,存在闭集F [,]a b ⊂)(x ϕ以及 上的连续函数,使得F F N x x f |)(|)]([ϕ=(A ); NF E m 4)(ε<−(B );N x ≤|)(|ϕ(C ). 因此,[,][]||[]|N N a b E Ff dx f dx ϕϕ−−=−∫∫([]||)|2()242N E Ff dx N m E F N Nεεϕ−≤+≤⋅−<⋅∫=从而,[,][,]()()||()[()]||[]()|N N a b a b f x x dx f x f x dx f x dx ϕϕ−≤−+−∫∫εεεϕ=+⋅≤−+≤∫∫>242|)(][||)(|2],[)|(|dx x f dx x f b a N N f E (2)再证:.0|)()(lim],[0=−+∫→dx x f b x f b a h 0>∀ε)(x ϕ,由(1)知,存在上的连续函数 使得对于3|)()(]1,1[εϕ<−∫+−dx x x f b a .)(x ϕ因为在上一致连续,则]1,1[+−b a )1(0<>∃δδ使得,当],[b a x ∈∀)1(||<<δh 时,恒有)(3|)()(|a b x h x −<−+εϕϕ.又因为[,]|()()|a b f x h f x dx +−≤∫[,]|()()|a b f x h x h dx ϕ+−+∫++dx x h x b a |)()(|],[∫−+ϕϕdx x f x b a |)()(|],[∫−ϕ],[b a x ∈(||1)h h δ∀<<(1,1x h a b )+∈−+,故并且对于,,有3|)()(|]1,1[εϕ<−≤∫+−dx x x f b a dx h x h x f b a |)()(|],[∫+−+ϕ所以,实变函数第四章▉▉≤−+∫dx x f h x f b a |)()(|],[[1,1]|()()|a b f x x d ϕ−+−∫xεεεε=++<333dx x x f dx x h x b a b a |)()(||)()(|],[],[∫∫−+−+ϕϕϕ+.从而,.0|)()(|lim],[0=−+∫→dx x f h x f b a h9. 设是f E 上的非负可积函数,是任意常数,满足c ∫≤≤Edx x f c )(0试证:存在,使得.c dx x f E =∫1)(E E ⊂1证明:设常数,合于,当时,存在,使得. 不妨设.∫≤≤Edx x f c )(0∫=Edx x f c )(c ∫≤≤Edx x f c )(0c dx x f E =∫1)(E E =1我们先证:在∫−=Et t dx x f t F ∩],[)()(),0[0+∞∈∀t),0[+∞上连续,,事事实上,对于0t t >∀,因为000[,][,]0()()()()t t Et t EF t F t f x dx f x dx −−≤−=−∫∫∩∩00[,][,]()()t t Et t Ef x dx f x dx −−=+∫∫∩∩δ<mA 0>∃δE A ⊂∀由积分的绝对连续性(p.85,定理4),,有,,2)(|)(|ε<=∫∫AAdx x f dx x f .δ<−≤∀00:t t t δ<−≤−00)),([t t E t t m ∩,故故,对于,因为εεε=+=+=−≤∫∫−−22)()()()(0],[],[000Ety t Et t dx x f dx x f t F t F ∩∩.)()(lim 00t F t F t t =+→. 所以,),0[0+∞∈∀t 同理,对,用上述完全类似方法可得.故,在)()(lim 00t F t F t t =−→)(t F ),0[+∞上连续.又因为(根据p.89的定义4), 则,使得c dx x f dx x f EEt t t >=∫∫−+∞→)()(lim],[∩00>∃t c dx x f t F Et t >=∫−∩],[0)()(.)()0(0t F c F <<.故由于在闭区间上连续,由连续函数的介值定理,∃],0[0t 1t ∈)(t F E E t t E ⊂−=∩],[1110(0,)t ,有,使得c t F dx x f dx x f Et t E ===∫∫−)()()(1],[01∩.E 10. 设是g 上的可测函数,是大于1的数,是的共轭数,即p q p 111=+qp . 如果对任意,都有)(E L f P ∈1()fg L E ∈,试证:. )(E L g q∈11. 