人教版七年级上册数学-整式的加减课件
合集下载
人教版七年级数学上册5整式的加减课件

知识回顾
整式加减运算法则:
一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项.
计算:
1
1
2
2
2 − + 3 − 4 − +
2
2
1
2
2
= 2 − + 3 −4 +4 −2
2
一同:所含字母相同;
去括号
合并同类项
二同:相同字母的指
5
2
= 6 − − .
数也相同.
是正号不变号,是负号全变号.
的值.
2
2
2
2
1
1
1 5
当 = 时,原式 = 6 ×
− −
2
2
2 2
1 1 5
3
=6× − − =− .
求出结果
4 2 2
2
学习新知
1
1
2
2
计算:
2 − + 3 − 4 − +
2
2
1
2
2
= 2 − + 3 − 4 +4 −2
先化简,再求值.
2
5
2
= 6 − − .
2
1
1
1
2
2
当 = 时,求 2 − + 3 − 4 − +
的值.
2
2
2
2
1
1
1 5
当 = 时,原式 = 6 ×
− −
2
2
2 2
1 1 5
3
=6× − − =− .
4 2 2
2
学习新知
1
1
整式加减运算法则:
一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项.
计算:
1
1
2
2
2 − + 3 − 4 − +
2
2
1
2
2
= 2 − + 3 −4 +4 −2
2
一同:所含字母相同;
去括号
合并同类项
二同:相同字母的指
5
2
= 6 − − .
数也相同.
是正号不变号,是负号全变号.
的值.
2
2
2
2
1
1
1 5
当 = 时,原式 = 6 ×
− −
2
2
2 2
1 1 5
3
=6× − − =− .
求出结果
4 2 2
2
学习新知
1
1
2
2
计算:
2 − + 3 − 4 − +
2
2
1
2
2
= 2 − + 3 − 4 +4 −2
先化简,再求值.
2
5
2
= 6 − − .
2
1
1
1
2
2
当 = 时,求 2 − + 3 − 4 − +
的值.
2
2
2
2
1
1
1 5
当 = 时,原式 = 6 ×
− −
2
2
2 2
1 1 5
3
=6× − − =− .
4 2 2
2
学习新知
1
1
人教版数学七年级上册整式的加减(第1课时)课件

14.三峡水库的水位第一天连续降落a小时,每小时平均降落3 cm, 第二天连续上升2小时,每小时平均上升a cm,第三天水位又降落a cm,则这三天三峡水库的水位总的变化情况是_降__落__2_a_c_m__.
15.下列化简:①5xy-x=5y;②5ab-5ba=0;③2a2+3a2=5a4; ④-5m2n+8nm2=3m2n.其中正确的有( B )
-2
的值,其中x=
1;
2
解:(1) 2x2-5x+x2+4x-3x2 -2 = (2+1-3) x2 + (-5+4) x-2 = -x-2.
当
x
=
12时,原式=
−
1 2
-
2=
-
ห้องสมุดไป่ตู้
52.
例2 (2)求多项式 3a+abc - 13c2 - 3a + 13c2 的值,其中
a=- 16,b=2,c= -3. 解: 3a+abc - 13c2 - 3a + 13c2
解:原式=(3-1)a2+(-2+3)a+(-1-5)=2a2+a-6. (3)-5m2n+4mn2-2mn+6m2n+3mn.
解:原式=(-5+6)m2n+4mn2+(-2+3)mn=m2n+4mn2+mn.
11.已知下列式子:6ab,3xy2,12 ab,2a,-5ab,5x2y. (1)写出这些式子中的同类项; (2)求(1)中同类项的和.
A.0
B.-1 010m
C.m D.1 010m
19.若xy<0,y>0,则化简5|x|+3x= __-__2_x___.
20 .1 已 知 多 项 式 4x2 - 3mx + 2 + m的 值 与 m 的 大 小 无 关 , 则 x 的 值 为3 .
初中数学人教版七年级上册《整式的加减》教学课件

小明买笔记本和圆珠笔共花费(4x+3y)元. 小红和小明一共花费(单位:元) (3x+2y) + (4x+3y) = 3x+2y+4x+3y = 7x+5y.
