第9章 气动工作原理及回路设计

合集下载

《液压与气动》课程标准

《液压与气动》课程标准

江苏省中等专业学校《液压与气动》课程标准(56学时+1周实训)一、概述(一)课程性质:《液压与气动》是机电专业的一门重要的专业基础课程。

无论对学生的思维素质、创新能力、科学精神以及在工作中解决实际问题的能力的培养,还是对后继课程的学习,都具有十分重要的作用。

(二)适用专业:适用三年全日制机械、机电工科类中专学生使用,适宜在第三、四学期开设(三)课程基本理念:(1)教学中应从实际出发,按照学生学习的规律和特点,积极改进教学方法,以学生为主体,充分调动学生学习的主动性、积极性。

(2)课堂教学要充分利用现代化教学手段,增强学生的感性认识,注意理论联系实际,关注机电设备技术的发展方向,适时引进新知识。

(四)课程设计思路:本课程的设计是建立在对机械知识有一定了解的基础上,以职业能力培养为重点来进行的。

本课程分为两部分,一部分是液压与气压传动部分,另一部分是实训部分。

通过多媒体和现场教学相结合,对本课程进行教学。

二、课程目标(一)课程总体目标:该课程实现了中职的培养目标,满足了机电类教育人才的要求,是专业教学必不可少的重要组成部分。

(二)具体目标:1.素质具有分析能力、创新能力、科学的方法及良好的职业道德意识。

2.能力设置本课程主要是使学生掌握液压与气压传动的基础知识、基本理论和基本技能,培养学生应用液压与气压传动知识进行工程机械设计、科学研究和解决工程实际问题的能力。

3.知识●掌握液压与气压传动的基本原理、液压与气压系统的组成、液压与气压系统的图示方法;●了解液压与气压传动用工作介质的基本类型、性质及选用;●掌握液压、气压元件的工作原理、了解元件的典型结构和特点;●掌握液压与气压传动基本回路的组成功能及应用;●掌握设计一个完整液压与气压系统的必备知识(设计计算、元件选型等);●了解典型液压、气压系统的工作原理和特点三、内容标准(课程内容和要求)本课程共56学时+1周实训概述(2学时)重点:1.液压传动系统组成及工作原理;2.液压系统的图示方法。

数控机床原理与结构分析第9章数控机床液压与气动系统

数控机床原理与结构分析第9章数控机床液压与气动系统
常见气动辅助元件
常见的气动辅助元件包括消声器、过滤器、压力调节器等。
气动辅助元件的选择
在选择气动辅助元件时,需要根据实际需求选择合适的型号和规 格,以确保系统的正常运行。
PART 04
数控机床液压与气动系统 的应用实例
REPORTING
WENKU DESIGN
数控机床的刀具夹紧与松开
刀具夹紧
液压系统通过提供强大的夹紧力 ,确保刀具在加工过程中保持、 准确地控制刀具的松开和更换, 提高生产效率。
数控机床的工件装夹与定位
工件装夹
液压系统通过夹具对工件进行快速、 准确地定位和夹紧,确保工件在加工 过程中保持稳定。
定位调整
气动系统通过气压调整工件位置,实 现高精度定位,提高加工精度和产品 质量。
数控机床的冷却与润滑
气压传动的应用
气压传动广泛应用于数控 机床、机械手、自动化生 产线等工业自动化领域。
气源装置
气源装置的作用
气源装置是气动系统的能源装置, 其主要作用是产生压缩空气,为 整个气动系统提供动力。
气源装置的组成
气源装置一般由空气压缩机、储气 罐、干燥机等组成。
气源装置的维护
为了确保气源装置的正常运行,需 要定期对气源装置进行维护和保养, 如清洗空气过滤器、更换干燥剂等。
REPORTING
WENKU DESIGN
液压系统原理
液压系统是通过液体压力能来传递动力的,其基本原理是帕斯卡原理,即封闭液体 压力的传递。
液压系统由动力元件、执行元件、控制元件和辅助元件等组成,通过这些元件的协 同作用,实现系统的功能。
液压系统的特点是体积小、重量轻、惯性小、反应快、输出力大等,广泛应用于各 种机械和自动化设备中。