试证:1)1(1lim),0(1=+∫+∞∞→dt tkt kk k (i ).dx x e dx x n x x n k ∫∫+∞−+∞−∞→=−),0(),0(11(lim αα(ii) .2≥∀k 证明:(i )时,(寻找控制函数) )10(≤<t t 时,因为当tttttktt f kkk k 4111)1(1)(2111≤=≤≤+=;而当时,1>t 112111()(1)1((1)()2!k k k kk f t t k k t t k t t k k k=≤=−+⋅+++实变函数第四章▉▉224)211(2t t =−≤令⎪⎪⎩⎪⎪⎨⎧+∞≤<≤<=t t t tt F 1,410,4)(2从而,),0(+∞∈∀t ,并且在)()(t F t f k ≤)(t F ),0(+∞是R-可积的,故在)(t F ),0(+∞是L-可积的. 又因为tt kk tt kk kk k k k e etkt t ktt f −∞→∞→∞→∞→==⋅+=+=11lim])1[(1lim)1(1lim)(lim 11则由Lebesgue 控制收敛定理,∫∫∫∞∞→∞∞→∞∞→==+),0(),0(),0(1)(lim )(lim)1(1limdt t fdt t fdt tkt kk kk kk k10==∫+∞−dt e t ∫∞−=),0(dt et.(ii), 定义n ∀∈ 1(1),(0,]()0,(n n x ,)xx n f x nx n α−⎧−∈⎪=⎨⎪∈+∞⎩, 并且,1)(−−=αx ex F x),0(+∞∈x ),0(+∞∈∀x , 则对于,有)(1(lim )(lim 11x F x e x nxx f x n n n n ==−=−−−∞→∞→αα. N n ∈∀,.)()(1x f x f n n +≤下面证明:ttx t G )1()(−=),0(+∞∈∀x ),1[+∞∈t ,取 事实上,,令,1ln()(ln txt t G −=,则▉▉第四章习题参考解答x t xt x t x t x t txt G t G −+−=−+−=′)1ln(11)1ln()()(2. x t xt x t h −+−=′)1ln()(,又因 又记222)()()(11)(x t xx t t x x t x t x tx t h −−−=−−−=′0)()()(222<−−=−−−=x t t x x t t tx x t x .xt xt x t G t G t h −+−=′=)1ln()()()(所以,关于单调递减并且故,t 0)(lim =∞→t h t ),1[+∞∈∀t ,有. 因此,0)(>t h 0)()()(>⋅=′t h t G t G .即, 在)(t G ),1[+∞n ∀∈ 单调增加. 从而,,)1(11()1()(1+=+−<−=+n G n x n x n G n n .所以,)()11()1()(1111x f x n x x n x x f n n n n +−+−=+−<−=αα.因此, ,n ∀∈ 1)()(|)(|−−=≤=αx e x F x f x f x n n ),0(+∞∈x,因为在1)(−−=αx e x F x ),0(+∞上可积,由Lebesgue 控制收敛定理,有∫∫∫+∞−−+∞∞→−∞→===−),0(1),0(),0(1)(lim )1(limdx x e dx x f dx x n x x n n n n n αα.+∞<mE 12. 设,试证明:在E 上当且仅当0⇒k f 0||1||lim =+∫∞→dx f f Ek k k . k ∀∈ 0>∀σ)(⇒,因为证明 ,实变函数第四章▉▉)1|(|]||1||[σσσ−≥=≥+k k k f E f f E 并且(在0⇒k f E 上),则我们有01|(|lim )||1||{lim =−≥=≥+∞→∞→σσσk k k k k f mE f f mE .0||1||⇒+k k f f E .故在上,1||1||≤+k k f f k ∀∈ +∞<mE ,由Lebesgue又因为对于,并且有界收敛定理,有00||1||lim ==+∫∫∞→E E k k k dx dx f f .0>∀σ)(⇐,因为对于(||)0(||)11kk E f EmE f dx σσσσσσ≥≤≥=++∫ ∫≥+Ef E k k k dx f f )|(|||1||σ≤)(0∞→→k . 则有0)|(|lim 10≤≥−≤∞→δσσk k f mE . 从而,0)|(|lim =≥∞→δk k f mE . 即.0⇒k f。