例 笔记本的单价是x元,圆珠笔的单价是y元.小红买3本笔记 本,2 支圆珠笔;小明买4本笔记本,3支圆珠笔.买这些笔记本 和圆珠笔,小红和小明一共花费多少钱? 解法2:小红和小明买笔记本共花费(3x+4x)元,
有三个农场在一条公路边,如图中的A,B,C处. A处农场年产小麦50吨,B 处农场年产小麦10吨,C处农场年产小麦60吨. 要在这条公路边修建一个 仓库收购这些小麦. 假设运费从A到C方向是1.5元/(吨·千米),从C到A方向 是1元/(吨·千米) ,那么仓库应该建在何处才能使总运费最低?
解:② 设仓库建在A,B之间(含A点),离B y千米处,则总运费为 1.5×50(50-y)+1×10y+1×60(120+y)=(10 950- 5y)(元). 因为0<y≤50, 所以当y=50,即仓库建在A处时,总运费最低,最低为10 700元. 综上,仓库建在A处时总运费最低.
解:(1) 方框内的9个数字之和是方框正中间的数字的9倍.
如图所示是某月的月历,带阴影的方框内有9个数字. (1) 探究方框内的9个数字之和与方框正中间的数字 有什么关系? (2) 不改变方框的大小,任意移动方框的位置,你能得 到什么结论?并说明理由. (3)当方框正中间的数字为16时,求方框内9个数字的和. 解:(2) 结论:方框内的9个数字之和是方框正中间的数字的9倍. 理由:设方框正中间的数字为x,则其他的8个数字分别为x-8,x-7,x-6,x-1,x+1, x+6,x+7,x+8. 这9个数字的和为x-8+x-7+x-6+x-1+x+x+1+x+6+x+7+x+8=9x, 所以方框内的9个数字之和是方框正中间的数字的9倍.
例 笔记本的单价是x元,圆珠笔的单价是y元.小红买3本笔记 本,2 支圆珠笔;小明买4本笔记本,3支圆珠笔.买这些笔记本 和圆珠笔,小红和小明一共花费多少钱? 解法2:小红和小明买笔记本共花费(3x+4x)元,
有三个农场在一条公路边,如图中的A,B,C处. A处农场年产小麦50吨,B 处农场年产小麦10吨,C处农场年产小麦60吨. 要在这条公路边修建一个 仓库收购这些小麦. 假设运费从A到C方向是1.5元/(吨·千米),从C到A方向 是1元/(吨·千米) ,那么仓库应该建在何处才能使总运费最低?
解:② 设仓库建在A,B之间(含A点),离B y千米处,则总运费为 1.5×50(50-y)+1×10y+1×60(120+y)=(10 950- 5y)(元). 因为0<y≤50, 所以当y=50,即仓库建在A处时,总运费最低,最低为10 700元. 综上,仓库建在A处时总运费最低.
解:(1) 方框内的9个数字之和是方框正中间的数字的9倍.
如图所示是某月的月历,带阴影的方框内有9个数字. (1) 探究方框内的9个数字之和与方框正中间的数字 有什么关系? (2) 不改变方框的大小,任意移动方框的位置,你能得 到什么结论?并说明理由. (3)当方框正中间的数字为16时,求方框内9个数字的和. 解:(2) 结论:方框内的9个数字之和是方框正中间的数字的9倍. 理由:设方框正中间的数字为x,则其他的8个数字分别为x-8,x-7,x-6,x-1,x+1, x+6,x+7,x+8. 这9个数字的和为x-8+x-7+x-6+x-1+x+x+1+x+6+x+7+x+8=9x, 所以方框内的9个数字之和是方框正中间的数字的9倍.
4.2整式的加法与减法 (课件)人教版(2024)数学七年级上册

▲
的指数不变.
2. 合并同类项的过程是分配律的逆用.
3.升(降)幂排列看的是某一个字母指数的大小,而不是项的次数.
4. 合并同类项的结果一般需要按照某一字母进行升(降)幂排列.
感悟新知
知2-练
例 3 [母题 教材P96例1 ]合并下列各式的同类项: 解题秘方:合并同类项:将同类项的系数相加,字 母和字母的指数不变.
感悟新知
知3-练
(2)甲种读本比乙种读本多花多少钱? 解 : 由 10m - 8(100 - m)=10m - 800 + 8m=18m - 800 , 可知甲种读本比乙种读本多花的费用为(18m-800)元.
感悟新知
知3-练
8-1.[期中·鄂州梁子湖区] 某商店有一种商品,每件成本 为a 元,原先按成本增加b 元定价出售,售出30 件 后,由于库存积压减价,按售价的90% 出售,又 销售70 件.
(2)某人购置了一套一室一厅的住宅,其中卧室是长为x m,
宽为y m的长方形,客厅的面积为卧室的74,厨房的面积
是卧室的12,还有一卫生间,其面积为卧室的34,他的住 宅总面积为_4_x_y_m__2.
