实变函数第四章复习题及解答(1)

合集下载

(完整版)实变函数试题库1及参考答案

(完整版)实变函数试题库1及参考答案

实变函数试题库及参考答案(1) 本科一、填空题1.设,A B 为集合,则()\A B B U A B U (用描述集合间关系的符号填写) 2.设A 是B 的子集,则A B (用描述集合间关系的符号填写) 3.如果E 中聚点都属于E ,则称E 是 4.有限个开集的交是5.设1E 、2E 是可测集,则()12m E E U 12mE mE +(用描述集合间关系的符号填写) 6.设nE ⊂¡是可数集,则*m E 07.设()f x 是定义在可测集E 上的实函数,如果1a ∀∈¡,()E x f x a ⎡⎤≥⎣⎦是 ,则称()f x 在E 上可测8.可测函数列的上极限也是 函数9.设()()n f x f x ⇒,()()n g x g x ⇒,则()()n n f x g x +⇒ 10.设()f x 在E 上L 可积,则()f x 在E 上 二、选择题1.下列集合关系成立的是( )A ()\B A A =∅I B ()\A B A =∅IC ()\A B B A =UD ()\B A A B =U2.若nR E ⊂是开集,则( )A E E '⊂B 0E E =C E E =DE E '=3.设(){}n f x 是E 上一列非负可测函数,则( )A ()()lim lim n n E En n f x dx f x dx →∞→∞≤⎰⎰ B ()()lim lim n n E E n n f x dx f x dx →∞→∞≤⎰⎰C ()()lim lim n n E En n f x dx f x dx →∞→∞≤⎰⎰ D ()()lim lim n n EE n n f x dx f x →∞→∞≤⎰⎰三、多项选择题(每题至少有两个以上的正确答案) 1.设[]{}0,1E =中无理数,则( )A E 是不可数集B E 是闭集C E 中没有内点D 1mE =2.设nE ⊂¡是无限集,则( )A E 可以和自身的某个真子集对等B E a ≥(a 为自然数集的基数)C E '≠∅D *0mE >3.设()f x 是E 上的可测函数,则( )A 函数()f x 在E 上可测B ()f x 在E 的可测子集上可测C ()f x 是有界的D ()f x 是简单函数的极限4.设()f x 是[],a b 上的有界函数,且黎曼可积,则( )A ()f x 在[],a b 上可测B ()f x 在[],a b 上L 可积C ()f x 在[],a b 上几乎处处连续D ()f x 在[],a b 上几乎处处等于某个连续函数四、判断题1. 可数个闭集的并是闭集. ( )2. 可数个可测集的并是可测集. ( )3. 相等的集合是对等的. ( )4. 称()(),f x g x 在E 上几乎处处相等是指使()()f x g x ≠的x 全体是可测集. ( ) 五、定义题1. 简述无限集中有基数最小的集合,但没有最大的集合.2. 简述点集的边界点,聚点和内点的关系.3. 简单函数、可测函数与连续函数有什么关系?4. [],a b 上单调函数与有界变差函数有什么关系?六、计算题1. 设()[]230,1\xx E f x xx E⎧∈⎪=⎨∈⎪⎩,其中E 为[]0,1中有理数集,求()[]0,1f x dx ⎰.2. 设{}n r 为[]0,1中全体有理数,(){}[]{}12121,,00,1\,,n n n x r r r f x x r r r ∈⎧⎪=⎨∈⎪⎩L L ,求()[]0,1lim n n f x dx →∞⎰.七、证明题1.证明集合等式:(\)A B B A B =U U2.设E 是[0,1]中的无理数集,则E 是可测集,且1mE =3.设(),()f x g x 是E 上的可测函数,则[|()()]E x f x g x >是可测集4.设()f x 是E 上的可测函数,则对任何常数0a >,有1[|()|]|()|E mE x f x a f x dx a≥≤⎰5.设()f x 是E 上的L -可积函数,{}n E 是E 的一列可测子集,且lim 0n n mE →∞=,则lim ()0nE n f x dx →∞=⎰实变函数试题库及参考答案(1) 本科一、填空题1.=2.≤3.闭集4.开集5.≤6.=7.可测集8.可测9.()()f x g x + 10.可积 二、单选题 ABB三、多选题ACD AB ABD ABC 四、判断题 × √√√ 五、定义题1.答:因为任何无限集均含有可数集,所以可数集是无限集中基数最小的,但无限集没有基数最大的,这是由于任何集合A ,A 的幂集2A 的基数大于A 的基数.2.答: 内点一定是聚点,边界点不一定是聚点,点集的边界点或为孤立点或为聚点.3.答:连续函数一定是可测函数;简单函数一定是可测函数;简单函数可表示成简单函数或连续函数的极限4.答:单调函数是有界变差函数,有界变差函数可表示成两个单调增函数之差.六、解答题1.解:因为0mE =,所以()3,.f x x a e =于[]0,1,于是()[][]30,10,1f x dx x dx =⎰⎰,而3x 在[]0,1上连续,从而黎曼可积,故由黎曼积分与勒贝格积分的关系,[]()41331000,11|44x x dx R x dx ===⎰⎰ 因此()[]0,114f x dx =⎰.2.解:显然()n f x 在[]0,1上可测,另外由()n f x 定义知,()0,.n f x a e =于[]0,1()1n ≥ 所以()[][]0,10,100nf x dx dx ==⎰⎰因此()[]0,1lim0nn f x dx →∞=⎰七、证明题 1.证明(\)()c A B B A B B =U I U ()()()c c A B A B B A B B B A B ===I U I U I U U U2.证明 设F 是[0,1]中的有理数集,则F 是可数集,从而*0m F =,因此F 是可测集,从而c F 可测,又[0,1]\[0,1]cE F F ==I ,故E 是可测集.由于E F =∅I ,所以1[0,1]()0m m E F mE mF mF ===+=+U ,故1mF =3.证明 设{}n r 为全体有理数所成之集,则()11[|()()][|()()][|()][|()]n n n n n E x f x g x E x f x r g x E x f x r E x g x r ∞∞==>=≥>=≥<I U U因为(),()f x g x 是E 上的可测函数,所以[|()]n E x f x r ≥,[|()]n E x g x r <是可测集,1,2,n =L ,于是由可测集性质知[|()()]E x f x g x >是可测集4.证明 因为()f x 在E 上可测,所以|()|f x 在E 上非负可测,由非负可测函数积分性质,[|()|][|()|]|()||()|E x f x a E x f x a Eadx f x dx f x dx ≥≥≤≤⎰⎰⎰而[|()|][|()|]E x f x a adx a mE x f x a ≥=⋅≥⎰,所以1[|()|]|()|E mE x f x a f x dx a≥≤⎰5.证明 因为lim 0n n mE →∞=,所以0,1N δ∀>∃≥,当n N ≥时,n mE δ<,又()f x 在E 上L -可积,所以由积分的绝对连续性,0,0,εδ∀>∃>当,e E me δ⊂<时|()|ef x dx ε<⎰于是当n N ≥时,n mE δ<,因此|()|nE f x dx ε<⎰,即lim ()0nE n f x dx →∞=⎰。