实变函数第四章复习题及解答(1)

实变函数第四章复习题及解答(1)

第四章 复习题(一)一、判断题1、设()f x 是可测集nE R ⊆上的非负简单函数,则()d Ef x x ⎰一定存在。

(√ )2、设()f x 是可测集nE R ⊆上的非负简单函数,则()f x 在E 上勒贝格可积。

(× ) 3、设()f x 是可测集nE R ⊆上的非负简单函数,且0()d Ef x x ≤<+∞⎰,则()f x 在E 上勒贝格可积。

(√ )4、设()f x 是可测集nE R ⊆上的非负可测函数,则()d Ef x x ⎰一定存在。

(√ )5、设()f x 是可测集nE R ⊆上的非负可测函数,则()f x 在E 上勒贝格可积。

(× ) 6、设()f x 是可测集nE R ⊆上的非负简单函数,且0()d Ef x x ≤<+∞⎰,则()f x 在E 上勒贝格可积。

(√ )7、设()f x 是可测集nE R ⊆上的可测函数,则()d Ef x x ⎰一定存在。

(× )8、设()f x 是可测集nE R ⊆上的可测函数,且()()f x L E +∈,()()f x L E -∈至少有一个成立,则()d Ef x x ⎰一定存在。

(√ )9、设()f x 是可测集nE R ⊆上的可测函数,且()()f x L E +∈,()()f x L E -∈至少有一个成立,则()f x 在E 上勒贝格可积。

(× )10、设()f x 是可测集nE R ⊆上的可测函数, 若()()f x L E +∈且()()f x L E -∈,则()f x 在E 上勒贝格可积。

(√ )11、设()f x 是可测集nE R ⊆上的可测函数, 若()()f x L E ∈,则()d Ef x x -∞<<+∞⎰。

(√ )12、设()f x 是可测集n E R ⊆上的可测函数, 若()()f x g x ≤且()()g x L E ∈,则()()f x L E ∈。

实变函数课件第四章可测函数 (2)

实变函数课件第四章可测函数 (2)
s
E Ei上,且f x在每个Ei上都可测,则f x在E上也可测.
i 1
定义3 设f x的定义域E可分为有限个互不相交的可测集
s
E1,E2, ,Es ,E Ei ,使f x在每个Ei上等于常数ci,
i 1
则称f x为简单函数.
定理4 设f x ,g x 在E上可测,则下列函数( 假定它们在
作业:13
定理2 设f (x)是E R上a.e.有限的可测函数,则对任意的 0, 存在闭集F E及整个R上的连续函数g(x)(F及g(x)依赖于 ), 使得在F上g(x) f (x),且m(E \ F) .此外还可要求
sup g(x) sup f (x) 及inf g(x) inf f (x).
注:一个函数在其定义域中的每一个孤立点都是 连续的.
定理2 可测集E Rn上的连续函数都是可测函数.
例1 区间[a,b]上的连续函数和单调函数都是可测函数.
定理3 (1)设f x是可测集E上的可测函数,而E1 E为E的 可测子集,则f x 看作定义在E1上的函数时,它是E1上的可
测函数;
(2)设f x定义在有限个可测集Ei(i 1, 2, , s)的并集
R
F
R
F
作业:P51,1,P52,2
第4节 依测度收敛
定义 设{ fn}是E Rq上的一列a.e.有限的可测函数,若 有E上的a.e.有限的可测函数f (x)满足下列关系:
对任意
0,有lim mE[| n
fn
f
| ] 0,
则称函数列{ fn}以测度收敛于f ,或度量收敛于f ,
记为fn (x) f .
(4) 对任意有限实数a,b(a b), E[a f b] 都可测(但充要性要假定f (x)是有限函数).

实变函数(程其襄版)第一至四章课后习题答案

实变函数(程其襄版)第一至四章课后习题答案
2.集合的包含关系
若集合A和B满足关系:对任意 ∈A,可以得到x∈B,则成A是B的子集,记为A B或B A,若A B但A并不与B相同,则称A是B的真子集.
例7. 若 在R上定义,且在[a,b]上有上界M,即任意对
∈[a,b]有 M.用集合语言表示为:[a,b] { : M}.
用集合语言描述函数性质,是实变函数中的常用方法,请在看下例.
定理1
(交换律)
证明我们只证明
先设 则有 且有 于是这证来自了在证反过来的包含关系,设 ,则有 ,此即 ,因此 于是 。
综合起来,便是等式成立。
这表面,集合运算的分配律,在无限并的情况下依然成立
3、集合的差集和余集
若A和B是集合,称 为A和B是差集,A\B也可以记为A-B,如图1.3是A-B的示意图:
请读者注意:我们怎样把描述函数列性质的 语言,转换为集合语言。
例12 设 是定义在E上的函数列,若x是使 收敛与0的点,则对任意的 ,存在 ,使得对任意 即
顺便说明一下,一个集合的各个元素必须是彼此互异的,哪些事物是给定集合的元素必须是明确的,下面举出几个集合的例子。
例14,7 ,8,3四个自然数构成的集合。
例2全体自然数
例30和1之间的实数全体
例4 上的所有实函数全体
例5A,B,C三个字母构成的集合
例6平面上的向量全体
全体高个子并不构成一个集合,因为一个人究竟算不算高个子并没有明确的界限,有时难以判断他是否属于这个集合。
例1设 和 是定义在E上的函数,则对任意
例2.
例3若记
例4 若 是一族开区间,而 ,则存在
使得 (有限覆盖定理)
例5若 是定义在E上的函数,则
2、集合的交集
设A,B是任意两个集合,由一切既属于A又属于B的元素组成的集合C称为A和B的交集或积集,简称为交或积,记作 ,它可以表示为

实变函数--ch4可测函数

实变函数--ch4可测函数
证: 闭集 ,使 是有限值连续函数, .
记 ,则 均为 可测集,且 ,令 得 . ,从而, 有

由于 ,而 是完备测度,故 .又由于 包含R中的开集全体 ,据 Th4.1.2的推论1知, 在每个 上可测,所以 .这样 , 是E上的 可测函数.
12.证:(1)由于 ,有 ,