液压与气压传动----气动回路

液压与气压传动----气动回路
经过控制电磁 阀旳通电个数, 实现对分段式 活塞缸旳活塞 杆输出推力旳 控制。
四、力控制回路
利用气液增压器1 把较低旳气压变为 较高旳液压力,提 升了气液缸2旳输 出力。
第二节 换向回路
一、单作用气缸旳换向回路
二、双作用气缸旳换向回路
第三节 速度控制回路
因气动系统所用功率都不大,故常用 旳调速回路主要是节流调速。
用两个快排阀实现双 作用气缸旳迅速来回, 可到达节省时间旳要 求。
4、缓冲回路
活塞迅速向右运 动接近末端,压下机 动换向阀,气体经节 流阀排气,活塞低速 运动到终点。
合用于活塞惯性力 大旳场合。
二、气液联动回路
因为气体旳可压缩性,运动速度不稳 定,定位精度不高。在气动调速、定 位不能满足要求旳场合,可采用气液 联动。
第十一章 气动回路
第一节 第二节 第三节 第四节 第五节
压力与力控制回路 换向回路 速度控制回路 气动逻辑回路 其他常用回路
概述
气动系统一般由最简朴旳基本回路构成。 虽然基本回路相同,但因为组合方式不 同,所得到旳系统旳性能却各有差别。 所以,要想设计出高性能旳气动系统, 必须熟悉多种基本回路和经过长久生产 实践总结出旳常用回路。
二、互锁回路
互锁回路

回路利用梭阀1、2、3
和换向阀4、5、6 实现
互锁,预防各缸活塞同
步动作,确保只有一种
活塞动作。
三、同步回路
气液缸串联同步回路
✓速度同步
✓要求:缸 2有杆腔旳 面积必须与 缸1无杆腔 旳面积相等。
一、气阀调速回路
1、单作用气缸旳速度控制回路
a)升降速度 分别由两个 节流阀控制
b)快返回路,活 塞返回时,气缸 下腔经过迅速排 气阀排气。

气动工作原理

气动工作原理

气动工作原理气动工作原理是指利用气体压力来驱动机械装置进行工作的基本原理。

在工业生产中,气动工作原理被广泛应用于各种机械设备和生产线中,其简单、高效、安全的特点受到了广泛的青睐。

首先,气动工作原理的基础是气体的压缩和膨胀。

当气体被压缩时,其分子间的距离减小,从而增加了气体分子的碰撞频率和压力,这种压缩气体可以存储在气缸中,通过控制气源和阀门,可以将压缩气体释放到气动执行器中,从而驱动机械装置进行工作。

而当气体膨胀时,其分子间的距离增大,压力减小,这种原理被应用在气动制动系统中,通过控制气源和阀门,使气体膨胀产生制动力,实现机械装置的停止和控制。

其次,气动工作原理的关键是气动执行器。

气动执行器是将压缩气体的能量转换为机械能的装置,包括气缸、气动马达等。

气缸是气动执行器中最常见的一种,其工作原理是通过控制气源和阀门,使压缩气体进入气缸,推动活塞运动,从而驱动连杆、活塞杆等机械装置进行工作。

而气动马达则是将压缩气体的能量转换为旋转运动的装置,通过控制气源和阀门,使压缩气体进入气动马达,驱动转子、齿轮等旋转部件进行工作。

最后,气动工作原理的应用范围非常广泛。

在工业生产中,气动工作原理被应用于各种机械设备和生产线中,如气动钻、气动切割机、气动输送机等,其简单、高效、安全的特点使其成为工业生产中不可或缺的一部分。

同时,在汽车制造、航空航天、医疗设备等领域,气动工作原理也有着重要的应用,如气动制动系统、飞机起落架、呼吸机等,其稳定、可靠的特点为这些领域的发展提供了有力支持。