实变函数论课后答案第四章1

实变函数论课后答案第四章1

实变函数论课后答案第四章1第四章第一节习题 1.证明:E 上的两个简单函数的和与乘积都还是E 上的简单函数证明:设1()ini E i f c x χ==∑,1()imi F i g d x χ==∑,这里{}1ni i E =互不相交,{}1mi i F =互不相交令ij i j K E F =⋂,1,1i n j m ≤≤≤≤ ij i j a c d =+, 1,1i n j m ≤≤≤≤则易知1111()()()()iji jn m n mi E j F i j E F i j i j f g c x d x c d x χχχ⋂====+=+=+∑∑∑∑先注意:若1m i i K K == ,i K 互不相交,则1()()imK K i x x χχ==∑ (m可为无穷大)(x K ∀∈,i ∃使i x K ∈,()1()iK K x x χχ==,,()0K x K x χ∀∉=,且i ∀,i x K ∉则()0i K x χ=)且1111(())(())()(())m m m mcc i i j i j i j i j j j j j E E F E F E F E F =====⋂⋃⋂=⋂⋃⋂111()(())(())1()()()()()mmmii cci j i j i j j j j mE EF E F E F E F j x x x x x χχχχχ===⋂⋂⋂⋂==+=+∑同理:1()1()()()mji jcj i i nF E F F E i x x x χχχ=⋂⋂==+∑11()()i j n mi E j F i j f g c x d x χχ==+=+∑∑11()()1111(()())(()())mmi j i j cci j j i j i nmm ni E F j E F E F F E i j j i c x x d x x χχχχ==⋂⋂⋂⋂=====+++∑∑∑∑11()()1111()()()()mmijcci j j i j i n m nmi j E F i j E F F E i j i j c d x c x d x χχχ==⋂⋂⋂=====+++∑∑∑∑这显然还是一个简单函数,因为 若(,)(,)i j k l ≠,则()()i j k l E F E F ⋂⋂⋂=∅ 11(())(())m mcc i j k j j j E F E F ==⋂⋂⋂=∅ ,(i k ≠) 11(())(())mmcc j i k l i i F E F E ==⋂⋂⋂=∅ ,(j k ≠) 11(())(())m mcc i j k i j i E F F E ==⋂⋂⋂=∅ ,(,i k ∀) 1()(())mc i j i j j E F E F =⋂⋂⋂=∅ ,显然,()()()iiijE F E F x x x χχχ⋂=,事实上,i j x E F ∀∈⋂,()()1()()iiiiE F E F x x x x χχχχ+==若,i j i x E F x E ∉⋂⇒∉或i x F ∉ 则()()0()iiijE F E F x x x χχχ⋂==1111(())(())()()i j i j n m n mi E j F i j E F i j i j f g c x d x c d x x χχχχ====⋅==∑∑∑∑11()i j n mi j E F i j c d x χ⋂===∑∑当(,)(,)i j k l ≠时()()()()i j k l i k j l E F E F E F E F ⋂⋂⋂=⋂⋂⋂=∅则f g ⋅也是简单函数1a R ∀∈,显然1()()i ni E i af x ac x χ==∑仍为简单函数2.证明当()f x 既是1E 上又是2E 上的非负可测函数时,()f x 也是12E E ⋃上的非负可测函数证明:显然()0f x ≥于1E ,且()0f x ≥于2E 表明()0f x ≥于12E E ⋃ 又1a R ∀∈,{}{}{}1212|()|()|()E E x f x a E x f x a E x f x a ⋃>=>⋃> 由于f 在1E ,2E 上分别可测,{}1|()E x f x a >和{}2|()E x f x a >均为可测集,从而由P61推论2,{}{}12|()|()E x f x a E x f x a >⋃>={}12|()E E x f x a ⋃>为可测集,再由P101Th1知f 在12E E ⋃上可测或直接用P104Th4的证明方法. 3.设mE <+∞,()f x 是E 上几乎处处有限的非负可测函数,证明对0ε>,都有闭集F E ⊂,使(\)m E F ε<,而在F 上()f x 是有界的证明:令{}0|()0E E x f x ==,{}|()E E x f x E ∞∞==,由条件f 在E 上几乎处处有限,0mE ∞=.由()f x 可测于E 上知,{}{}0|()0|()0E E x f x E x f x =≥⋂≤是可测集(P103Th2,P64Th4可测集的交仍可测)令{};0()E E x f x +=<<+∞,1;()k A E x f x k k⎧⎫=≤≤⎨⎬⎩⎭,则{}1;()\;()k A E x f x k E x f x k ⎧⎫=≤<⎨⎬⎩⎭可测,1k k E A +∞+== ,且1k k A A +⊂由P64Th5 ()lim k k m E mA +→+∞=,而mE <+∞,则()m E +<+∞ 故0ε∀>,0k ∃使00()2k m E mA ε+≤-<,而0k A E +⊂故0(\)2k m E A ε+<由0E ,0k A 可测,∃闭集01k F A ⊂,01(\)8k m A F ε<,∃闭集00F E ⊂使00(\)8m E F ε<令10F F F =⋃,则F 为闭集,且在F 上00()f x k ≤≤ 由于E F ∞⋂=∅,00\\(\)E F E E E F E E E F ∞+∞+=⋃⋃=⋃⋃ 又000001\\(\)(\)E E F E E F F E F E F +++⋃=⋃⋃⊂⋃ 而011\(\)(\)k k E F E A A F ++⊂⋃,故00(\)(\)m E F mE m E E F F ∞+≤+⋃⋃0010(\)(\)m E F m E F +≤++ 01(\)(\)882842k k m E A m A F εεεεεεε+≤++≤++=+< 证毕.4.设{}()n f x 是可测集合E 上的非负可测函数序列,证明:如果对任意0ε>,都有1[|()]n n mE x f x ε∞=><+∞∑,则必有lim ()0.n n f x a e E →∞=于又问这一命题的逆命题是否成立?证明:()n f x 非负可测,令{}0|lim ()0n n E E x f x →∞==则由CH1.§1习题8的证明方法:(P11,见前面的习题解答){}|()0x f x ≤=0111|()m k n m nE E x f x k +∞+∞+∞===⎧⎫=≤⎨⎬⎩⎭(一般,{}111|lim ()()||()()|n m n k n m nE x f x f x E x f x f x k +∞+∞+∞→∞===⎧⎫==-≤⎨⎬⎩⎭) 在本题的假设下,我们需证0(\)0m E E = 由De Morgan 公式0111111\|()|()cm m k n m n k n m nE E E x f x E E x f x k k +∞+∞+∞+∞+∞+∞======⎛⎫⎧⎫⎧⎫=≤⋂=>⎨⎬⎨⎬ ⎪⎩⎭⎩⎭⎝⎭ (()m f x 可测,故1|()m E x f x k ⎧⎫>⎨⎬⎩⎭为可测集)故而0111()|()m k n m n m E E m E x f x k +∞+∞+∞===⎛⎫⎛⎫⎧⎫-≤>⎨⎬ ⎪ ⎪⎩⎭⎝⎭⎝⎭∑ 所以我们只用证11,|()0m n m n k m E x f x k +∞+∞==⎛⎫⎧⎫∀>=⎨⎬ ⎪⎩⎭⎝⎭,k n N ∀∀∈1111|()|()|()m m m m n n m n m n m E x f x m E x f x E x f x k k k +∞+∞+∞+∞====⎛⎫⎛⎫⎧⎫⎧⎫⎧⎫>≤>≤>⎨⎬⎨⎬⎨⎬⎪ ⎪⎩⎭⎩⎭⎩⎭⎝⎭⎝⎭∑ 由于1[|()]n n mE x f x ε∞=><+∞∑,故1lim |()0mn m nE x f x k +∞→+∞=⎧⎫>=⎨⎬⎩⎭∑ 111|()lim |()0m mn m n n m n m E x f x E x f x k k +∞+∞+∞→+∞===⎛⎫⎧⎫⎧⎫>≤>=⎨⎬⎨⎬ ⎪⎩⎭⎩⎭⎝⎭∑ 故0(\)0m E E =得证,即lim ()0.n n f x a e E →∞=于逆命题一般不成立{}1|()n n E x f x ε+∞=><+∞∑的必要条件是{}lim |()0n n E x f x ε→+∞>= 当mE =+∞时,()()n f x f x →不能推出()()n f x f x ⇒于E ([0,]1n χ→于1R ,但[0,]1n χ⇒不于1R ) 当mE <+∞时,()().n f x f x a e E →于,()()n f x f x ⇒于E但不能保证{}1|()n n E x f x ε+∞=><+∞∑5. 设mE <+∞,()f x 在E 上非负可测,证明对于任意y ,{}|()y E E x f x y = 都是可测的,进而证明使0y mE >的y 最多有可数多个证明:因为()f x 在E 上可测,P103,Th2{}1,|()y R E x f x y ⇒∀∈≥都是可测集,从而{}{}{}|()|()|()E x f x y E x f x y E x f x y ==≥⋂≤也是可测集显然,11[|0][|]y y k E x mE E x mE k+∞=>=≥下证:k N ∀∈,1[|]y E x mE k≥要么是空集,要么是有限集 事实上,若0k ∃使01[|]y E x mE k ≥为无限集,则由P18,Th1,存在可数集1201,,,,[|]n y y y y E x mE k ⊂≥由于i j y y ≠时ijy y E E ⋂=∅,1i y i E E +∞=⊂ ,11101()i i y y i i i mE m E mE k +∞+∞+∞===+∞≥≥=≥=+∞∑∑矛盾 6.证明:如果()f x 是n R 上的连续函数,则()f x 在n R 任何可测子集E 上都可测.证明:1a R ∀∈,则从()f x 是n R 上的连续函数,我们易知[|,()]n a F x x R f x a =∈<是开集.事实上若0a x F ∈,0()f x a <则从()n f C R ∈,0δ∃>使0(,)x B x δ∀∈,00()()(())f x f x a f x a <+-=则0(,)a B x F δ⊂,故a F 是开集,从而可测.而E 可测,故[|()]a E x f x a F E =<=⋂作为两个可测集的交也可测,这说明()f x 在E 上可测(P103,Th2). 7.设()f x 是1R 可测集E 上的单调函数,证明()f x 在E 上可测.证明:不妨设()f x 在E 上单调不减,即12,x x E ∀∈,若12x x <,则12()()f x f x ≤1a R ∀∈,我们来证明[|()]E x f x a =≤是可测集,这样由本节定理2知()f x 可测于E (P103).若1a R ∈使得[|()]a E x f x a ≤=∅ ,则显然a E 可测若1a R ∈使得a E ≠∅,此时若令0sup a y E =,则要么0y =+∞,要么0y <+∞(1) 若0y =+∞,则,M a M M y E ∀∃<∈,故,x x E M ∀∈∃使x M a y x E >∈,由()f x 在E 上单调不减,我们有()()xM f x f y a ≤≤,即a E E E ⊂⊂,从而a E E =为可测集(2) 若0y <+∞,则要么0y E ∈,要么0y E ∉若0y E ∈,则0()f y a ≤,此时0(,)x E y ∀∈⋂-∞,0,x a x y E x y y ∃∈<<,由()f x 单调不减于E 知,()()x f x f y a≤< 故0(,)a E y E ⋂-∞⊂,而0a y E ∈,从而有00(,](,]a E y E E y ⋂-∞⊂⊂⋂-∞,故0(,]a E E y =⋂-∞为可测集.若0y E ∈,而0()f y a >,0a y E ∉,则0(,)x y E ∀∈-∞⋂,0,x a x y E x y y ∃∈<<0x x y y <<,()()x f x f y a ≤<则00(,)(,)a y E E y E -∞⋂⊂⊂-∞⋂ 即0(,)a E y E =-∞⋂为可测集.若0y E ∉,则0a y E ∉,同样可证0(,)a E E y E =⋂-∞⋂可测.若()f x 单调不增,则()f x -在E 上单调不减,从而可测,故(())()f x f x --=在E 上可测.8.证明n R 中可测子集E 上的函数()f x 可测的充要条件是存在E 上的一串简单函数()m x ψ使()lim ()m m f x x ψ→+∞= (x E ∈) 证明:(1)E 上的简单函数是可测的;设1()()im i E i x c x ϕχ==∑为E 上的简单函数,1,mi i i E E E == 互不相交,iE 为E 的可测子集,易知,,()iE i x χ∀是可测的(()F x χ可测F ⇔是可测集)故由P104Th5,()ii E c x χ可测,1()imi E i c x χ=∑可测,由此,若存在E 上的一串简单函数()m x ψ, ()lim()m m f x x ψ→+∞= (x E ∈)则从{}()m x ψ可测,且lim ()m m x ψ→+∞P107推论2,()f x 在E 上可测 (2)若()f x 可测,则由P107Th7,,f f +-都是非负可测的,故由定义存在简单函数列()n x ϕ+,()n x ϕ-,(12,n = ),()()n x f xϕ++,()()n x f x ϕ-- (x E ∈)显然,()n x ϕ--也是简单函数,由本节第一题,()()()n n n x x x ψϕϕ+-=-仍为简单函数,且()()n x f x ψ→ (x E ∈).证毕.9.证明:当1()f x 是1p E R ∈,2()f y 是2q E R ∈中的可测函数,且12()()f x f y ⋅在12E E E =⨯上几乎处处有意义时,12()()f x f y ⋅是E 上的可测函数.证明:(1)若p E R ∈,q F R ∈分别是p R ,q R 中的可测集,则函数(,)()()E F f x y x y χχ=是p q R R ⨯上的可测函数,事实上,1a R ∀∈,若0a <,则{}(,)|(,)p q p q x y R R f x y a R R ∈⨯>=⨯是可测集 若1a ≥,则{}(,)|(,)p q x y R R f x y a ∈⨯>=∅是可测集 若01a ≤<,则{}(,)|(,)p q x y R R f x y a E F ∈⨯>=⨯是可测集(P72Th1)(1) 推出(2): 1c R ∀∈,p E R ∈可测,q F R ∈可测,则()()E F c x y χχ在p q R R ⨯上可测.现在来证明本题结论:1()f x 在1E 上可测,故由本节第8题结论,存在1E 上的简单函数列()()1()()n n im n n i E i x a x ϕχ==∑,()11nm n i i E E ==∑,()()n n i j E E ⋂=∅(当i j ≠)使得1()()n x f x ϕ→,1x E ∀∈同样,从2f 在2E 上可测知,存在2E 上的简单函数列()n y ψ,使2()()n y f y ψ→于2E 上.从上述(1)(2)知,()()n n x y ϕψ在p q R R ⨯上可测,且 12()()()()n n x y f x f y ϕψ→于12E E ⨯上 由上P107推论2知12()()f x f y 在p q R R ⨯上可测. 证法二(更简单)将1()f x ,2()f y 看成(,)x y 的函数1a R ∀∈,{}{}121112(,)|()(,)|()E E x y f x a E x y f x a E ⨯>=>⨯从1()f x 在1E 上可测知,{}11(,)|()E x y f x a >为p R 中的可测集,2E 可测,故{}112(,)|()E x y f x a E >⨯为p q R R ⨯中的可测集,故{}121(,)|()E E x y f x a ⨯>为p q R R ⨯中的可测集,则1()f x 作为12E E E =⨯上的函数是可测的同理,2()f y 在E 上也可测,P104Th5得12()()f x f y ⋅在E 上也可测. 10. 证明:如果()f x 是定义于n R 上的可测子集E 上的函数,则()f x 在E 上可测的充要条件是对1R 中Borel 集合B ,1()[|()]f B E x f x B -∈ 都是E 的可测子集,如果()f x 还是连续的,则1()f B -还是Borel 集(提示:用1B 表示1R 中那些使1()f B -是E 上的可测子集的B 所构成的集合族,比较1B 和1R 中的Borel 集合类B ).证明:记{}11|()B R f B E -=⊂是上的可测子集1B ,我们来证明1B 是一个σ-代数1)∅∈1B :1()f -∅=∅显然是E 的可测子集 2)若A ∈1B ,1()f A -是E 的可测子集,则1111111 ()(\)()\()\()c f A f R A f R f A E f A -----===也是E 的可测子集(P61推论1) 则c A ∈1B3)若i A ∈1B ,(1,2,i =) 则i ∀,1()i f A -是E 的可测子集,1111()()i i i i f A f A +∞+∞--=== 也是E 的可测子集,故1i i A +∞=∈ 1B故1B 是一个σ-代数现在,若1:f E R →是一可测函数,则1(,)[|()][|()][|()]f a b E x a f x b E x f x b E x a f x -=<<=<⋂<是为可测集([|()]E x f x b <,[|()]E x a f x <都是可测集(P60Th2)) 则(,)a b ∈1B故1B 包含所有的1R 上的开集(由一维开集的构造),从而包含所有的Borel 集,这就证明了∀Borel 集,1()f B -是E 的可测子集 反过来,若∀Borel 集,1()f B -是E 的可测子集,则由于1a R ∀∈,(,)a -∞为开集,故是Borel 集知1(,)[|()]f a E x f x a --∞=<为可测集,故f 是E 上的可测函数.令{}11|()B R f B Borel -=⊂为集2B ,则一样:(1)∅∈2B ;(2),c A A ∈∈22B B ;(3)121,,,i i A A A +∞=∈∈ 22B B ,故2B 也是一个σ-代数若f 连续,则(,)a b ∀ (1,a b R ∈⋃+∞)1(,)f a b -是开集(相对于E ),从而是Borel 集,故(,)a b ∈2B ,从而2B 包含所有的Borel 集,故∀Borel 集B ,1()f B -同样为Borel 集若:n n f R R →的同胚,则f 将Borel 集映为可测集11.设()f x 是E 上的可测函数,()g y 是1R 上的连续函数,证明:[()]g f x 是E 上的可测函数(注意:如果()f x 在n R 上连续,()g y 在1R 上可测,[()]g f x 未必可测,特别是()f x ,()g y 都可测时,[()]g f x 未必可测)证明:1a R ∀∈,从g 连续知,1(,)g a -+∞显然为1R 上的开集,由1R 上的开集的构造定理知(本书上只证了有界开集,事实上,无界开集也有类似的构造),∃至多可数个互不相交的开区间n I 使11(,)mn n g a I -=+∞=(m 有限或+∞)而1f -保持集合关系不变,即1111()()mmn n n n f I f I --=== ,而f 可测,故1()n f I -可测,故11()mn n f I -= 可测,从而有1111111[|(())]()(,)((,))()()m mn n n n E x g f x a g f a f g a f I f I -----==>=+∞=+∞==可测,故()g f x 是E 上的可测函数存在反例:《实分析中的反例》,可测函数f 和连续函数g 构成不可测的复合函数f g设E 是[0,1]中具有正测度的Cantor 集,令 ([0,]([0,1]\))()([0,1]\)m x E x m E ϕ⋂= (无处稠密完备集P70,习题1)则ϕ是由[0,1]到[0,1]上的一个同胚映射,P54习题3的证明过程中(见周民强书P84),已知,若*m E <+∞,[,]E a b ⊂,*([0,])m x E ⋂是[,]a b 上的连续函数故从[0,1]\[0E ⊂知,([0,]([0,1]\))()([0,1]\)m x E x m E ϕ⋂=是连续函数:[0,1][0,1](0)0,(1)1ϕϕ==且ϕ是严格递增的因E 是完备集,故E 是自密闭集,[0,1]\E 是相对开集(或c E 是开集),[0,1]\[0,1]c E E =⋂,[0,1]c E ⋂是开集,[0,1]x y ∀∈,y x >1()()[([0,]([0,1]\))([0,]([0,1]\))]([0,1]\)y x m y E m x E m E ϕϕ-=⋂-⋂1[(,]([0,1]\)]([0,1]\)m x y E m E =⋂1[(,)((0,1)\)]([0,1]\)m x y E m E ≥⋂注意:E 是无处稠密集,故(,)z x y ∃∈,使z E ∉,(0,1)\z E ∈,(,)((0,1)\)z x y E ∈⋂由于(,)((0,1)\)x y E ⋂为开集,故0δ∃>,使(,)(,)([0,1]\)z z x y E δδ-+⊂⋂ 则[(,)((0,1)\)](,)20m x y E m z z δδδ⋂≥-+=>故()()y x ϕϕ>,即()y ϕ严格单调,从而[0,1]到[0,1]上的一个同胚映射设(0,1)\E 这一有界开集可写成互不相交的构成区间的并,1(0,1)\(,)k k k E αβ+∞== ,从而1([0,1]\)((0,1)\)()k k k m E m E βα∞===-∑,又因为([0,]([0,1]\))([0,]([0,1]\))()()([0,1]\)k k k k m E m E m E βαϕβϕα⋂-⋂-=[(,]([0,1]\)]([0,1]\)k k m E m E αβ⋂=[(,)((0,1)\)]()()([0,1]\)([0,1]\)k k k k m E m E m E αβϕβϕα⋂-==故以从ϕ是同胚,1[([0,1]\)][((,))]k k k m E m ϕϕαβ+∞==1((),())k k k m ϕαϕβ+∞=⎛⎫= ⎪⎝⎭1(()())k k k ϕβϕα∞==-∑1()1([0,1]\)kk k m E βα∞=-==∑注意:()([0,1]\)[0,1][0,1]E E ϕϕϕ⋃==,且()([0,1]\)E E ϕϕ⋂=∅ 就得()[0,1](([0,1]\))1(([0,1]\))110m E m m E m E ϕϕϕ=-=-=-=(()E ϕ也是完备疏集,则同胚不能保证测度的等号!)又0mE >,故由P66第二题的解答最后知,设A 是E 的一个不可测子集(A 总是存在的!)由于()()A E ϕϕ⊂,()0m E ϕ= 则()0m A ϕ=,()A ϕ可测,而1()A A ϕϕ-=不可测.令()B A ϕ=,并在[0,1]上如下定义函数1:(){0[0,1]\x Bf f x x B∈=∈ 则f 是[0,1]上的可测函数,又g ϕ=是[0,1]到[0,1]上的连续函数,然而复合函数1[()][()]{0[0,1]\x Af g x f x x Aϕ∈==∈是不可测集A 的特征函数 所以,它是一个不可测的函数.12.证明:若12()(,,,)n f x f x x x = 是n R 上的可微函数;则 12(,,,),1,2,,n if x x x i n x ∂=∂ 都是n R 上的可测函数.证明:只证1i =的情形,其它一样证 ()f x 在n R 上可微,故0n x R ∀∈,000012001(,,,)()lim ()|n y x h f x h x x f x f y h x =→+-∂=∂ 故从0l i m ()()0,()()n n n ah g x g x a g x g x →=⇔∀→→这一原则知,n x R ∀∈000120011(,,,)()()limlim [()()]1n m m m f x x x f x m f x m g x f x x m→+∞→+∞+-∂==-∂ 这里121()(,,,)m n g x f x x x m=+ ,由于f 可微,f 连续,故()m g x 是连续的,从而可测,又f 连续,故[()()]m m g x f x -可测,故其逐点收敛的极限1()f x x ∂∂也是可测的.。