(2)若 ,则显然 ;
若 ,则 .
若闭集 满足 ,则 ,复记 为E即可.
其次,由于在变换 下, 具有相同的可测性与连续性,故可进一步假定 上的有界可测函数.以下分两步证明.
(A)设 上的简单函数,可记 , , 两两不交、可测, .据 Th3.4.2(2), ,使 ,

记 为E的闭子集,且 .
下证 是 上的连续函数. ,存在唯一的 ,使 .从而
.若 ,记“ ,a.e.于E”.
依测度收敛:设 A, 是E上的可测函数, ,有 ,称 在E上依测度 收敛于 ,记 或 .
定理4.2.1.设 ,A, 是测度空间, 是 A上的可测函数列,若 于E,则存在E上的可测函数 ,使 于E.
证:存在零测集 ,使 , .令 ,则 在E上可测,且 于E.
推论.若 ,A, 是完备的测度空间,则 A上的可测函数列的a.e.收敛的极限函数必是E上的可测函数.
证:记 , A, . 在 上取值有限,且
,有 .据引理有

于是, .
从而 .
定理4.2.4.(叶果洛夫定理)设 ,A, 是测度空间, A, .可测函数列 在E上a.e.收敛于a.e.有限的函数 .则 , A,使 上一致收敛于 .
(称 在E上近一致收敛于 ,记为 于E.)
证:记 ,则 A, . ,且 在 上取值有限,由引理知 , .
,使 .

(完整版)《实变函数》第四章可测函数

(完整版)《实变函数》第四章可测函数

第四章 可测函数(总授课时数 14学时)由于建立积分的需要,我们还必须引进一类重要的函数——Lebesgue 可测函数,并讨论其性质和结构。

§1 可测函数及其性质教学目的 本节将给出可测函数的定义并讨论其基本性质教学要点 可测函数有若干等价的定义. 它是一类范围广泛的函数, 并且有很好的运算封闭性. 可测函数可以用简单函数逼近, 这是可测函数的构造性特征。

本节难点 可测函数与简单函数的关系。

授课时数 4学时———---—-——-——-—-—--——-——————-—1可测函数定义定义:设()f x 是可测集E 上的实函数(可取±∞),若[],f a a R E>∀∈可测,则称()f x 是E 上的可测函数。

2可测函数的性质性质1 零集上的任何函数都是可测函数。

注:称外测度为0的集合为零集;零集的子集,有限并,可数并仍为零集性质2 简单函数是可测函数若1nii E E ==⋃ (iE 可测且两两不交),()f x 在每个iE 上取常值ic ,则称()f x 是E 上的简单函数;1()()i ni E i f x c x χ==∑ 其中1()0ii E i x E x x E E χ∈⎧=⎨∈-⎩注:Dirichlet 函数是简单函数性质3 可测集E 上的连续函数()f x 必为可测函数 设()f x 为E 上有限实函数,称()f x 在0x E ∈处连续00(,)((),)0,0,()x f x f OE Oδεεδ∀>∃>⋂⊂若使得对比:设()f x 为(),a b 上有限实函数,0()(,)f x x a b ∈在处连续lim ()()x x f x f x →=若0,0,|||()()|x x f x f x εδδε∀>∃>-<-<即当时,有00(,)((),)0,0,()x f x x Of x O δεεδ∀>∃>∈∈即当时,有00(,)((),)0,0,()x f x f OOδεεδ∀>∃>⊂即使得()f x 在0[,]x a b ∈处连续(对闭区间端点则用左或右连续)证明:任取[]x E f a ∈>, 则()f x a >,由连续性假设知, 对(),0,xf x a εδ=-∃>使得(,)((),)()(,)x x f x f OE Oa δε⋂⊂⊂+∞即(,)[]x x f a OE Eδ>⋂⊂。