感悟新知
知识点 3 去括号
知3-讲
1. 去括号就是用括号外的数乘括号内的每一项,再把所得 的积相加. 特别地,当括号前没有数字时,看作是“1” 或“-1”与括号相乘.
第四章 整式的加减
4.2 整式的加法与减法
感悟新知
知识点 1 同类项
知1-讲
1. 定义:所含字母相同,并且相同字母的指数也相同的项
••••
••••••••••
叫作同• 类• 项• ,所有的常数项都是同类项.
感悟新知
知1-讲
2. 判断同类项的方法
的指数不变.
2. 合并同类项的过程是分配律的逆用.
3.升(降)幂排列看的是某一个字母指数的大小,而不是项的次数.
4. 合并同类项的结果一般需要按照某一字母进行升(降)幂排列.
感悟新知
知2-练
例 3 [母题 教材P96例1 ]合并下列各式的同类项: 解题秘方:合并同类项:将同类项的系数相加,字 母和字母的指数不变.
感悟新知
知3-练
(2)甲种读本比乙种读本多花多少钱? 解 : 由 10m - 8(100 - m)=10m - 800 + 8m=18m - 800 , 可知甲种读本比乙种读本多花的费用为(18m-800)元.
感悟新知
知3-练
8-1.[期中·鄂州梁子湖区] 某商店有一种商品,每件成本 为a 元,原先按成本增加b 元定价出售,售出30 件 后,由于库存积压减价,按售价的90% 出售,又 销售70 件.
(2)某人购置了一套一室一厅的住宅,其中卧室是长为x m,
宽为y m的长方形,客厅的面积为卧室的74,厨房的面积
是卧室的12,还有一卫生间,其面积为卧室的34,他的住 宅总面积为_4_x_y_m__2.
感悟新知
知识点 3 去括号
知3-讲
1. 去括号就是用括号外的数乘括号内的每一项,再把所得 的积相加. 特别地,当括号前没有数字时,看作是“1” 或“-1”与括号相乘.
第四章 整式的加减
4.2 整式的加法与减法
感悟新知
知识点 1 同类项
知1-讲
1. 定义:所含字母相同,并且相同字母的指数也相同的项
••••
••••••••••
叫作同• 类• 项• ,所有的常数项都是同类项.
感悟新知
知1-讲
2. 判断同类项的方法
数学人教版(2024)七年级上册4.2.3整式的加减 课件(共18张PPT)

4.一名同学在计算3A+B时,误将“3A+B”看成了“3A-B”,求得的结果 是6x2-5x+8,已知B=3x2+7x+3,则3A+B的正确答案为 12x2+9x+14 .
5.已知x+2y=5,3a-4b=7,则代数式(9a-4y)-2(6b+x)的值为 11 .
6.多项式36x2-3x+5与3x3+12mx2-5x+7相加后,不含二次项,则m= -3 .
高/cm c 2c
类型 小纸盒 大纸盒
长/cm a
1.5a
宽/cm b 2b
(2)做大纸盒比做小纸盒多用纸多少平方厘米?
高/cm c 2c
解:(6ab+8bc +6ca)-(2ab+2bc +2ca) =6ab+8bc+6ca-2ab-2bc-2ca =4ab+6bc+4ca. 答:做大纸盒比做小纸盒多用纸(4ab+6bc+4ca) cm².
9
2
解:x²-5xy-3x²-2(1-2xy-x²)
=x²-5xy-3x²-2+4xy+2x²
=-xy-2.
当x 1,y 9 时,
9
2
原式 ( 1) 9 2 1 2 3 .
92
2
2
获取新知
探究点3 整式加减的实际应用
利用整式的加减来解决实际问题的步骤: 1.明确已知条件和需要求解的目标; 2.用字母表示问题中的未知数; 3.用代数式表示各个量之间的关系; 4.对所列代数式进行加减运算; 5.通过计算得到最终结果; 6.检查结果是否合理; 7.写出问题的解答和结论.
《整式的加法与减法》PPT课件 人教版七年级数学上册【2024年秋】

探究新知
学生活动一 【一起探究】 92b+72(b-0.15) ① 92b-72(b-0.15) ②
1.上面的代数式①②要进行加减运算需要先如何做? 需要先去括号
探究新知
学生活动一 【一起探究】 92b+72(b-0.15) ① 92b-72(b-0.15) ②
2.上面的代数式①②应如何去括号进行化简? 可以利用分配律,将括号前的乘数与括号内的各项相乘, 去掉括号,再合并同类项
72a+120a=
(72+120)a=192a
.