实变函数第四章复习题及解答(1)

实变函数第四章复习题及解答(1)

第四章 复习题(一)一、判断题1、设()f x 是可测集nE R ⊆上的非负简单函数,则()d Ef x x ⎰一定存在。

(√ )2、设()f x 是可测集nE R ⊆上的非负简单函数,则()f x 在E 上勒贝格可积。

(× ) 3、设()f x 是可测集nE R ⊆上的非负简单函数,且0()d Ef x x ≤<+∞⎰,则()f x 在E 上勒贝格可积。

(√ )4、设()f x 是可测集nE R ⊆上的非负可测函数,则()d Ef x x ⎰一定存在。

(√ )5、设()f x 是可测集nE R ⊆上的非负可测函数,则()f x 在E 上勒贝格可积。

(× ) 6、设()f x 是可测集nE R ⊆上的非负简单函数,且0()d Ef x x ≤<+∞⎰,则()f x 在E 上勒贝格可积。

(√ )7、设()f x 是可测集nE R ⊆上的可测函数,则()d Ef x x ⎰一定存在。

(× )8、设()f x 是可测集nE R ⊆上的可测函数,且()()f x L E +∈,()()f x L E -∈至少有一个成立,则()d Ef x x ⎰一定存在。

(√ )9、设()f x 是可测集nE R ⊆上的可测函数,且()()f x L E +∈,()()f x L E -∈至少有一个成立,则()f x 在E 上勒贝格可积。