(新)曹广福版实变函数与泛函分析第四章答案

第四章习题参考解答1.设)(x f 是E 上的可积函数,如果对于E 上的任意可测子集A ,有0)(=⎰dx x f A ,试证:)(x f ,].[.E e a证明:因为}1)(|{}0)(|{1k x f x E x f x E k ≥=≠∞= ,而N k ∈∀,}1)(|{kx f x E ≥}1)(|{}1)(|{kx f x E k x f x E -≤≥= .由已知,=+=-≤≥≥⎰⎰⎰kx f x E kx f x E kx f x E dx x f dx x f dx x f 1)(|{1)(|{1|)(|{)()()(000=+.又因为0}1)(|{11)(0}1)(|{}1)(|{≥≥=≥=≥≥⎰⎰kx f x mE k dx k dx x f kx f x E kx f x E , 0}1)(|{1)1()(0}1)(|{}1)(|{≤-≤-=-≤=≥≥⎰⎰k x f x mE k dx k dx x f kx f x E kx f x E所以,0}1)(|{}1)(|{=-≤=≥k x f x mE k x f x mE .故,0}1)(|{}1)(|{}1|)(|{=-≤+≥=≥kx f x mE k x f x mE k x f x mE ,从而00}1|)(|{}1|)(|{[}0)(|{111==≥≤≥=≠∑∑∞=∞=∞=k k k k x f x mE k x f x E m x f x mE .即,0)(=x f ,].[.E e a .2.设f ,g 都是E 上的非负可测函数,并且对任意常数a ,都有})(|{})(|{a x g x mE a x f x mE ≥=≥,试证:)()(x g x f =,从而,=⎰dx x f E )(dx x g E⎰)(.证明:我们证f ,g 是同一个简单函数序列∞=1){m m ψ的极限函数.N m ∈∀及12,,1,0-=m m k ,令}21)(2|{,mm k m k x f k x E E +≤≤=,并且 })(|{2,m x f x E E m m m ≥=.则k m E ,是互不相交的可测集,并且k m m k E E m ,21== ,定义简单函数∑==mk m m k E m m x kx 20)(2)(,χψ. 下面证明:)()(lim x f x m m =∞→ψ,E x ∈.E x ∈∀0,若+∞=)(0x f ,则N m ∈∀,m m m E x 2,0∈,所以)()(0∞→∞→=m m x m ψ,即)()(lim 00x f x m n =∞→ψ;若+∞<)(0x f ,则可取正整数)(00x f m >,0m m ≥∀时,}21)(2|{})(0|{1210m m m k k x f k x E m x f x E x m +<≤=<≤∈-= .故,存在)120(-≤≤mm k k , }21)(2|{0m m k x f k x E x +<≤∈.即,m m k x f k 21)(20+<≤,m m k E m m k x k x mk m 2)(2)(20,==∑=χψ.所以,0212212)()()(|)()(|00000→=-+<-=-=-mm m m m m k k k x f x x f x x f ψψ,从而, )()(lim 00x f x m n =∞→ψ.同理,N m ∈∀,定义简单函数列∑==mkm m k E m m x kx 20)(2)(*,χψ,其中:}21)(2|{*,mm k m k x g k x E E +<≤=,12,,1,0-=mm k .})(|{*,m x g x E E k m ≥=.同上一样可证明:)()(lim 0x g x m n =∞→ψ,E x ∈.因为R a '∈∀,有})(|{})(|{a x g x mE a x f x mE ≥=≥.故R a '∈∀,})(|{b x f a x mE <≤})(|{b x g a x mE <≤=.从而,)120(-≤≤∀mm k k ,有k m m m m m k m mE k x g k x mE k x f k x mE mE ,*,}21)(2|{}21)(2|{=+<≤=+<≤=m m m m m m mE m x g x mE m x f x mE mE 2,*2,})(|{})(|{=≥=≥=.即,N m ∈∀,=)(x m ψ)(x m ϕ.因此)()(lim )(lim )(x g x x x f m m m m ===∞→∞→ϕψ.3.若⎪⎩⎪⎨⎧=为有理数,当为无理数,当x x x x x f 31)(,计算⎰1,0[)(dx x f .解:设x x E |]1,0[{0∈=为有理数},01]1,0[E E -=,则+=⎰⎰1)()(]1,0[E dx x f dx x f⎰]1,0[)(dx x f ⎰⎰⎰+==111E EE dx xdx xdx x=+==⎰⎰⎰1111E E E dx xdx xdx x2]2[11101]1,0[====⎰⎰x dx xdx x.4.设21,,E E 是]1,0[中n 个可测集,若]1,0[内每一点至少属于n 个集中的q个集,证明:21,,E E 中至少有一个测度不小于nq.证明:令∑==ni E x x f i1)()(χ,其中iEχ为i E 上的特征函数]1,0[∈∀x ,有q x x f ni E i≥=∑=1)()(χ,所以q qdx dx x f =≥⎰⎰]1,0]1,0[)(.∑∑⎰∑∑⎰⎰⎰========≤ni ni i E ni E ni E mE dx x dx x dx x f q i i 11111,0]1,0[]1,0[)()()(χχ.如果每个n qmE i <,则∑∑===⋅=>n i n i i q n q n n q mE 11.这与∑=≤ni i mE q 1矛盾.从而,)1(n i i ≤≤∃使得nqmE i ≥. 5.设f ,g 都是E 上的可积函数,试证明:22g f+也是E 上可积函数.证明:(1)先证:设)(x f 与)(x F 都是E 上的可测函数且)()(0x F x f ≤≤ ].[.E e a ,若)(x F 在E 可积,则)(x f 在E 可积.事实上,N m l ∈∀,,因为)()(0x F x f ≤≤ ].[.E e a ,故l l x F x f )}({)}({0≤≤,即+∞<≤≤≤⎰⎰⎰EE llE ldx x f dx x F dx x F dx x f mm)()}({)}({)}({,其中:m mS E E=,}||||{∞<=x x S m .从而∞=⎰1})}({{l l E dx x F m是单调递增有上界⎰Edx x F )(的数列,故:⎰⎰⎰≤=∞→EE ll E dx x F dx x f dx x f mm)()}({lim )(.又因为⎰∞=mE m dx x f 1})({单调递增有上界,所以⎰∞→mE l dx x f )(lim存在,并且⎰⎰⎰+∞<≤=∞→EE ll Edx x F dx x f dx x f m)()}({lim )(,即⎰∞→∞→mE ll m dx x f )}({lim lim+∞<≤⎰dx x f E)(.所以)(x f 在E 可积.(2)再证:22g f+在E 上可积.事实上,因为f ,g 在E 上可积,所以||f 与||g 在E 上可积,从而||f +||g 在E 上可积. 又因为||||22g f g f+≤+,由(1)。