综上所述,气动工作原理是利用气体压力来驱动机械装置进行工作的基本原理,其应用范围广泛,对工业生产和其他领域的发展起着重要的作用。

随着科学技术的不断进步,相信气动工作原理将会在未来发挥更加重要的作用,推动着各行各业的发展和进步。

液压传动与气动技术教案已调整格式可直接打印

液压传动与气动技术教案已调整格式可直接打印

液压传动与气动技术教案第一章:液压传动与气动技术概述1.1 液压传动的定义与发展历程1.2 气动技术的定义与发展历程1.3 液压传动与气动技术的应用领域1.4 液压传动与气动技术在我国的应用与发展第二章:液压系统的基本组成与工作原理2.1 液压系统的组成2.2 液压系统的工作原理2.3 液压油的性质与选用2.4 液压系统的图形符号第三章:液压泵与液压马达3.1 液压泵的分类与工作原理3.2 液压泵的主要性能参数3.3 液压马达的工作原理与性能参数3.4 液压泵与液压马达的选用第四章:液压缸与液压执行器4.1 液压缸的分类与工作原理4.2 液压缸的主要性能参数4.3 液压执行器的分类与工作原理4.4 液压执行器的选用与安装第五章:液压控制阀及液压控制系统5.1 液压控制阀的分类与作用5.2 液压控制阀的主要性能参数5.3 液压控制系统的分类与工作原理5.4 液压控制系统的应用实例第六章:液压系统的设计与计算6.1 液压系统设计的基本原则6.2 液压缸和液压马达的选型计算6.3 液压泵的选型计算6.4 液压控制阀的选型计算第七章:液压系统的安装与维护7.1 液压系统的安装要求7.2 液压系统的调试与验收7.3 液压系统的日常维护与管理7.4 液压系统的故障诊断与排除第八章:液压元件的故障与维修8.1 液压泵的故障与维修8.2 液压控制阀的故障与维修8.3 液压缸和液压马达的故障与维修8.4 液压油的选择与更换第九章:气动技术的基本原理与应用9.1 气动技术的基本原理9.2 气源设备及其选用9.3 气动执行器及其选用9.4 气动控制元件及其应用第十章:气动元件的选用与维修10.1 气动元件的选用原则10.2 气动元件的安装与调试10.3 气动元件的维护与保养10.4 气动元件的故障诊断与排除第十一章:液压系统的应用案例分析11.1 液压系统在工业机械中的应用案例11.2 液压系统在汽车工业中的应用案例11.3 液压系统在航空航天领域的应用案例11.4 液压系统的创新应用案例分析第十二章:气动系统的应用案例分析12.1 气动系统在工业自动化中的应用案例12.2 气动系统在技术中的应用案例12.3 气动系统在制造业中的应用案例12.4 气动系统的创新应用案例分析第十三章:液压系统的仿真与优化13.1 液压系统仿真的基本概念13.2 液压系统仿真软件的使用13.3 液压系统优化的目的与方法13.4 液压系统优化案例分析第十四章:气动系统的仿真与优化14.1 气动系统仿真的基本概念14.2 气动系统仿真软件的使用14.3 气动系统优化的目的与方法14.4 气动系统优化案例分析第十五章:液压与气动技术的展望与发展趋势15.1 液压与气动技术的历史回顾15.2 液压与气动技术的现状15.3 液压与气动技术的挑战与机遇15.4 液压与气动技术的发展趋势预测重点和难点解析本教案涵盖了液压传动与气动技术的基本概念、组成、工作原理、应用领域、系统设计、元件故障与维修、系统安装与维护、气动技术基本原理与应用、元件选用与维修等内容。