(× )10、设()f x 是可测集nE R ⊆上的可测函数, 若()()f x L E +∈且()()f x L E -∈,则()f x 在E 上勒贝格可积。

(√ )11、设()f x 是可测集nE R ⊆上的可测函数, 若()()f x L E ∈,则()d Ef x x -∞<<+∞⎰。

(√ )12、设()f x 是可测集n E R ⊆上的可测函数, 若()()f x g x ≤且()()g x L E ∈,则()()f x L E ∈。

实变函数第四章习题解答

实变函数第四章习题解答

第四章习题参考解答1.设)(x f 是E 上的可积函数,如果对于E 上的任意可测子集A ,有0)(=⎰dx x f A,试证:)(x f ,].[.E e a证明:因为}1)(|{}0)(|{1kx f x E x f x E k ≥=≠∞= ,而N k ∈∀,}1)(|{kx f x E ≥}1)(|{}1)(|{kx f x E k x f x E -≤≥= .由已知,=+=-≤≥≥⎰⎰⎰kx f x E kx f x E kx f x E dx x f dx x f dx x f 1)(|{1)(|{1|)(|{)()()(000=+.又因为0}1)(|{11)(0}1)(|{}1)(|{≥≥=≥=≥≥⎰⎰kx f x mE kdx kdx x f kx f x E kx f x E ,0}1)(|{1)1()(0}1)(|{}1)(|{≤-≤-=-≤=≥≥⎰⎰kx f x mE kdx kdx x f kx f x E kx f x E所以,0}1)(|{}1)(|{=-≤=≥kx f x mE kx f x mE .故,0}1)(|{}1)(|{}1|)(|{=-≤+≥=≥kx f x mE kx f x mE kx f xmE ,从而0}1|)(|{}1|)(|{[}0)(|{111==≥≤≥=≠∑∑∞=∞=∞=k k k kx f x mE kx f xE m x f x mE .即,0)(=x f ,].[.E e a .2.设f ,g 都是E 上的非负可测函数,并且对任意常数a ,都有})(|{})(|{a x g x mE a x f x mE ≥=≥,试证:)()(x g x f =,从而,=⎰dx x f E)(dx x g E⎰)(.证明:我们证f ,g 是同一个简单函数序列∞=1){m m ψ的极限函数.Nm ∈∀及12,,1,0-=mm k,令}21)(2|{,mmk m k x f k x E E +≤≤=,并且})(|{2,m x f x E E m m m ≥=.则k m E ,是互不相交的可测集,并且k m m k E E m,21== ,定义简单函数 ∑==mkm m k Emm x kx 2)(2)(,χψ.下面证明:)()(lim x f x m m =∞→ψ,E x ∈.E x ∈∀0,若+∞=)(0x f ,则N m ∈∀,m m m E x 2,0∈,所以)()(0∞→∞→=m m x m ψ,即)()(lim 00x f x m n =∞→ψ;若+∞<)(0x f ,则可取正整数)(00x f m >,0m m ≥∀时,}21)(2|{})(0|{1210mmm k k x f k x E m x f x E x m+<≤=<≤∈-= .故,存在)120(-≤≤mm k k ,}21)(2|{0mmk x f k x E x +<≤∈.即,mmk x f k 21)(20+<≤,mm k E mm k x kx mkm 2)(2)(2,==∑=χψ.所以,0212212)()()(|)()(|00000→=-+<-=-=-mmmmm m k k k x f x x f x x f ψψ,从而, )()(lim 00x f x m n =∞→ψ.同理,N m ∈∀,定义简单函数列∑==mkm m k Emm x kx 2)(2)(*,χψ,其中:}21)(2|{*,mmk m k x g k x E E +<≤=,12,,1,0-=mm k .})(|{*,m x g x E E k m ≥=.同上一样可证明:)()(lim 0x g x m n =∞→ψ,E x ∈.因为R a '∈∀,有})(|{})(|{a x g x mE a x f x mE ≥=≥.故R a '∈∀, })(|{b x f a x mE <≤})(|{b x g a x mE <≤=.从而,)120(-≤≤∀mm k k ,有km mmmmk m mEk x g k x mE k x f k x mE mE ,*,}21)(2|{}21)(2|{=+<≤=+<≤=mmm m m m mEm x g x mE m x f x mE mE2,*2,})(|{})(|{=≥=≥=.即,N m ∈∀,=)(x m ψ)(x m ϕ.因此)()(lim )(lim )(x g x x x f m m m m ===∞→∞→ϕψ.3.若⎪⎩⎪⎨⎧=为有理数,当为无理数,当x x x xx f 31)(,计算⎰1,0[)(dx x f .解:设x x E |]1,0[{0∈=为有理数},01]1,0[E E -=,则+=⎰⎰1)()(]1,0[E dx x f dx x f⎰]1,0[)(dx x f ⎰⎰⎰+==111E EE dx xdx xdx x=+==⎰⎰⎰1111E E E dx xdx xdx x2]2[11101]1,0[====⎰⎰x dx xdx x.4.设21,,E E 是]1,0[中n 个可测集,若]1,0[内每一点至少属于n 个集中的q个集,证明:21,,E E 中至少有一个测度不小于nq .证:令∑==ni E x x f i1)()(χ,其中i E χ为i E 上的特征函数]1,0[∈∀x ,有q x x f ni E i≥=∑=1)()(χ,所以q qdxdx x f =≥⎰⎰]1,0]1,0[)(.∑∑⎰∑∑⎰⎰⎰========≤ni ni iE ni E ni E mEdx x dx x dx x f q ii11111,0]1,0[]1,0[)()()(χχ.如果每个nq mE i <,则∑∑===⋅=>ni ni i q nq n nq mE 11.这与∑=≤ni imEq 1矛盾.从而,)1(n i i ≤≤∃使得nq mE i ≥.5.设f ,g 都是E 上的可积函数,试证明:22gf +也是E 上可积函数.证明:(1)先证:设)(x f 与)(x F 都是E 上的可测函数且)()(0x F x f ≤≤ ].[.E e a ,若)(x F 在E 可积,则)(x f 在E 可积.事实上,N m l ∈∀,,因为)()(0x F x f ≤≤ ].[.E e a ,故l l x F x f )}({)}({0≤≤,即+∞<≤≤≤⎰⎰⎰EE ll E ldx x f dx x F dx x F dx x f mm)()}({)}({)}({,其中:m m S E E =,}||||{∞<=x xS m .从而∞=⎰1})}({{l l E dx x F m是单调递增有上界⎰Edx x F )(的数列,故:⎰⎰⎰≤=∞→EE ll E dx x F dx x f dx x f mm)()}({lim)(.又因为⎰∞=mE m dx x f 1})({单调递增有上界,所以⎰∞→mE l dx x f )(lim存在,并且⎰⎰⎰+∞<≤=∞→EE ll Edx x F dx x f dx x f m)()}({lim)(,即⎰∞→∞→mE ll m dx x f )}({limlim+∞<≤⎰dx x f E)(.所以)(x f 在E 可积.(2)再证:22gf+在E 上可积.事实上,因为f ,g 在E 上可积,所以||f 与||g 在E 上可积,从而||f +||g 在E 上可积. 又因为||||22g f gf+≤+,由(1)。

实变函数论与泛函分析(曹广福)1到5章课后答案

实变函数论与泛函分析(曹广福)1到5章课后答案

第一章习题参考解答3.等式)()(C B A C B A --=⋃-成立的的充要条件是什么?解: 若)()(C B A C B A --=⋃-,则 A C B A C B A C ⊂--=⋃-⊂)()(. 即,A C ⊂.反过来, 假设A C ⊂, 因为B C B ⊂-. 所以, )(C B A B A --⊂-. 故,C B A ⋃-)(⊂)(C B A --.最后证,C B A C B A ⋃-⊂--)()(事实上,)(C B A x --∈∀, 则A x ∈且C B x -∉。

若C x ∈,则C B A x ⋃-∈)(;若C x ∉,则B x ∉,故C B A B A x ⋃-⊂-∈)(. 从而, C B A C B A ⋃-⊂--)()(.A A CB AC B A C =∅-⊂--=⋃-⊂)()(. 即 A C ⊂.反过来,若A C ⊂,则 因为B C B ⊂-所以)(C B A B A --⊂- 又因为A C ⊂,所以)(C B A C --⊂故 )()(C B A C B A --⊂⋃-另一方面,A x C B A x ∈⇒--∈∀)(且C B x -∉,如果C x ∈则 C B A x )(-∈;如果,C x ∉因为C B x -∉,所以B x ∉故B A x -∈. 则 C B A x ⋃-∈)(. 从而C B A C B A ⋃-⊂--)()(于是,)()(C B A C B A --=⋃-4.对于集合A ,定义A 的特征函数为⎩⎨⎧∉∈=Ax Ax x A ,0,1)(χ, 假设 n A A A ,,,21是一集列 ,证明:(i ))(inf lim )(inf lim x x n nA nnA χχ=(ii ))(sup lim )(sup lim x x n nA nnA χχ=证明:(i ))(inf lim n nm N n n nA A x ≥∈⋂⋃=∈∀,N ∈∃0n ,0n m ≥∀时,m A x ∈.所以1)(=x m A χ,所以1)(inf 0=≥x m A n m χ故1)(inf sup )(inf lim ==≥∈x x m n A nm N b A nχχN n A x n n∈∀⇒∉∀inf lim ,有n k A x n n nm ≥∃⇒⋂∉≥有0)(inf 0=⇒=⇒∉≥x A x m nk m A nm A k χχ,故0)(inf sup =≥∈x m A nm N b χ ,即)(inf lim x n A nχ=0 ,从而)(inf lim )(inf lim x x n nA nnA χχ=5.设}{n A 为集列,11A B =,)1(11>⋃-=-=i A A B j i j i i 证明(i )}{n B 互相正交(ii )i ni i ni B A N n 11,===∈∀证明:(i )m n N m n ≠∈∀,,;不妨设n>m ,因为m n i n i n n A A A A B -⊂-=-=11,又因为m m A B ⊂,所以m n m n n B A A A B -⊂-⊂,故 ∅=m n B B ,从而 {∞=1}n n B 相互正交. (ii )因为)1(n i i ≤≤∀,有i i A B ⊂,所以i ni i ni A B 11==⋃⊂⋃,现在来证:i ni i ni B A 11==⋃⊂⋃当n=1时,11B A =;当1≥n 时,有:i ni i ni B A 11===则)()()()()(11111111111i ni n i n i i n i n i n i n i n i i n i B B B A A A A A A =+==++=+=+=-=-==事实上,i ni A x 1=⋃∈∀,则)1(n i i ≤≤∃使得i A x ∈,令}{ni A x i i i ≤≤∈=1|min 0且则 i ni i i i i i B B A A x 111000=-=⊂=-∈ ,其中,当10=i 时,∅=-=i i i A 110 ,从而, i ni i ni B A 11===6.设)(x f 是定义于E 上的实函数,a 为常数,证明: (i )})(|{a x f x E >=}1)({1n a x f n +≥∞=(ii)})(|{a x f x E ≥=}1)({1na x f n ->∞=证明:(i )})(|{a x f x E x >∈∀E x ∈⇒且a x f >)(}1)(|{1)(,na x f x E x E x a n a x f N n +≥∈⇒∈>+≥∈∃⇒且使得 ∈⇒x ⊂>⇒+≥∞=})(|{}1)(|{1a x f x E n a x f x E n }1)(|{1na x f x E n +≥∞=反过来,{N n n a x f x x E x n ∈∃+≥∈∀∞=},1)(|{1 ,使}1)(|{n a x f x E x +≥∈即E x a na x f ∈>+≥且1)( 故})(|{a x f x E x >∈ 所以 })(|{}1)(|{1a x f x E na x f x E n >⊂+≥⋃∞= 故}1)(|{})(|{1n a x f x E a x f x E n +≥>∞=7.设)}({x f n 是E 上的实函数列,具有极限)(x f ,证明对任意常数a 都有:}1)(|{inf lim }1)(|{inf lim })(|{11k a x f x E k a x f x E a x f x E n n k n n k +<=+≤=≤∞=∞=证明:N ∈∀≤∈∀k a x f x E x },)(|{,即k a a x f 1)(+≤≤,且E x ∈ 因为N n x f x f n n ∈∃=∞→,)()(lim ,使n m ≥∀,有ka x f n 1)(+≤,故,)}(1)(|{n m k a x f x E x m ≥∀+≤∈ 所以∈x }1)(|{ka x f x E m n m +≤≥}1)(|{k a x f x E x m n m N n +≤∈≥∈ =}1)(|{inf lim ka x f x E m n +≤,由k 的任意性:}1)(|{inf lim 1k a x f x E x n n k +≤∈∞= ,反过来,对于}1)(|{inf lim 1ka x f x E x n n k +≤∈∀∞= ,N k ∈∀,有 }1)(|{inf lim k a x f x E x m n +≤∈=}1)(|{ka x f x E m n m N n +≤≥∈ ,即n m N n ≥∀∈∃,时,有:k a x f m 1)(+≤且E x ∈,所以,ka x f x f m m 1)()(lim +≤≤且E x ∈.∞→k 又令,故 E x a x f ∈≤且)( 从而})(|{a x f x E x ≤∈故 })(|{a x f x E ≤=}1)(|{inf lim 1ka x f x E n n k +≤∞=8. 设)}({x f n 是区间(a ,b )上的单调递增的序列,即≤≤≤≤)()()(21x f x f x f n若)(x f n 有极限函数)(x f ,证明:R a ∈∀,})({})({1a x f E a x f E n n >⋃=>∞=证明: })({a x f E x >∈∀,即:E x ∈且a x f >)(,因为)()(lim x f x f n n =∞→所以00,n n N n ≥∀∈∃,恒有:E )(∈>x a x f n 且,从而,})({0a x f E x n >∈})({1a x f E n n >⊂∞=反过来,N n a x f E x n n ∈∃>∈∀∞=01},)({ ,使})({0a x f E x n >∈,故0n n ≥∀,因此,a x f x f x f n n n >≥=∞→)()()(lim 0且E x ∈,即,})({a x f E x >∈,从而,})({})({1a x f E a x f E n n >=>∞=10.证明:3R 中坐标为有理数的点是不可数的。

实变函数参考答案

实变函数参考答案

习题1解答(A 组题)一、选择题1、C ;2、A ;3、D ;4、C ;5、C ;6、A ;7、A ;8、B ;9、D ;10、C 二、判断题1、×;2、×;3、×;4、×;5、√;6、×;7、×;8、×;9、×; 10、× 三、填空题1、=;2、∅;3、()0,1;4、[]1,1-;5、,EF EF ;6、()2,3-;7、≥;8、c9、设有两个集合A 和B ,若≤A B ,≥A B ,则=A B 。