实变函数论教案第四章

实变函数论教案第四章函数论与测度(实变函数论)是高等师范院校数学专业的一门必修课程,它是普通微积分学的继续,是现代分析数学的基础。

本课程的主要内容是n维欧氏空间上的Lebesgue 测度和Lebesgue积分理论。

教学中要突出Lebesgue 测度与积分论的中心地位,使学生较好地掌握测度与积分这两个基本分析工具,能熟悉集合分解等基本方法。

通过学习,使学生掌握一些近代抽象分析的基本思想,加深对数学分析中相关内容的理解;掌握实变函数的基本理论和方法第四章可测函数为了建立新的积分,我们已经对R中的一般集合定义了测度概念. 在本章中我们将定义可测函数的概念,讨论可测函数的性质. 我们会看到,可测函数类是包含连续函数类的一种范围相当广泛的函数类. 这个函数类对于四则运算是封闭的,而且对于极限运算也是封闭的. 我们还要讨论可测函数与连续函数的关系,从而进一步研究可测函数的结构. 最后研究可测函数的几种不同类型的收敛概念及其相互关系,使我们对可测函数有较深刻的理解.n__167;1 可测函数及其性质教学目的:使学生了解可测函数的原始定义及等价命题,掌握其运算性质。

本节重点:可测函数的定义及性质,几乎处处的概念。

在本书引言中指出,定义新的积分需要研究什么样的函数f(_),使得对任何实数a,b,点集{_:a f(_) b}都有“长度”,即都是可测集.可测函数的概念就是由此产生的. 因为本章讨论的函数可以取值,所以在给出可测函数概念之前,我们要介绍有限函数的概念和包含在内的实数运算的规定.设E R,称f(_)是E上的有限函数,是说对任意的_ E,函数值f(_)都是有限实数.包含在内的实数运算作如下规定:(i)( ) ( ) ,( ) ( ) ;(ii)对任意的有限实数a,a ( ) ,a ( ) ;(iii)对任意的b 0,c 0,nb ,b ( ) ,c ,c ( ) ;(iv)( ) ( ) ( ) ( ) ,) ( )( ). ( ) (。

实变函数论课后答案解析第四章4

可测 为可测集(江则坚P109习题10)
现设 连续,则 开集 , 是开集,
记 ,可证 是一个 代数,且包含全部开集,从而包含全部 集
证1) 可测
2)若 ,则 显然也可测,
3)若 ,则 , 可测, 可测 是 代数
连续,则 , 包含全部开集,从而包含全部 集
为非奇异线性, 显然连续
方体半开半闭(显然为 集), 可测
(i)坐标 之间的交换
(ii)
(iii)
在(i)的情形显然 (2.9)成立
在(ii)的情形下, 矩阵可由恒等矩阵在第一行乘以 而得到
从而可知 (2.9)式成立
在(iii)的情形,此时 ( )
而且


反过来, , 则
令 则 ,
则 , )

,则
( ,则 , ,则
,且 ,则反过来, ,则存在 , Fra bibliotek使, ,且
实变函数论课后答案第四章4
第四章第四节习题
1.设 于 , 于 ,证明: 于
证明: ,
(否则,若 ,而 ,
矛盾),则
( )
从而
2.设 于 , ,且 于 ,证明 于
证明:由本节定理2( 定理)从 知 的子列 使

设 , , 于 ,从条件 于 ,设
, , 于 上
令 ,则 ,且

,则
令 ,
故 有 ,从而命题得证
显然
周民强书P35思考题:
6.设 是定义在 上的实值函数族, 是可数集,则存在 ( )使得 在 上收敛.
我怀疑本题有错:若不假设 是 上一致有界的,会有反例:
令 = ,设 这里 ,则显然任取无穷个 于 ,故 不会收敛!
时,