气动系统的维护

气动系统的维护

图4 节流阀
单向节流阀是由单向阀和节流阀组合而成的流量控制 阀&常用于气缸调速和延时回路中&单向节流阀一般安装 在换向阀和执行机构之间进行速度控制;控制方式有出口 节流和进口节流两种&出口节流调节从执行元件出来的排 气量;进口节流是调节从换向阀出来;供给执行元件的供 气量&
图5为单向节流阀的结构图;气流沿一个方向经过节流 阀节流;反方向流动时;单向阀打开;不节流&单向节流阀 还有一种单向阀开度可调机构;见图6&一般单向节流阀的 流量调节范围为管道流量的20%一30%;对于要求能在较 宽范围内进行速度控制的场合;可采用单向阀开度可调节 的单向节流阀&
1在冷却器上积炭 ;不易清除 ; 2使诸如 O形圈等密封件膨胀和收缩 ; 3引起锈蚀 ;因为油泥的水溶液 冷凝水 是酸性的 ;酸性的 溶液容易腐蚀元件 ; 4引起电磁阀的误动作 ;金属密封时出现黏合现象 ;软密 封时 ;油泥使橡胶老化而产生误动作 ; 5堵住小孔空气通路&
为了让气动元件正常动作 ;消除油泥的不良影响 ; 可以采取如下 措施 :
气动系统的能源元件一般设在距控制、执行元件较远的压气机 站内;用管道远距离输送&近年来也有小型低噪声压缩机或增压泵设 置在控制、执行元件的近旁;实行单机单泵供给或局部加压&回转式 真空泵一般安装在控制和执行元件近旁;而喷射式真空泵一般尽量 安装在吸盘等真空执行元件附近;以减少真空容积;节省空气消耗量 &
图5 单向节流阀
图6 单向节流阀单向 阀开度可调
3方向控制阀
可分为单向型和换向型两种& 方向控制阀是气动控制回路中用来控制气体流动方向和气流通 断的气动控制元件&实现该类控制的气动元件称做方向控制阀简 称方向阀& 方向控制阀种类较多;分类方法有控制操纵方式、密封结构、阀 芯结构、阀的通路数等&方向控制阀的分类方法较多;其中比较普 遍的是按控制方式的分类& 用气压来获得轴向力使阀芯迅速移动换向的控制方式称做气压 控制&按施加压力的方式 气压控制又可分为加压控制、卸压控制 、差压控制和延时控制等& 加压控制是利用逐渐增加作用在阀芯上的压力而使阀换向的一 种控制方式&图7为 二位三通单气控截止式换向阀的结构图&该 阀采用加压控制方式& 卸压控制是利用逐渐减小作用在阀芯上的压力而使阀换向的一 种控制方法&图8为三位五通双气控滑阀的结构图&该阀采用卸压 控制方式&

液压传动与气动技术课程教案典型气动系统

液压传动与气动技术课程教案典型气动系统

液压传动与气动技术课程教案-典型气动系统第一章:气动系统概述教学目标:1. 了解气动系统的定义、组成和特点;2. 掌握气动系统的基本工作原理;3. 熟悉气动系统在工业中的应用。

教学内容:1. 气动系统的定义和组成;2. 气动系统的工作原理;3. 气动系统在工业中的应用案例。

教学方法:1. 讲授:讲解气动系统的定义、组成和特点;2. 演示:通过视频或实物展示气动系统的工作原理;3. 案例分析:分析气动系统在工业中的应用案例。

教学评估:1. 课堂问答:检查学生对气动系统定义、组成和工作原理的理解;2. 小组讨论:让学生探讨气动系统在工业中的应用案例,分享自己的观点。

第二章:气源设备及处理元件教学目标:1. 掌握气源设备的种类和功能;2. 熟悉气动处理元件的作用和结构;3. 了解气源系统的设计原则。

教学内容:1. 气源设备的种类和功能;2. 气动处理元件的作用和结构;3. 气源系统的设计原则。

教学方法:1. 讲授:讲解气源设备的种类和功能、气动处理元件的作用和结构;2. 互动:引导学生参与讨论气源系统的设计原则;3. 实操:演示气源设备和处理元件的安装与调试。

教学评估:1. 课堂问答:检查学生对气源设备、气动处理元件的理解;2. 实操考核:评估学生在实操中对气源设备和处理元件的安装与调试能力。

第三章:执行元件及控制元件教学目标:1. 掌握气动执行元件的种类和特点;2. 熟悉气动控制元件的功能和结构;3. 了解执行元件和控制元件在气动系统中的应用。

教学内容:1. 气动执行元件的种类和特点;2. 气动控制元件的功能和结构;3. 执行元件和控制元件在气动系统中的应用。

1. 讲授:讲解气动执行元件的种类和特点、气动控制元件的功能和结构;2. 互动:引导学生探讨执行元件和控制元件在气动系统中的应用;3. 实操:演示执行元件和控制元件的安装与调试。

教学评估:1. 课堂问答:检查学生对气动执行元件、气动控制元件的理解;2. 实操考核:评估学生在实操中对执行元件和控制元件的安装与调试能力。

气动课程设计

气动课程设计

机电工程系课程设计课程设计报告(2011/2012 第1学期)设计题目液压(气压)课程设计指导教师学生班级学生姓名学生学号考核成绩内容摘要概述气动(qìdòng)[pneumatic]∶利用撞击作用或转动作用产生的空气压力使运动或做功的气动就是以压缩空气为动力源,带动机械完成伸缩或旋转动作。