四、证明题1、(1)()()()()()\\====C C CC A A B A A B AAB A A AB A B ;(2)()()()()()()\\==C C CC A B CD A B CD A C B D()()()()\==CA C BD A C BD 。

2、111\lim \∞∞∞∞∞∞→∞======⎛⎫⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭C Cn n n n n N n N N n N N n N A B A B A B AB ()111lim(\)∞∞∞∞∞∞→∞======⎛⎫⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭C C C n n n n n N n N N n N N n N A B A B A B A B 。

同理可证第2个集合等式。

3、当A =∅时,{}∅张成的环和σ-环均为它自身;张成的代数和σ-代数均为{},X ∅。

当A X =时,{}X张成的环、σ-环、代数和σ-代数均为{},X ∅。

当A 为X 的非空真子集时,{}A 张成的环和σ-环均为{},A ∅;张成的代数和σ-代数均为{},,,cA A X∅。

4、首先,令()()tan 12π⎡⎤=-⎢⎥⎣⎦f x x ,由于()f x 是()0,1上的严格单调递减的连续函数,且()()()0,10,=+∞f,所以()f x 是()0,1到()0,+∞的一一映射。

实变函数(复习资料_带答案)资料


2页,共19页) 3、若|()|fx是可测函数,则()fx必是可测函数 4.设()fx在可测集E上可积分,若,()0xEfx,则()0Efx 四、解答题(8分×2=16分). 1、(8分)设2,()1,xxfxx为无理数为有理数 ,则()fx在0,1上是否R可积,是否L可积,若可积,求出积分值。 2、(8分)求0ln()limcosxnxnexdxn 五、证明题(6分×4+10=34分). 1、(6分)证明0,1上的全体无理数作成的集其势为c
6页,共19页) 又()0,mEF所以()fx是EF上的可测函数,从而是E上的 可测函数……………………..10分 《实变函数》试卷二 一.单项选择题(3分×5=15分) 1.设,MN是两集合,则 ()MMN=( ) (A) M (B) N (C) MN (D) 2. 下列说法不正确的是( ) (A) 0P的任一领域内都有E中无穷多个点,则0P是E的聚点 (B) 0P的任一领域内至少有一个E中异于0P的点,则0P是E的聚点 (C) 存在E中点列nP,使0nPP,则0P是E的聚点 (D) 内点必是聚点 3. 下列断言( )是正确的。 (A)任意个开集的交是开集;(B) 任意个闭集的交是闭集; (C) 任意个闭集的并是闭集;(D) 以上都不对; 4. 下列断言中( )是错误的。 (A)零测集是可测集; (B)可数个零测集的并是零测集; (C)任意个零测集的并是零测集;(D)零测集的任意子集是可测集; 5. 若()fx是可测函数,则下列断言( )是正确的 (A) ()fx在,abL可积|()|fx在,abL可积; (B) (),|()|,fxabRfxabR在可积在可积 (C) (),|()|,fxabLfxabR在可积在可积; (D) (),()fxaRfxL在广义可积在a,+可积 二. 填空题(3分×5=15分) 1、设11[,2],1,2,nAnnn,则nnAlim_________。 2、设P为Cantor集,则 P ,mP_____,oP=________。 3、设iS是一列可测集,则11______iiiimSmS 4、鲁津定理:__________________________________________ 5、设()Fx为,ab上的有限函数,如果_________________则称()Fx为,ab上的绝对连续函数。 三.下列命题是否成立?若成立,则证明之;若不成立,则说明原因或举出反例.(5分×4=20分) 1、由于0,10,10,1,故不存在使0,101和,之间11对应的映射。

实变函数试题库及参考答案

实变函数试题库及参考答案IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】实变函数试题库及参考答案(1) 本科一、填空题1.设,A B 为集合,则()\A B B A B (用描述集合间关系的符号填写) 2.设A 是B 的子集,则A B (用描述集合间关系的符号填写) 3.如果E 中聚点都属于E ,则称E 是 4.有限个开集的交是 5.设1E 、2E 是可测集,则()12m E E 12mE mE +(用描述集合间关系的符号填写) 6.设nE ⊂是可数集,则*m E 07.设()f x 是定义在可测集E 上的实函数,如果1a ∀∈,()E x f x a ⎡⎤≥⎣⎦是 ,则称()f x 在E 上可测8.可测函数列的上极限也是 函数9.设()()n f x f x ⇒,()()n g x g x ⇒,则()()n n f x g x +⇒ 10.设()f x 在E 上L 可积,则()f x 在E 上 二、选择题1.下列集合关系成立的是( ) 2.若n R E ⊂是开集,则( )3.设(){}n f x 是E 上一列非负可测函数,则( ) 三、多项选择题(每题至少有两个以上的正确答案) 1.设[]{}0,1E =中无理数,则( )A E 是不可数集B E 是闭集C E 中没有内点D 1mE =2.设nE ⊂是无限集,则( )A E 可以和自身的某个真子集对等B E a ≥(a 为自然数集的基数)3.设()f x 是E 上的可测函数,则( )A 函数()f x 在E 上可测B ()f x 在E 的可测子集上可测C ()f x 是有界的D ()f x 是简单函数的极限 4.设()f x 是[],a b 上的有界函数,且黎曼可积,则( )A ()f x 在[],a b 上可测B ()f x 在[],a b 上L 可积C ()f x 在[],a b 上几乎处处连续D ()f x 在[],a b 上几乎处处等于某个连续函数 四、判断题1. 可数个闭集的并是闭集. ( )2. 可数个可测集的并是可测集. ( )3. 相等的集合是对等的. ( )4. 称()(),f x g x 在E 上几乎处处相等是指使()()f x g x ≠的x 全体是可测集. ( ) 五、定义题1. 简述无限集中有基数最小的集合,但没有最大的集合.2. 简述点集的边界点,聚点和内点的关系.3. 简单函数、可测函数与连续函数有什么关系?4. [],a b 上单调函数与有界变差函数有什么关系? 六、计算题1. 设()[]230,1\x x E f x xx E⎧∈⎪=⎨∈⎪⎩,其中E 为[]0,1中有理数集,求()[]0,1f x dx ⎰.2. 设{}n r 为[]0,1中全体有理数,(){}[]{}12121,,00,1\,,n n n x r r r f x x r r r ∈⎧⎪=⎨∈⎪⎩,求()[]0,1lim n n f x dx →∞⎰.七、证明题1.证明集合等式:(\)A B B A B =2.设E 是[0,1]中的无理数集,则E 是可测集,且1mE = 3.设(),()f x g x 是E 上的可测函数,则[|()()]E x f x g x >是可测集 4.设()f x 是E 上的可测函数,则对任何常数0a >,有1[|()|]|()|E mE x f x a f x dx a≥≤⎰ 5.设()f x 是E 上的L -可积函数,{}n E 是E 的一列可测子集,且lim 0n n mE →∞=,则实变函数试题库及参考答案(1) 本科一、填空题1.=2.≤3.闭集4.开集5.≤6.=7.可测集8.可测9.()()f x g x + 10.可积 二、单选题 ABB 三、多选题ACD AB ABD ABC 四、判断题 × √√√ 五、定义题1.答:因为任何无限集均含有可数集,所以可数集是无限集中基数最小的,但无限集没有基数最大的,这是由于任何集合A ,A 的幂集2A 的基数大于A 的基数.2.答: 内点一定是聚点,边界点不一定是聚点,点集的边界点或为孤立点或为聚点.3.答:连续函数一定是可测函数;简单函数一定是可测函数;简单函数可表示成简单函数或连续函数的极限4.答:单调函数是有界变差函数,有界变差函数可表示成两个单调增函数之差. 六、解答题1.解:因为0mE =,所以()3,.f x x a e =于[]0,1,于是()[][]30,10,1f x dx x dx =⎰⎰,而3x 在[]0,1上连续,从而黎曼可积,故由黎曼积分与勒贝格积分的关系, 因此()[]0,114f x dx =⎰. 2.解:显然()n f x 在[]0,1上可测,另外由()n f x 定义知,()0,.n f x a e =于[]0,1()1n ≥ 所以()[][]0,10,100nf x dx dx ==⎰⎰因此()[]0,1lim0nn f x dx →∞=⎰七、证明题 1.证明2.证明 设F 是[0,1]中的有理数集,则F 是可数集,从而*0m F =,因此F 是可测集,从而c F 可测,又[0,1]\[0,1]c E F F ==,故E 是可测集.由于EF =∅,所以1[0,1]()0m m EF mE mF mF ===+=+,故1mF =3.证明 设{}n r 为全体有理数所成之集,则因为(),()f x g x 是E 上的可测函数,所以[|()]n E x f x r ≥,[|()]n E x g x r <是可测集,1,2,n =,于是由可测集性质知[|()()]E x f x g x >是可测集4.证明 因为()f x 在E 上可测,所以|()|f x 在E 上非负可测,由非负可测函数积分性质,而[|()|][|()|]E x f x a adx a mE x f x a ≥=⋅≥⎰,所以5.证明 因为lim 0n n mE →∞=,所以0,1N δ∀>∃≥,当n N ≥时,n mE δ<,又()f x 在E 上L -可积,所以由积分的绝对连续性,0,0,εδ∀>∃>当,e E me δ⊂<时|()|ef x dx ε<⎰于是当n N ≥时,n mE δ<,因此|()|nE f x dx ε<⎰,即lim ()0nE n f x dx →∞=⎰。

实变函数答案(陕师大).