探究新知
根据以上探究过程完成下列题目: (1)72a-120a =( 72-120 )a= -48a . (2)3m2+2m2 =( 3+2 )m2= 5m2 . (3)3xy2-4xy2 =( 3-4 )xy2= -xy2 . 思考:上述运算有什么共同特点,你能从中得出 什么规律?
回顾复习
思考:合并同类项和去括号是进行整式加减运算 的基础,同学们还记的合并同类项法则与去括号 法则吗?
回顾复习
合并同类项法则:合并同类项后,所得项的系数是合 并前各同类项的系数的和,字母连同它的指数不变。
去括号法则:一般地,一个数与一个多项式相乘,需 要去括号,去括号就是用括号外的数乘括号内的每一 项,再把所得的积相加。
探究新知
92b 72b 0.15 92b 72b 10.8 164b 10.8 92b 72b 0.15 92b 72b 10.8 20b 10.8
思考:请同学们根据以上探究过程总结一下去括号法则
探究新知
去括号法则:一般地,一个数与一个多项式相乘, 需要去括号,去括号就是用括号外的数乘括号内的 每一项,再把所得的积相加。 特别地,+(x-3)与-(x-3)可以看作1与-1分别相乘, 得:+(x-3)=x-3,-(x-3)=-x+3
人教版七年级数学上册《整式》整式的加减PPT课件

B.系数是1,次数是6; D.系数是-1,次数是6;
2.单项式 -4πr2 的系数及次数分别为( C )
A. -4,2
B.-4,3
C. 4π ,2
D. 4π ,3
当堂训练
3.如果 1 a2b2n1 是五次单项式,则n的值为( B )
2
A.1
B.2
C.3
D.4
课堂小结
单项式
概念:数或字母的积组成的式子 (包括单独的数或字母) 系数:单项式中的数字因数 次数:所有字母的指数的和
第四章 整式的加减
4.1 整式
第2课时 多项式和整式
学习目标
1. 掌握多项式、多项式的项、次数以及常数项 的概念. 2. 会准确迅速的确定一个多项式的项数和次数. 3. 归纳出整式的概念会区别单项式和多项式.
学习重难点
学习重点:理解多项式、多项式的项与次 数概念以及整式的概念.
学习难点:正确的找出多项式的项和次数.
单项式与多项式统称为整式。
巩固练习
用多项式填空,并指出它们的项和次数。
(1)一个长方形相邻两边长分别为a,b,则这个长方形的
周长为 2a+2b . (2)m为一个有理数,m的立方与2的差为 m3-2 .
(3)某公司向某地投放共享单车,前两年每年投放a辆,为环 保和安全起见,从第三年年初起不再投放,且每个月回b辆,第
课堂小结
巩固练习
练一练:判断下列代数式是否是单项式?
4b2
,
π,2+3m
,3xy
,
a 3
,
1 t
答:4b2
,
π,3xy
,
a 3
是单项式.
探究新知
学生活动二 【一起探究】
整式的加减课件人教版七年级数学上册(完整版)

解:设土豆重a千克,篮子重b千克,则应换苹果0.5a 千克.若不称篮子,则实换苹果为0.5a+0.5b-b= (0.5a-0.5b)千克,很明显小明奶奶少得苹果0.5b千 克.所以摊主说得没有道理,这样做小明奶奶吃亏了.
水库中水位第一天连续下降了a小时,每小时平均 下降2cm;第二天连续上升了a小时,每小时平均 上,这两天水位总的变化情况如何?
其中x =1/2; 分析:在多项式求值时,可以先将多项式 中的同类项合并,然后再代入求值,这样可 以简化计算.
解:(1) 2x2 5x x2 4x 3x2 2 x 2. 当x =1/2时,原式=-5/2
例3 (2)求多项式 3a abc 1 c2 3a 1 c2 的值,
3
3
其中a=-1/6,b=2,c=-3.
解:3a abc 1 c2 3a 1 c2 =abc
3
3
当a=-1/6,b=2,c=-3时,原式=1.
例4 一天,王村的小明奶奶提着一篮子土豆去换苹 果,双方商定的结果是:1千克土豆换0.5千克苹果.当 称完带篮子的土豆重量后,摊主对小明奶奶说:“别 称篮子的重量了,称苹果时也带篮子称,这样既省事 又互不吃亏.”你认为摊主的话有道理吗?请你用所 学的有关数学知识加以判定.