因为是利用空气具有压缩性的特点,吸入空气压缩储存,空气便像弹簧一样具有了弹力,然后用控制元件控制其方向,带动执行元件的旋转与伸缩。

从大气中吸入多少空气就会排出多少到大气中,不会产生任何化学反应,也不会消耗污染空气的任何成分,另外气体的粘性较液体要小,所以说流动速度快,所以说主要特点便是节能环保。

气动技术的特点:1、气动装置结构简单、轻便、安装维护简单。

压力等级低、使用安全相对液压系统安全一些。

2、工作介质是取之不尽的空气、空气本身不花钱。

排气处理简单,不污染环境,但电能消耗较大,能源转换率很低,初期成本较低,但使用成本较高。

3、输出力以及工作速度的调节非常容易。

气缸的动作速度一般为50~500mm/s。

但运行速度稳定性不高。

4、可靠性不太高,使用寿命受气源洁净度和使用频率的影响较大。

5、利用空气的压缩性,可贮存能量,实现集中供气。

可短时间释放能量,以获得间歇运动中的高速响应。

可实现缓冲。

对冲击负载和过负载有较强的适应能力。

在一定条件下,可使气动装置有自保持能力。

气动技术的缺点:1、由于空气有压缩性,气缸的动作速度易受负载的变化而变化。

采用气液联动方式可以克服这一缺陷,气缸速度比液压要快。

2、气缸在低速运动时候,由于摩擦力占推力的比例较大,气缸的低速稳定性不如液压缸。

3、虽然在许多应用场合,气缸的输出力能满足工作要求,但其输出力比液压缸小。

目录内容摘要 (1)概述 (1)气动技术的特点: (1)气动技术的缺点: (1)第一章气动课程设计概述 (2)1.1课程目的 (3)1.2课程内容 (3)1.3课程步骤 (3)第二章气动回路设计 (3)2.1设计目的 (4)2.2设计内容 (4)逻辑控制回路设计 (4)【任务分析】 (4)【方案比较】 (4)【原理图】 (4)【回路组装与实验步骤】. (8)【组装调试中存在问题分析】. (8)第三章动生产线分拣单元的气动机械手气动系统绘制与实现 (8)【原理图】 (9)【回路组装与实验步骤】 (12)【组装调试中存在问题分析】 (12)第四章总结 (13)通过这一周的气动实习,我对气孔有了更深层次的了解,认识了很多的气动元件并且了解了这些元件的用途,熟知了他们的工作原理以及构成的回路的作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

华中科技大学
9.2气源装置及气动元件
华中科技大学

气动系统由下面几种元件及装置组成 气源装置 压缩空气的发生装置以及压缩空 气的存贮、净化的辅助装置。它为系统提供 合乎质量要求的压缩空气。 执行元件 将气体压力能转换成机械能并完 成做功动作的元件,如气缸、气马达。 控制元件 控制气体压力、流量及运动方向 的元件,如各种阀类;能完成一定逻辑功能 的元件,即气动逻辑元件;感测、转换、处 理气动信号的元器件,如气动传感器及信号 处理装置。 气动辅件 气动系统中的辅助元件,如消声 器、管道、接头等。

气压传动基础知识

空气的物理性质 理想气体的状态方程 气体的流动规律 气体在管道中的流动特性 气动元件的通流能力 充、放气温度与时间的计算
华中科技大学
空气的物理性质

空气的组成

ห้องสมุดไป่ตู้
主要成分有氮气、氧气和一定量的水蒸气。 含水蒸气的空气称为湿空气,不含水蒸气的空气称为干空气。 对于干空气ρ=ρo×273 /(273+t)×p / 0.1013 较液体的粘度小很多,且随温度的升高而升高。 体积随压力和温度而变化的性质分别表征为压缩性和膨胀性。 空气的压缩性和膨胀性远大于固体和液体的压缩性和膨胀性。 所含水份的程度用湿度和含湿量来表示。湿度的表示方法有 绝对湿度 和相对湿度之分。 压缩空气一旦冷却下来,相对湿度将大大增加,到温度降到露点以后, 华中科技大学 水蒸气就要凝析出来。
华中科技大学
放气时间
与充气过程一样,放气过程也分为声速和亚声速两个阶段。容器由 压力p1 将到大气压力pa 所需绝热放气时间为 T=t1+t2 ={(2k /k-1 )[(p1/pe)(k-1)/2k-1) ]+0.945( p1/1.013×105 )(k-1)/2k}τ τ= 5.217×10-3 V (273/T1)1/2/kS 式中 pe 为放气临界压力(1.92×105 Pa)