习题1.11.证明下列集合等式.(1) ()()()C A B A C B A \\=; (2) ()()()C B C A C B A \\\ =; (3) ()()()C A B A C B A \\\=.证明 (1) )()C \B (cC B A A =)()( c c C B A A B A = c C A B A )()( = )(\)(C A B A = .(2) cC B A A )(C \B)(=)()(c c C B C A ==)\()\(C A C A .(3) )(\C)\(B \cC B A A = c c C B A )( =)(C B A c = )()(C A B A c = )()\(C A B A =.2.证明下列命题.(1) ()A B B A = \的充分必要条件是:A B ⊂;(2) ()A B B A =\ 的充分必要条件是:=B A Ø;(3) ()()B B A B B A \\ =的充分必要条件是:=B Ø.证明 (1) A B A B B B A B B A B B A cc==== )()()()\(的充要条 是:.A B ⊂(2) ccccB A B B B A B B A B B A ===)()()(\)(必要性. 设A B B A =\)( 成立,则A B A c = , 于是有cB A ⊂, 可得.∅=B A 反之若,∅≠B A 取B A x ∈, 则B x A x ∈∈且, 那么B x A x ∉∈且与cB A ⊂矛盾.充分性. 假设∅=B A 成立, 则cB A ⊂, 于是有A B A c= , 即.\)(A B B A =(3) 必要性. 假设B B A B B A \)()\( =, 即.\cC A B A B A == 若,∅≠B 取,B x ∈ 则,cB x ∉ 于是,cB A x ∉ 但,B A x ∈ 与cC A B A =矛盾.充分性. 假设∅=B 成立, 显然B A B A \= 成立, 即B B A B B A \)()\( =. 3.证明定理1.1.6.定理1.1.6 (1) 如果{}n A 是渐张集列, 即),1(1≥∀⊂+n A A n n 则{}n A 收敛且∞=∞→=1;lim n n n n A A(2) 如果{}n A 是渐缩集列, 即),1(1≥∀⊃+n A A n n 则{}n A 收敛且 ∞=∞→=1.lim n n n n A A证明 (1) 设),1(1≥∀⊂+n A A n n 则对任意 ∞=∈1,n n A x 存在N 使得,NAx ∈ 从而),(N n A x N ≥∀∈ 所以,lim n n A x ∞→∈ 则.lim 1n n n n A A ∞→∞=⊂ 又因为 ∞=∞→∞→⊂⊂1,lim lim n n n n n n A A A由此可见{}n A 收敛且 ∞=∞→=1;lim n n n n A A(2) 当)1(1≥∀⊃+n A A n n 时, 对于,lim n n A x ∞→∈存在)1(1≥∀<+k n n k k 使得),1(≥∀∈k A x k n 于是对于任意的,1≥n 存在0k 使得n n k >0, 从而,0n n A A x k ⊂∈ 可见.lim 1∞=∞→⊂n n n n A A 又因为,lim lim 1n n n n n n A A A ∞→∞→∞=⊂⊂ 所以可知{}n A 收敛且 ∞=∞→=1.lim n n n n A A4.设f 是定义于集合E 上的实值函数,c 为任意实数,证明: (1) ⎥⎦⎤⎢⎣⎡+≥=>∞=n c f E c f E n 1][1 ;(2) ⎥⎦⎤⎢⎣⎡+<=≤∞=n c f E c f E n 1][1 ; (3) 若))(()(lim E x x f x f n n ∈∀=∞→,则对任意实数c 有⎥⎦⎤⎢⎣⎡->=⎥⎦⎤⎢⎣⎡->=≥∞→∞=∞=∞=∞=k c f E k c f E c f E n n k n N n N k 1lim 1][111 .证明 (1) 对任意的[],c f E x >∈ 有,)(c x f > 则存在+∈Z n 使得nc x f 1)(+≥成立. 即,1⎥⎦⎤⎢⎣⎡+≥∈n c f E x 那么.11 ∞=⎥⎦⎤⎢⎣⎡+≥∈n n c f E x 故[];11 ∞=⎥⎦⎤⎢⎣⎡+≥⊂>n n c f E c f E 另一方面, 若,11 ∞=⎥⎦⎤⎢⎣⎡+≥∈n n c f E x 则存在+∈Z n 0使得,110 ∞=⎥⎦⎤⎢⎣⎡+≥∈n n c f E x 于是c n c x f >+≥01)(, 故[]c f E x >∈. 则有[].11 ∞=⎥⎦⎤⎢⎣⎡+≥⊃>n n c f E c f E(2) 设[]c f E x ≤∈, 则c x f ≤)(, 从而对任意的+∈Z n , 都有nc x f 1)(+<, 于是 ∞=⎥⎦⎤⎢⎣⎡+<∈11n n c f E x , 故有[];11 ∞=⎥⎦⎤⎢⎣⎡+<⊂≤n n c f E c f E另一方面, 设 ∞=⎥⎦⎤⎢⎣⎡+<∈11n n c f E x , 则对于任意的+∈Z n , 有n c x f 1)(+<, 由n 的任意性, 可知c x f ≤)(, 即[]c f E x ≤∈, 故[] ∞=⎥⎦⎤⎢⎣⎡+<⊃≤11n n c f E c f E . (3) 设[]c f E x ≥∈, 则c x f ≥)(. 由),)(()(lim E x x f x f n n ∈∀=∞→ 可得对于任意的+∈Z k , 存在N 使得)(1|)()(|N n k x f x f n ≥∀<-, 即)1(11)()(≥-≥->k kc k x f x f n , 即k c x f n 1)(->, 故)1(1lim ≥∀⎥⎦⎤⎢⎣⎡->∈∞→k k c f E x n n , 所以 ∞=∞→⎥⎦⎤⎢⎣⎡->∈11lim k n n k c f E x , 故[] ∞=∞→⎥⎦⎤⎢⎣⎡->⊂≥11lim k n n k c f E c f E ;另一方面, 设 ∞=∞→⎥⎦⎤⎢⎣⎡->∈101lim k nn k c f E x , 则对任意+∈Z k 有⎥⎦⎤⎢⎣⎡->∈∞→k c f E x n n 1lim 0.由下极限的定义知:存在1N 使得当1N n ≥时, 有)(10+∈∀⎥⎦⎤⎢⎣⎡->∈Z k k c f E x n , 即对任意+∈Z k 有kc x f n 1)(0->; 又由),)(()(lim E x x f x f n n ∈∀=∞→ 知),()(lim 00x f x f n n =∞→ 即对任意的+∈Z k , 存在2N 使得当2N n ≥时, 有kx f x f n 1|)()(|00<-. 取},max{21N N N =,则有k c x f n 1)(0->与k x f x f n 1|)()(|00<-同时成立, 于是有k c x f k x f n 1)(1)(00->>+,从而kc x f 2)(0->, 由k 的任意性知:c x f ≥)(0, 即[]c f E x ≥∈0, 故有[] ∞=∞→⎥⎦⎤⎢⎣⎡->⊃≥11lim k n n k c f E c f E ;综上所述:[].11lim 111 ∞=∞=∞=∞=∞→⎥⎦⎤⎢⎣⎡->=⎥⎦⎤⎢⎣⎡->=≥k N N n n n n n k c f E k c f E c f E5.证明集列极限的下列性质.(1) cn n cn n A A ∞→∞→=⎪⎭⎫ ⎝⎛lim lim _____;(2) c n ncn n A A _____lim lim ∞→∞→=⎪⎭⎫ ⎝⎛; (3) ()n n n n A E A E ∞→∞→=lim \\lim ;(4) ()n n n n A E A E ∞→∞→=lim \\lim .证明 (1) cn n n nm c m n c n m m c n n m m cn n A A A A A ∞→∞=∞=∞=∞=∞=∞=∞→====⎪⎭⎫ ⎝⎛lim )()(lim 111_____ .(2) c n n n n nm c m c n m m c n n m m cn n A A A A A _____111lim )()(lim ∞→∞=∞=∞=∞=∞=∞=∞→====⎪⎭⎫ ⎝⎛ . (3) () ∞=∞=∞=∞=∞=∞=∞→===111))(()()\(\lim n nm n n m cm cm n nm m n n A E A E A E A Ec n nm m n c nm m n nm cmA E A E AE )())(()(111 ∞=∞=∞=∞=∞=∞====∞=∞=∞→==1lim \\n n m n n mA E AE .(4) () ∞=∞=∞=∞=∞=∞=∞→===111))(()()\(\lim n n m cm n nm n nm cm m n n A E A E A E A Ec n nm m n c nm m n n m cmA E A E AE )())(()(111 ∞=∞=∞=∞=∞=∞====∞=∞=∞→==1lim \\n nm n n mA E AE .6.如果}{},{n n B A 都收敛,则}\{},{},{n n n n n n B A B A B A 都收敛且 (1) ()n n n n n n n B A B A ∞→∞→∞→=lim lim lim ;(2) ()n n n n n n n B A B A ∞→∞→∞→=lim lim lim ; (3) ()n n n n n n n B A B A ∞→∞→∞→=lim \lim \lim .习题1.21.建立区间)1,0(与]1,0[之间的一一对应. 解 令1111{,,,,}2345E =, 111{0,1,,,}234F =,(0,1)\D E =,则(0,1)ED =,[0,1]F D =.定义:(0,1)[0,1]φ→为: ;11();(1,2,)210;2x x D x x n n n x φ⎧⎪∈⎪⎪===⎨+⎪⎪=⎪⎩则φ为(0,1)[0,1]→之间的一个一一对应.2.建立区间],[b a 与],[d c 之间的一一对应,其中d c b a <<,. 解 定义::[,][,]a b c d φ→为:()().([,])d c d c bc adx x a c x x a b b a b a b aφ---=-+=+∀∈--- 可以验证::[,][,]a b c d φ→为一个一一对应.3.建立区间),(b a 与],[d c 之间的一一对应,其中d c b a <<,. 解 令{,,,}234b a b a b a E a a a ---=+++,{,,,,}23d c d c F c d c c --=++ (,)\D a b E =. 定义:(,)[,]a b c d φ→为:;();(1,2.)2;.2d cbc ad x x D b a b a d c b ax c x a n n n b a c x a φ--⎧+∈⎪--⎪--⎪=+=+=⎨+⎪-⎪=+⎪⎩可以验证::(,)[,]a b c d φ→为一个一一对应.4.试问:是否存在连续函数,把区间]1,0[一一映射为区间)1,0(?是否存在连续函数,把区间]1,0[一一映射为]4,3[]2,1[ ?答 不存在连续函数把区间[0,1]一一映射为(0,1); 因为连续函数在闭区间[0,1]存在最大、最小值.也不存在连续函数把区间[0,1]一一映射为[1,2][3,4]; 因为连续函数在闭区间[1,2]上存在介值性定理, 而区间[1,2][3,4]不能保证介值性定理永远成立.5.证明:区间2~)1,0()1,0(~)1,0(R ⨯且ℵ=2R . 证明 记(0,1)A =,则(0,1)(0,1)A A ⨯=⨯. 任取(,)x y A A ∈⨯, 设1231230.,0.,x a a a y b b b == 为实数,x y 正规无穷十进小数表示, 并令1122(,)0.f x y a b a b =, 则得到单射:f A A A ⨯→. 因此由定理 1.2.2知A A A ⨯≤.若令10.5A A =⨯, 则1~A A A A ⊂⨯. 从而由定理1.2.2知: A A A ≤⨯. 最后, 根据Bernstein 定理知: (0,1)~(0,1)(0,1)⨯.对于(,)(0,1)(0,1)x y ∀∈⨯,定义2:(0,1)(0,1)R φ⨯→为:(,)((),())22x y tg x tg y ππφππ=--,则φ为2(0,1)(0,1)R ⨯→的一个一一对应,即2(0,1)(0,1)~R ⨯. 又因为: (0,1)~R , 则由对等的传递性知: 2(0,1)~(0,1)(0,1)~~R R ⨯且2R R ==ℵ.6.证明:{}1:),(22≤+=y x y x A 与{}1:),(22<+=y x y x B 对等并求它们的基数. 