周民强《实变函数》解答 第四章 lebesgue积分


v W lim k→∞
Ek f (x)dx
f (x) E
V&VSVU 'VfV)V0VV1XVdVeVf 'V( g hVi Ex 5: fk(x)(k = 1,2,···) Rn
k→∞ j=1
E˜j
k→∞ Ek
E ⊂ Rn,
fk(x)dx ≤ fk+1(x)dx,
∞ k=1
Ek ,
f
∈ L(Ek)
(k = 1, 2, · · ·),
lim f (x)dx = f (x)dx.
k→∞ Ek
E
9¦@B oFk
|
}
x
¸
v
w
r
zv
1Ey ¹ v
¶f(x)
·vq
F=
9¦@ q

Fk

vv

1
F

W
k=1
f (x)dx = lim f (x)dx.
678
E
E
lim fk(x)dx = lim fk(x)dx.
k→∞ E
E k→∞
j k B l m n 1 o p w q r 1 G H s t p w q Ek = {x : fk(x) > fk+1(x)}
r u v w r 1 o t u x y x y z 1E{ r s | } ~ W )
∞ k=1
Ek
,
f

L(Ek )
(k = 1, 2, · · ·),
·
§
¨
|
}
x
f (x)dx = ∞
f (x)dx = lim
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6
对于任何有限实数a,
a ( ) a , ( ) a , 0 对于任何有限实数a 0, () a a () , ( ) a a ()
() a a () , ( ) a a ()
10 对于任意的常数a, E[ f ( x) a]都可测;
20 对于任意的常数a, E[ f ( x) a]都可测;
30 对于任意的常数a, E[ f ( x) a]都可测. 1 证 因为E[ f ( x ) a ] E[ x | f ( x ) a ] k k 1
lim f ( xn ) f ( x0 )
n
其中xn E .
从而f ( xn ) c, 则 f ( x0 ) c x0 E E为闭集.)
由闭集的可测性知 : E可测.从而 f ( x )在[a, b]上可测.
11
同理可证 : 任何区间上的连续函数都是可测的. 例4 勒贝格测度为0的集上所定义的函数必是可 测函数. 证 由于零集的任何子集仍是零集, 从而是可测集. n 定理1 对于可测集合E R 上的函数f ( x ), 下述各条 件都是f ( x )在E上可测的充要条件 :
故f 在E上可测.
" " 对任意有限实数a、b,由于f ( x)在E上可测,
则E[a f b] E[ f a] E[ f b]可测,
且E[ f ]
k 1
E[ f k ]可测.
14
同学们还可以把区间上连续函数的概念推广到一 般点集上去, 从而也可证明
这也是之所以称 M ( x)为M的特征函数的原因.
定理2 集合M 与其特征函数 M 或者同是可测或者
同是不可测的. 证 设 M 可测, 则由M E( M 0)知 M 是可测集.
另一方面, 设M 可测因为 . 当a 1 , E ( M a ) M , 当0 a 1. E, 当a 0
例5 若f 在可测集E上连续, 则f 在E上可测. 证 只须证a, E[ f a]可测.
x0 E[ f a], 令 f ( x0 ) a 0,由f 的连续性, 可
知 x0 0,当x E
N ( x0 , x0 )时, 有
f ( x) f ( x0 ) .
由于f 在En上可测, 所以En[ f a]可测,
推论1 如果f ( x )在E上可测, 则
E[ x | f ( x) ]和E[ x | f ( x) ]
都是可测集.

因为E[ x | f ( x ) ]
E[ x | f ( x ) ]
k 1
k 1
E[ x | f ( x ) k ].
E[ x | f ( x ) k ].
显然, 有界函数是有限函数, 反之则不然!
对于包含 在内的实数运算, 我们作如下规定
() () , ( ) () () () , ( ) ()
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
类似地, 可理解 E ( f a ), E ( f a ), E ( f a ), E ( f a ),
E (a f b), E (a f b) 等记号的意义.
由于建立Lebesgue积分的思路是:
8
作分划时, 是将函数值接近的划分在一起.
这就涉及形如集合E(a f b)的测度问题.
一. 勒贝函数都是允许函 数值取 , 的实函数, 称为广义函数, 通常的实数 指的是有限实数. 函数值都是有限实数的函数称为有限函数;
5
若M 0, 对x E , 有 f ( x ) M , 则称f ( x )为E 上的有界函数.
续研究可测函数列的各种收敛性, 包括可测函数列的一
致收敛, 几乎处处收敛和依测度收敛, 并细致地讨论各
种收敛性间的关系. 最后, 本章还将介绍用连续函数来刻划可测函数的鲁
金定理.
4
因为勒贝格可测函数是勒贝格积分的基本对象. 所
以, 本章的讨论对于深刻理解勒贝格积分是非常必要 的.
§1 可测函数的定义及其简单性质
由于E , E中的有理点集, 都是可测集.则 E[D( x) a]可测,
从而D( x )在E上是可测的. (法二见定理4之后.)
这样我们就看到了一个处处不连续但却是可测的函 数的例子.
18
注3 上述几例说明“可测函数确实比连续函数广泛 得多.”
注4 上一章讨论了集合的可测性, 这里又引入了函数
f ( x) f ( x0 ) f ( x) f ( x0 ) a
即E
N ( x0 , x0 ) E( f a).
15
故 E( f a)
x0 E ( f a )
E
N ( x 0 , x0 )