空气的密度



空气的粘度

空气的压缩性和膨胀性



湿空气


压缩空气的析水量

理想气体的状态方程

理想气体的状态方程

不计粘性的气体称为理想气体。空气可视为理想气体。 一定质量的理想气体在状态变化的瞬间, 有如下气体状态 方程成立 pV / T = 常量 或 p=ρRT 等温过程 p1V1= p2V2= 常量 在等温过程中,无内能变化,加入系统的热量全部变 成气体所做的功。在气动系统中气缸工作、管道输送空 气等均可视为等温过程。 绝热过程 一定质量的气体和外界没有热量交换时的状态变 化过程叫做绝热过程。
压缩空气净化设备
一般包括后冷却器、油水分离器、贮气罐、干燥器。
后冷却器 将空气压缩机排出具
有140℃~170℃的压缩空气降至 40℃~50℃,压缩空气中的油雾 和水气亦凝析出来。冷却方式有水 冷和气冷式两种。
油水分离器 主要利
用回转离心、撞击、水 浴等方法使水滴、油滴 及其他杂质颗粒从压缩 空气中分离出来。

当v >c,Ma >1时,称为超声速流动。
华中科技大学
气体在管道中的流动特性
在亚声速流动时
(Ma<1)
v1
v2>v1 v1
v2
v1
v2<v1
v2
在超声速流动时
(Ma>1)
v2 v2<v1
v1 v2>v1
v2
当v ≤50m/s 时,不必考虑压缩性。 当v ≈140m/s 时,应考虑压缩性。 在气动装置中,气体流动速度较低,且经过压缩,可以认为不可
表达形式

工程中常采用近似公式:
qm=εcA [2ρ(p1-p2)]1/2
式中 ε为空气膨胀修正系数;c 为流量系数;A 为节流孔面
积。
可压缩气体通过节流小孔(气流达到声速)的流量
气流在不同流速时应采用有效截面积的流量计算公式。
华中科技大学
充气、放气温度与时间的计算
在气动系统中向气罐、气缸、管路及其它执行 机构充气,或由它们向外排气所需的时间及温度变化 是正确利用气动技术的重要问题。 向定积容器充气问题
华中科技大学
气源装置

气源装置为气动系统提供满足一定质量要求的压缩空气,是气动 系统的重要组成部分。 气动系统对压缩空气的主要要求:具有一定压力和流量,并具有 一定的净化程度。 气源装置由以下四部分组成 气压发生装置——空气压缩机; 净化、贮存压缩空气的装置和设备; 管道系统; 气动三大件。
华中科技大学
充气时间
充气时,容器中的压力逐渐上升,充气过程基本上分为声速和亚声
速两个充气阶段。当容器中气体压力小于临界压力,在最小截面处气 流的速度都是声速,流向容器的气体流量将保持为常数。 在容器中压力达到临界压力以后,管中气流的速度小于声速,流动 进入亚声速范围,随着容器中压力的上升,充气流量将逐渐降低。
华中科技大学

气压发生装置 气动机械使用。
空气压缩机将机械能转化为气体的压力能,供
空气压缩机的分类 分容积型和速度型。
常用往复式容积型压缩机,一般空压机为中压,额
定排气压力1MPa;
低压空压机排气压力0.2MPa; 高压空压机排气压力10MPa。
空气压缩机的选用原则 依据是气动系统所需
要的工作压力和流量两个参数。