证明 令221{(,):(1,2,3,)}E x y x y n n =+==, \D A E =, 221{(,):(1,2,3,)}1F x y x y n n =+==+.则,A E D B F D ==. 定义: :A B φ→为:2222(,);(,),(,)11;(1,2,3,),(,).1x y x y D x y x y x y n x y E n n φ∈⎧⎪=⎨+=+==∈⎪+⎩可以验证::A B φ→为一一对应, 即~A B . 又因为2~(0,1)(0,1)~~B R R ⨯, 所以A B ==ℵ.7.证明:直线上任意两个区间都是对等且具有基数ℵ.证明 对任意的,I J R ⊆, 取有限区间(,)a b I ⊆,则(,)a b I R ℵ=≤≤=ℵ, 则由Bernstern定理知I =ℵ, 同理J =ℵ. 故I J ==ℵ. 习题1.31.证明:平面上顶点坐标为有理点的一切三角形之集M 是可数集.证明 因为有理数集Q 是可数集,平面上的三角形由三个顶点所确定,而每个顶点由两个数决定,故六个数可确定一个三角形,所以M 中的每个元素由Q 中的六个相互独立的数所确定,即Q},,,,:{621621∈=x x x a M x x x 所以M 为可数集.2.证明:由平面上某些两两不交的闭圆盘之集M 最多是可数集.证明 对于任意的M O ∈, 使得Q ∈)(O f . 因此可得:Q →M f :. 因为1O 与2O 不相交,所以)()(21O f O f ≠. 故f 为单射,从而a M =≤Q .3.证明:(1)任何可数集都可表示成两个不交的可数集之并;(2)任何无限集都可表成可数个两两不交的无限集之并.证明 (2) 当E 可数时,存在双射Q )1,0(:→E f . 因为∞=⎪⎪⎭⎫⎝⎛⎪⎭⎫⎢⎣⎡+=11,11)1,0(n n n Q Q所以∞=∞=--=⎪⎪⎭⎫ ⎝⎛⎪⎭⎫⎢⎣⎡+==11111,11))1,0((n n n A n n f f E Q Q .其中:)(),3,2,1(1,111j i A A n n n f A j i n ≠Φ==⎪⎪⎭⎫⎝⎛⎪⎭⎫⎢⎣⎡+=- 且Q . 又因为Q Q ⎪⎭⎫⎢⎣⎡+⎪⎪⎭⎫ ⎝⎛⎪⎭⎫⎢⎣⎡+-n n n n f 1,11~1,111且Q ⎪⎭⎫⎢⎣⎡+n n 1,11 可数,所以E 可表示成可数个两两不交的无限集之并.当E 不可数时,由于E 无限,所以存在可数集E E ⊂1, 且1\E E 不可数且无限,从而存在可数集12\E E E ⊂,且)(\\)\(2121E E E E E E =无限不可数. 如此下去,可得),3,2,1( =n E n 都可数且不相交,从而1011)()\(E E E E E E i i n i ==∞=∞=.其中)0(≥i E i 无限且不交.4.证明:可数个不交的非空有限集之并是可数集.5.证明:有限或可数个互不相交的有限集之并最多是可数集.证明 有限个互不相交的有限集之并是有限集;而可数个互不相交的有限集之并最多是可数集.6.证明:单调函数的不连续点之集至多是可数集.证明 不妨设函数f 在),(b a 单调递增,则f 在0x 间断当且仅当0)(lim )(lim )0()0(_000>==--+→→+x f x f x f x f x x x x .于是,每个间断点0x 对应一个开区间))0(),0((00+-x f x f .下面证明:若x x '''<为()f x 的两个不连续点,则有(0)(0)f x f x '''+≤-. 事实上,任取一点1x ,使1x x x '''<<,于是11(0)lim ()inf{()}()sup {()}lim ()x x x x x x x x x f x f x f x f x f x f x +-'>'''→→'''<<'+==≤≤=,从而x '对应的开区间((0),(0))f x f x ''-+与x ''对应的开区间((0),(0))f x f x ''''-+不相交,即不同的不连续点对应的开区间互不相交,又因为直线上互不相交的开区间所构成的集合至多是可数集,所以可知单调函数的不连续点之集至多是可数集.7.证明:若存在某正数d 使得平面点集E 中任意两点之间的距离都大于d ,则E 至多是可数集.证明 定义映射}:)3,{(:E x dx E f ∈→,即))(3,()(E x d x D x f ∈=,其中)3,(d x D 表示以E x ∈为中心,以3d 为半径的圆盘. 显然当y x ≠时,有∅=)3,()3,(dy D d x D ,即)()(y f x f ≠,于是f 为双射,由第2题知:a E x dx ≤∈}:)3,{(,故a E ≤.习题1.41.直线上一切闭区之集具有什么基数?区间],[b a 中的全体有理数之集的基数是什么? 答 直线上一切闭区间之集的基数是c . 这是因为:2),(],[:R ∈→b a b a f 为单射,而R ∈→a b a f ],[:为满射,所以c M c =≤≤=2R R .区间],[b a 中的全体有理数之集的基数是c ,这是因为:a b a a =≤≤Q Q ],[. 2.用],[b a C 表示],[b a 上的一切连续实值函数之集,证明: (1) 设},,,,{],[21 n r r r b a =Q ,],[,b a C g f ∈,则⇔=g f ),2,1)(()( ==k r g r f k k ;(2) 公式)),(,),(),(()(21 n r f r f r f f =π定义了单射)(],[:R S b a C →π;(3) c b a C =],[. 证明 (1) 必要性. 显然.充分性. 假设),2,1)(()( ==k r g r f k k 成立. 因为},,,{\],[321 r r r b a x ∈∀,存在有理数列∞=1}{n n x ,使得x x n n =∞→lim ,由],[,b a c g f ∈,可得)()lim ()(lim x f x f x f n n n ==∞→∞→及)()lim ()(lim x g x g x g n n n ==∞→∞→.又因为∞=1}{n n x 为有理点列,所以有)()(n n x g x f =,故],[b a x ∈∀,都有)()(x g x f =.(2) ],[,b a c g f ∈∀,设)()(g f ππ=,即)),(,),(),(()),(,),(),((2121 n n r g r g r g r f r f r f =.由(1)知:g f =. 故π为单射.(3) 由(2)知:c R S b a c =≤)(],[;又由],[b a c ⊂R ,可得],[b a c c ≤=R . 故c b a C =],[.3.设],[b a F 为闭区间]1,0[上的一切实值函数之集,证明: (1) ]},[:))(,{()(b a x x f x f ∈=π定义了一个单射)(],[:2R P b a F →π;(2) ]1,0[⊂∀E ,E E χα=)(定义了单射],[])1,0([:b a F P →α;(3) ],[b a F 的基数是c2.证明 (1) ],[,b a F g f ∈∀,设)()(g f ππ=,即]},[:))(,{(]},[:))(,{(b a x x g x b a x x f x ∈=∈.从而]),[)(()(b a x x g x f ∈∀=,故π为单射.(2) ]1,0[,⊂∀F E ,设)()(F E αα=,则F E F E χααχ===)()(,故α为单射.(3) 由(1)知:cP b a F 2)(],[2=≤R ;又由(2)知:],[2])1,0([b a F P c≤=,故c b a F 2],[=.4.证明:c n=C .证明 因为R R C ⨯~,而c =⨯R R ,故c =C ;又由定理1..4.5知:c n=C . 5.证明:若E 为任一平面点集且至少有一内点,则c E =.证明 显然c E =⨯≤R R . 设00E x ∈,则0>∃δ使得E x B ⊂),(0δ,可知E x B c ≤=),(0δ,故c E =.第一章总练习题.1 证明下列集合等式.(1) ()()F F E F E E F E \\\ ==; (2) ()()()G F G E G F E \\\ =.证明 (1) 因为\()()()()()\c c c c c E EF E E F E E F E E E F E F ====,()\()()()\c c c EF F EF F E F F F E F ===.所以\\()()\E F E EF E F F ==.(2) 因为()\()()()(\)(\),c c c c E F G EF G EFG E G FG E G F G ====所以()()()G F G E G F E \\\ =..2 证明下列集合等式.(1) ()B A B A n n n n \\11∞=∞== ;(2) ()B A B A n n n n \\11∞=∞== .证明 (1)1111\()()(\)ccn n n n n n n n A B A B A B A B ∞∞∞∞=======. (2)1111\()()(\)c c n n nn n n n n A B A B A B A B ∞∞∞∞=======.3.证明:22[][][]c cE f g c E f E g +≥⊂≥≥,其中g f ,为定义在E 的两个实值函数,c 为任一常数.证明 若()()22c c x E f E g ∉≥≥, 则有()2c f x <且()2cg x <, 于是()()()()f x g x f g x c +=+<,故()x E f g c ∉+≥. 所以()()()22c cE f g c E f E g +≥⊂≥≥.4.证明:nR 中的一切有理点之集n Q 与全体自然数之集对等.证明 因为0Q =ℵ,所以0Q Q Q Q n=⨯⨯⨯=ℵ(推论1.3.1). 又因为0N =ℵ, 所以0Q n N ==ℵ, 故Q ~n N .5.有理数的一切可能的序列所成之集)(Q S 具有什么基数? 6.证明:一切有理系数的多项式之集][x Q 是可数集. 证明 设},Q ,,,,,0,][:][{][Q 1100111∈≠++++==---n n n n n n n n n n a a a a a a x a x a x a x P x P x于是.][Q ][Q 0∞==n n x x显然,Q ~][Q 1n +x n 所以,Q ][Q 1n a x n ==+ 因此由定理1.3.5知:.][Q a x =7.证明:一切实系数的多项式之集][x R 的基数为c .证明 记},R ,,,,,0,][:][{][R 1100111∈≠++++==---n n n n n n n n n n a a a a a a x a x a x a x P x P x于是.][R ][R 0∞==n n x x显然,R~][R 1n +x n 所以,R ][R 1n c x n ==+ 因此由定理1.4.3知:.][R c x =8.证明:全体代数数(即可作为有理系数多项式之根的数)之集是可数集,并由此说明超越数(即不是代数数的实数)存在,而且全体超越数之集的基数是c .证明 由于有理系数多项式的全体是可数集,设其元素为,,,,,,210 n P P P P 记多项式)(x P n 的全体实根之集为,n A 由于n 次多项式根的个数为有限个,故n A 为有限集,从而代数数全体 ∞==n n A A 为可数个有限集的并,故A 为可数集,即.a A =设超越数全体所成之集为,B 即,\R A B = 则R,=B A 从而B 必为无限集,由于A 为可数集,而任一无限集添加一个可数集其基数不变,故.R cB A B ===9.证明:A B B A \~\,则B A ~. 证明 因为),()\(),()\(B A A B B B A B A A ==又因为,)(\)(\,~,\~\∅==B A A B B A B A B A B A A B B A所以由保并性知),()\(~)()\(B A A B B A B A即.~B A10.证明:若,,D B B A <≤则D A <.证明 (反证法) 假设,D A = 则由已知可得,B D ≤ 这与D B <矛盾. 故有D A <. 11.证明:若c B A = ,则c A =或c B =.证明 假设,a B A == 则有,a B A = 这与c B A = 矛盾,故有c A =或c B =.12.证明:若c A k k =+∈Z ,则存在+∈Z k 使得c A k =.证明同上.习题2.11.若E 是区间]1,0[]1,0[⨯中的全体有理点之集,求bE E E E ,,,'.解 E =∅;[0,1][0,1]bE E E '===⨯。