E N ( x 0 , x0 ) . x0E ( f a )
或者就是E , 或者是空集, 从而必是可测集.
例2 区间[c,d]上的单调函数是可测函数. 证 当f 是[c, d ]上单调函数时, 对任意实数a, E[ f a]一定
是[c, d ]的某个子区间或空集或单点集, 从而必是可测集.
10
,则 f ( x) 必在 [ a, b] 上可测 . 例3 设f 在[a,b] 上连续
13
推论2 f ( x )在E上可测 对任意的a, b, 有
E[a f b]和E[ f ]可测. 证 " "对任意有限实数a, n, 有
E[a f a n]可测, 且E[ f ]也可测.
而E[ f a ]
n 1
E (a f a n) E[ f ]可测.
对于任何有限实数a 0,
另外, 在本章课程中, 我们还规定下面这些记号
() (),() ( ),( ) ( ),( ) ( ),
a , , 0 0
7
都被认为是没有意义的.
对于在E Rn上定义的函数f , 用记号 E( f a) 来表示E中满足f ( x ) a的点x的全体,即 E ( f a ) { x | x E , f ( x ) a}.
k
E
i 1
i
ba
2
成立, 而把集合分成可测与不可测两类的, 只有式中的Ei 都是可测集合时, 才能保证上式成立.
从而本章将致力于讨论:
怎样的函数f, 才能使对任意常数a,b, 集合{x|a≤f(x)<b}
均是可测的. 这类函数就是勒贝格可测函数. 它是一类在
理论上十分重要, 在应用中足够广泛的函数.
则E( M a)总是可测的, 从而 M 是可测函数.
20
注5 在ch3的§2中, 我们知道, 确实可以给出一个不 可测集的例子, 由此定理便可知道不可测函数也是确实
存在的.
二. 勒贝格可测函数的性质 定理3 10 设f 是可测集E上的可测函数.则f 在E的任一可
测子集E0上可测.
20 设E
第三章我们已经对勒贝格可测集作了充分的讨论, 本 章将把这些结果转化为分析函数性质的工具.
3
首先, 勒贝格可测函数的概念正是利用勒贝格可测集 来刻划的, 这就使我们能用可测集的性质来讨论可测函
数. 例如, 利用可测集类对集合运算的封闭性, 可以得到
可测函数类对代数运算和极限运算的封闭性. 在对可测函数的性质作初步讨论的基础上, 我们将继
证 当f ( x )在[a, b]上连续时, 对任何实数c, 有 E { x | x [a, b], f ( x ) c}是闭集. (其证明见ch2习题)
(这是因为x0 E, 则有xn E,(n 1,2,...), 使 lim xn x0 .
n
又由f ( x )的连续性知
第四章
可测函数
本章先介绍可测函数的定义及其等价描述、简单性
质, 然后讨论可测函数与简单函数、连续函数三者之 间的相互关系, 最后引入依测度收敛概念, 并研究依测 度收敛与几乎处处收敛、 一致收敛之间的相互关系. 引入可测函数概念的目的是探讨哪些函数才有可能 按新思路改造积分定义; 引入依测度收敛概念的目的在
显然
x0 E ( f a )
N ( x0 , x0 )是开集, 从而可测.
而E可测, 故E( f a )可测.
注2 由证明过程不难看出 :
当E是开集时, E( f a )也是开集.
16
仿此, 读者可以课后证明:
可测集 E上的单调函数是可测函数. 证 设 f(x) 的不连续点集为 E0. 因为单调函数 f(x)的 不连续点至多可列多个, 所以 mE0=0.

n 1
En , 且En可测, 则f 在E上可测 对
n, f 在En上可测.
21

10 对任意的实数a,当f 在E上可测时, E0 ( f a ) E0 E( f a )

是可测集.即f 也是E0上的可测函数.
20 " " 对任意实数a, E[ f a ]
n 1
En [ f a ].
12
E[ f a] E[ f a]C E \ E( f a )
1 E[ f a ] E[ x | f ( x ) a ], k k 1 由f ( x)在E上可测 (1) (2) (3).而

E[ f a] E[ f a]C E \ E( f a ) f ( x )在E上可测.
则f(x)在E- E0上连续, 从而 f(x)在
相关文档
最新文档