空压机输出流量 qVn=(qVn0+qVn1)/(0.7~0.8)
qVn0—— 配管等处的泄漏量 qVn1—— 工作元件的总流量
华中科技大学
压缩空气的净化装置和设备
气动系统对压缩空气质量的要求:压缩空气要具有一定压力和足
够的流量,具有一定的净化程度。不同的气动元件对杂质颗粒的 大小有具体的要求。 混入压缩空气中的油分、水分、灰尘等杂质会产生不良影响: 混入压缩空气的油蒸汽可能聚集在贮气罐、管道等处形成易 燃物,有引起爆炸的危险,另一方面润滑油被汽化后会形成 一种有机酸,对金属设备有腐蚀生锈的作用,影响设备受命。 混在压缩空气中的杂质沉积在元件的通道内,减小了通道面 积,增加了管道阻力。严重时会产生阻塞,使气体压力信号 不能正常传递,使系统工作不稳定甚至失灵。 压缩空气中含有的饱和水分,在一定条件下会凝结成水并聚 集在个别管段内。在北方的冬天,凝结的水分会使管道及附 件结冰而损坏,影响气动装置正常工作。 压缩空气中的灰尘等杂质对运动部件会产生研磨作用,使这 些元件因漏气增加而效率降低,影响它们的使用寿命。 因此必须要设置除油、除水、除尘,并使压缩空气干燥的提高压 缩空气质量、进行气源净化处理的辅助设备。华中科技大学


对于阀口或管路
S =αA
式中
α为收缩系数,由相关图查出;A 为孔口实际面积。
SR=∑Si 1/SR2 =∑1/Si2
多个元件组合后有效截面积的计算
并联元件 串联元件
华中科技大学
不可压缩气体通过节流小孔的流量

当气体以较低的速度通过节流小孔时,可以不计其压缩
性,将其密度视为常数,由伯努利方程和连续性方程联 立推导的流量公式与液压传动的小孔流量公式有相同的
压缩;自由气体经空压机压缩的过程中是可压缩的。
华中科技大学
气动元件的通流能力
气动元件的通流能力,是指单位时间内通过阀、管 路等的气体质量。目前通流能力可以采用有效截面积S 和质量流量q 表示。

有效截面积

由于实际流体存在粘性,流速的收缩比节流孔实际面积小,此 最小截面积称为有效截面积,它代表了节流孔的通流能力。 有效截面积的简化计算

因气体粘度小,不考虑摩擦阻力,则有
v2/2+ gz + kp /(k-1)ρ= 常数
在低速流动时,气体可认为是不可压缩的( ρ =常数),
则有 v2/2+ gz + p /ρ= 常数
华中科技大学
声速与马赫数

声音引起的波称为“声波”。声波在介质中的传播速度称 为声速。声音传播过程属绝热过程。 对理想气体来说,声音在其中传播的相对速度只与气体的 温度有关。气体的声速c 是随气体状态参数的变化而变化 的。 气流速度与当地声速(c=341m/s)之比称为马赫数 , Ma= v/c Ma 是气体流动的一个重要参数,集中反映了气流的压缩 性, Ma愈大,气流密度变化越大。 当v < c,Ma <1时,称为亚声速流动; 当v=c,Ma =1时,称为声速流动,也叫临界状态流动;
华中科技大学
贮气罐的主要作用是贮存
一定数量的压缩空气,减 少气流脉动,减弱气流脉 动引起的管道振动,进一 步分离压缩空气的水分和 油分。
干燥器的作用是进一步除去压缩
空气中含有的水分、油分、颗粒杂 质等,使压缩空气干燥,用于对气 源质量要求较高的气动装置、气动 仪表等。主要采用吸附、离心、机 械降水及冷冻等方法。
容器内压力由p1充气到p2所需总时间
t =t1+t2 =(1.285-p1/p2)τ
τ = 5.217×10-3×(V /kS)(273/Ts)1/2
华中科技大学

容器的放气
绝热放气时容器中的温度变化 容器内空气的初始温度为T1,压力为p1,经绝热放气后
温度降低到T2 ,压力降低到p2 ,则放气后温度为 T2=T1(p2/p1)(k-1)/k 但容器停止放气,容器内温度上升到室温,其内的压力 也上升至 p p=p2T1/T2
第9章 气动工作原理 及回路设计
9.1气压传动基础知识
华中科技大学
气压传动是以压缩空气作为工作介质进行能量的传递和控制 的一种传动形式。 除了具有与液压传动一样,操作控制方便,易于实现自动控 制、中远程控制、过载保护等优点外,还具有工作介质处理方便, 无介质费用、泄漏污染环境、介质变质及补充等优势。 但空气的压缩性极大的限制了气压传动传递的功率,一般工 作压力较低(0.3~1MPa),总输出力不宜大于10~40kN,且 工作速度稳定性较差。 应用非常广泛,尤其是轻工、食品工业、化工
相关文档
最新文档