(新)曹广福版实变函数与泛函分析第四章答案

第四章习题参考解答1.设)(x f 是E 上的可积函数,如果对于E 上的任意可测子集A ,有0)(=⎰dx x f A ,试证:)(x f ,].[.E e a证明:因为}1)(|{}0)(|{1k x f x E x f x E k ≥=≠∞= ,而N k ∈∀,}1)(|{kx f x E ≥}1)(|{}1)(|{kx f x E k x f x E -≤≥= .由已知,=+=-≤≥≥⎰⎰⎰kx f x E kx f x E kx f x E dx x f dx x f dx x f 1)(|{1)(|{1|)(|{)()()(000=+.又因为0}1)(|{11)(0}1)(|{}1)(|{≥≥=≥=≥≥⎰⎰kx f x mE k dx k dx x f kx f x E kx f x E , 0}1)(|{1)1()(0}1)(|{}1)(|{≤-≤-=-≤=≥≥⎰⎰k x f x mE k dx k dx x f kx f x E kx f x E所以,0}1)(|{}1)(|{=-≤=≥k x f x mE k x f x mE .故,0}1)(|{}1)(|{}1|)(|{=-≤+≥=≥kx f x mE k x f x mE k x f x mE ,从而00}1|)(|{}1|)(|{[}0)(|{111==≥≤≥=≠∑∑∞=∞=∞=k k k k x f x mE k x f x E m x f x mE .即,0)(=x f ,].[.E e a .2.设f ,g 都是E 上的非负可测函数,并且对任意常数a ,都有})(|{})(|{a x g x mE a x f x mE ≥=≥,试证:)()(x g x f =,从而,=⎰dx x f E )(dx x g E⎰)(.证明:我们证f ,g 是同一个简单函数序列∞=1){m m ψ的极限函数.N m ∈∀及12,,1,0-=m m k ,令}21)(2|{,mm k m k x f k x E E +≤≤=,并且 })(|{2,m x f x E E m m m ≥=.则k m E ,是互不相交的可测集,并且k m m k E E m ,21== ,定义简单函数∑==mk m m k E m m x kx 20)(2)(,χψ. 下面证明:)()(lim x f x m m =∞→ψ,E x ∈.E x ∈∀0,若+∞=)(0x f ,则N m ∈∀,m m m E x 2,0∈,所以)()(0∞→∞→=m m x m ψ,即)()(lim 00x f x m n =∞→ψ;若+∞<)(0x f ,则可取正整数)(00x f m >,0m m ≥∀时,}21)(2|{})(0|{1210m m m k k x f k x E m x f x E x m +<≤=<≤∈-= .故,存在)120(-≤≤mm k k , }21)(2|{0m m k x f k x E x +<≤∈.即,m m k x f k 21)(20+<≤,m m k E m m k x k x mk m 2)(2)(20,==∑=χψ.所以,0212212)()()(|)()(|00000→=-+<-=-=-mm m m m m k k k x f x x f x x f ψψ,从而, )()(lim 00x f x m n =∞→ψ.同理,N m ∈∀,定义简单函数列∑==mkm m k E m m x kx 20)(2)(*,χψ,其中:}21)(2|{*,mm k m k x g k x E E +<≤=,12,,1,0-=mm k .})(|{*,m x g x E E k m ≥=.同上一样可证明:)()(lim 0x g x m n =∞→ψ,E x ∈.因为R a '∈∀,有})(|{})(|{a x g x mE a x f x mE ≥=≥.故R a '∈∀,})(|{b x f a x mE <≤})(|{b x g a x mE <≤=.从而,)120(-≤≤∀mm k k ,有k m m m m m k m mE k x g k x mE k x f k x mE mE ,*,}21)(2|{}21)(2|{=+<≤=+<≤=m m m m m m mE m x g x mE m x f x mE mE 2,*2,})(|{})(|{=≥=≥=.即,N m ∈∀,=)(x m ψ)(x m ϕ.因此)()(lim )(lim )(x g x x x f m m m m ===∞→∞→ϕψ.3.若⎪⎩⎪⎨⎧=为有理数,当为无理数,当x x x x x f 31)(,计算⎰1,0[)(dx x f .解:设x x E |]1,0[{0∈=为有理数},01]1,0[E E -=,则+=⎰⎰1)()(]1,0[E dx x f dx x f⎰]1,0[)(dx x f ⎰⎰⎰+==111E EE dx xdx xdx x=+==⎰⎰⎰1111E E E dx xdx xdx x2]2[11101]1,0[====⎰⎰x dx xdx x.4.设21,,E E 是]1,0[中n 个可测集,若]1,0[内每一点至少属于n 个集中的q个集,证明:21,,E E 中至少有一个测度不小于nq.证明:令∑==ni E x x f i1)()(χ,其中iEχ为i E 上的特征函数]1,0[∈∀x ,有q x x f ni E i≥=∑=1)()(χ,所以q qdx dx x f =≥⎰⎰]1,0]1,0[)(.∑∑⎰∑∑⎰⎰⎰========≤ni ni i E ni E ni E mE dx x dx x dx x f q i i 11111,0]1,0[]1,0[)()()(χχ.如果每个n qmE i <,则∑∑===⋅=>n i n i i q n q n n q mE 11.这与∑=≤ni i mE q 1矛盾.从而,)1(n i i ≤≤∃使得nqmE i ≥. 5.设f ,g 都是E 上的可积函数,试证明:22g f+也是E 上可积函数.证明:(1)先证:设)(x f 与)(x F 都是E 上的可测函数且)()(0x F x f ≤≤ ].[.E e a ,若)(x F 在E 可积,则)(x f 在E 可积.事实上,N m l ∈∀,,因为)()(0x F x f ≤≤ ].[.E e a ,故l l x F x f )}({)}({0≤≤,即+∞<≤≤≤⎰⎰⎰EE llE ldx x f dx x F dx x F dx x f mm)()}({)}({)}({,其中:m mS E E=,}||||{∞<=x x S m .从而∞=⎰1})}({{l l E dx x F m是单调递增有上界⎰Edx x F )(的数列,故:⎰⎰⎰≤=∞→EE ll E dx x F dx x f dx x f mm)()}({lim )(.又因为⎰∞=mE m dx x f 1})({单调递增有上界,所以⎰∞→mE l dx x f )(lim存在,并且⎰⎰⎰+∞<≤=∞→EE ll Edx x F dx x f dx x f m)()}({lim )(,即⎰∞→∞→mE ll m dx x f )}({lim lim+∞<≤⎰dx x f E)(.所以)(x f 在E 可积.(2)再证:22g f+在E 上可积.事实上,因为f ,g 在E 上可积,所以||f 与||g 在E 上可积,从而||f +||g 在E 上可积. 又因为||||22g f g f+≤+,由(1)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章 复习题(一)
一、判断题
1、设()f x 是可测集n
E R ⊆上的非负简单函数,则
()d E
f x x ⎰
一定存在。

(√ )
2、设()f x 是可测集n
E R ⊆上的非负简单函数,则()f x 在E 上勒贝格可积。

(× ) 3、设()f x 是可测集n
E R ⊆上的非负简单函数,且0()d E
f x x ≤<+∞⎰
,则()f x 在E 上
勒贝格可积。

(√ )
4、设()f x 是可测集n
E R ⊆上的非负可测函数,则
()d E
f x x ⎰
一定存在。

(√ )
5、设()f x 是可测集n
E R ⊆上的非负可测函数,则()f x 在E 上勒贝格可积。

(× ) 6、设()f x 是可测集n
E R ⊆上的非负简单函数,且0()d E
f x x ≤<+∞⎰
,则()f x 在E 上
勒贝格可积。

(√ )
7、设()f x 是可测集n
E R ⊆上的可测函数,则
()d E
f x x ⎰
一定存在。

(× )
8、设()f x 是可测集n
E R ⊆上的可测函数,且()()f x L E +∈,()()f x L E -∈至少有一个成立,则
()d E
f x x ⎰
一定存在。

(√ )
9、设()f x 是可测集n
E R ⊆上的可测函数,且()()f x L E +∈,()()f x L E -
∈至少有一个
成立,则()f x 在E 上勒贝格可积。

(× )
10、设()f x 是可测集n
E R ⊆上的可测函数, 若()()f x L E +∈且()()f x L E -∈,则()
f x 在E 上勒贝格可积。

(√ )
11、设()f x 是可测集n
E R ⊆上的可测函数, 若()()f x L E ∈,则()d E
f x x -∞<<+∞⎰。

(√ )
12、设()f x 是可测集n E R ⊆上的可测函数, 若()()f x g x ≤且()()g x L E ∈,则
()()f x L E ∈。

(√ )
13、若E 为零测集,()f x 为E 上的任何实函数,则()()f x L E ∈。

(√ ) 14、若()()f x L E ∈,则[]0mE f =+∞=。

(√ ) 15、若()()f x L E ∈,则()()f x L E ∈。

(√ )
16、若()()f x L E ∈,则()()f x L E ∈。

(√ )
17、若()()f x L E ∈,1E 为E 的可测子集,则1()()f x L E ∈。

(√ ) 18、()f x 在E 上勒贝格积分值存在⇔()()f x L E ∈。

(× ) 19、若()()f x L E ∈,且()0f x ≥,
()d 0E
f x x =⎰
,则()0f x =..a e 于E 。

(√ )
20、若()f x 在[,]a b 上R 可积,则若()f x 在[,]a b 上L 可积,且
[,]
()()d ()()d b
a b a
L f x x R f x x =⎰
⎰。

(√ )
21、若()()f x L E ∈,()()g x L E ∈,且()()f x g x =..a e 于E ,则()d ()d E
E
f x x
g x x =⎰
⎰。

(√ )
22、若()()f x L E ∈,()d 0E
f x x =⎰
,则()0f x =..a e 于E 。

(× )
23、若()d ()d E
E
f x x
g x x =⎰⎰,则()()f x g x =..a e 于E 。

(× )
24、若()d E
f x x ⎰
与()d E
g x x ⎰存在,且()()f x g x ≤,则()d ()d E
E
f x x
g x x ≤⎰⎰。

(√ )
25、若
()d E
f x x ⎰
存在,n E 是E 的可测子集,且lim 0n n mE →∞
=,则l i m
()d 0n
E n f x x →∞=⎰。

(× ) 26、勒贝格积分也是黎曼广义积分的推广。

(× )
二、计算题
1、设0,[01]()1,[01]x D x x ⎧=⎨
⎩为,
中的无理点为,
中的有理点,求[0,1]()d D x x ⎰。

解:因为有理数集为零测集,所以,()0D x =..a e 于[0,1],于是
[0,1]
[0,1]
()d 0d 0D x x x ==⎰
⎰。

2、设23,(),[0,1]\x x P
f x x x P
⎧∈=⎨∈⎩,其中P 为[01],中的三分康托集,求[0,1]
()d f x x ⎰。

解:因为0mP =,所以,3
()f x x =..a e 于[0,1],于是
3[0,1]
[0,1]
1()d d 4
f x x x x ==

⎰。

三、证明题
1、设()f x 是可测集E 上的可测函数,且()()f x g x ≤,()()g x L E ∈,则()()f x L E ∈。

证明:由题设及不等式性,有()d ()d E
E
f x x
g x x ≤<+∞⎰
⎰。

所以,()()f x L E ∈,从
而()()f x L E ∈。

2、2()()f x L E ∈,2()()g x L E ∈。

则()()()f x g x L E ∈,且
22
1()()d [()d ()d ]2
E E E f x g x x f x x g x x ≤+⎰⎰⎰。

证明:因为22
1()()[()()]2
f x
g x f x g x ≤+,而由2()()f x L E ∈,2()()g x L E ∈得,
2222[()()]d ()d ()d E
E
E
f x
g x x f x x g x x +=+<+∞⎰
⎰⎰,
即2
2
1[()()]()2
f x
g x L E +∈。

所以,()()()f x g x L E ∈。

3、设()()f x L E ∈,n E 是E 的可测子集,且mE <+∞,若lim n n mE mE →∞
=,则
lim ()d ()d n
E E
n f x x f x x →∞=⎰⎰。

证明:因为n E 是E 的可测子集,且mE <+∞,所以,()n n m E E mE mE -=-,从而由lim n n mE mE →∞
=得,lim ()lim 0n n n n m E E mE mE →∞
→∞
-=-=。

又()()f x L E ∈,由积分的绝
对连续性,lim[
()d ()d ]lim ()d 0n
n
E
E E E n n f x x f x x f x x -→∞→∞-==⎰
⎰⎰。

4、设()()f x L E ∈,若对任意有界可测函数()x ϕ都有()()d 0E
f x x x ϕ=⎰

则()0f x =..a e 于E 。

证明:由题设,取1,[()0]
()0,[()0]1,[()0]x E x f x x x E x f x x E x f x ϕ⎧∈>⎪
=∈=⎨⎪-∈<⎩
,显然()x ϕ为E 上的有界可测函数,
从而()d ()()d 0E
E
f x x f x x x ϕ==⎰
⎰。

所以,()0f x =..a e 于E ,即()0f x =..a e 于E 。

5、设()()f x L E ∈,[]n e E f n =≥,证明(1)lim 0n n me →∞
=;(2)lim 0n n n me →∞
⋅=。

证明:由()d ()d n
n e E
n me f x x f x x ⋅≤
≤⎰
⎰得,
(1)lim 0n n me →∞
=。

(2)由(1),注意到
()()f x L E ∈,由积分的绝对连续性得,lim ()d 0n
e n
f x x →∞
=⎰,从而注意到
0()d n
n e n me f x x ≤⋅≤⎰,
所以,lim 0n n n me →∞
⋅=。

相关文档
最新文档