与字母在单项式中的排列顺序无关; (2)抓住“两个相同”:一是所含的字母要完全相
同,二是相同字母的指数要相同,这两个条件缺 一不可.
(3)不要忘记几个单独的数也是同类项.
例1 (1)在6xy-3x2-4x2y-5yx2+x2中没有同类 项的项是 6xy . (2)如果2a2bn+1与-4amb3是同类项,则m= 2 , n= 2 . 分析:根据同类项的定义,可知a的指数 相同,b的指数也相同,即m=2,n+1=3.
水库中水位第一天连续下降了a小时,每小时平均 下降2cm;第二天连续上升了a小时,每小时平均 上,这两天水位总的变化情况如何?
其中x =1/2; 分析:在多项式求值时,可以先将多项式 中的同类项合并,然后再代入求值,这样可 以简化计算.
解:(1) 2x2 5x x2 4x 3x2 2 x 2. 当x =1/2时,原式=-5/2
例3 (2)求多项式 3a abc 1 c2 3a 1 c2 的值,
3
3
其中a=-1/6,b=2,c=-3.
解:3a abc 1 c2 3a 1 c2 =abc
3
3
当a=-1/6,b=2,c=-3时,原式=1.
例4 一天,王村的小明奶奶提着一篮子土豆去换苹 果,双方商定的结果是:1千克土豆换0.5千克苹果.当 称完带篮子的土豆重量后,摊主对小明奶奶说:“别 称篮子的重量了,称苹果时也带篮子称,这样既省事 又互不吃亏.”你认为摊主的话有道理吗?请你用所 学的有关数学知识加以判定.
与字母在单项式中的排列顺序无关; (2)抓住“两个相同”:一是所含的字母要完全相
同,二是相同字母的指数要相同,这两个条件缺 一不可.
(3)不要忘记几个单独的数也是同类项.
例1 (1)在6xy-3x2-4x2y-5yx2+x2中没有同类 项的项是 6xy . (2)如果2a2bn+1与-4amb3是同类项,则m= 2 , n= 2 . 分析:根据同类项的定义,可知a的指数 相同,b的指数也相同,即m=2,n+1=3.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例2 求多项式与的和. 4 5x2 3x 2x 7x2 3
解: (4 5x2 3x) (2x 7x2 3)
新课讲解
有括号要先去括号
4 5x2 3x 2x 7x2 3 有同类项再合并同类项 (5x2 7x2 ) (3x 2x) (4 3)
2x2 x 1.
(2)(7m2-4mn-n2)-(2m2-mn+2n2).
(3)-3(3x+2y)-0.3(6y-5x).
(4)(
1 3
a3-2a-6)-
1 2
(
1 2
a3-4a-7).
答案:(1) 8 ab3 a3b 5a2b. (2)5m2 3mn 3n2. 3
(3) 7.5x 7.8y. (4) 1 a3 5 . 12 2
结论:
这些和都是 11的倍数.
(10a+b)+(10b+_a)=_1_0_a_+__b_+_1_0_b_+__a=11a+11b=11(a+b) .
新课讲解
任意写一个三位数
交换它的百位数 字与个位数字, 又得到一个数
两个数相减 你又发现什么了规律?
新课讲解
举例: 原三位数728,百位与个位交换后的数为
=99a-99c =99(a-c)
新课讲解
在上面的两个问题中,分别涉及了整式的什 么运算?说说你是如何运算的?
整式的加减运算
八字诀 去括号、合并同类项
新课讲解
例1 计算: (1)(2a-3b)+(5a+4b);(2)(8a-7b)-(4a-5b).
解: (1)(2a-3b)+(5a+4b) =2a-3b+5a+4b 去括号 =7a+b. 合并同类项 (2)(8a-7b)-(4a-5b) =8a-7b-4a+5b 去括号 =4a-2b. 合并同类项
小组游戏
任意写一个两位数
新课引入
交换它的十位 数字与个位数字,
又得到一个数
两个数相加
重复几次看看,谁能先发现这些和有什么规律? 对于任意一个两位数都成立吗?
1 整式的加减
新课讲解
如果用a,b分别表示一个两位数 的十位数字和个位数字,那么这个两 位数可以表示为: 10a+b .交换这个 两位数的十位数字和个位数字,得到 的数是: 10b+a .将这两个数相加:
D. 五次多项式
4.多项式
与多项式
的
和不含二次项,则m为( C )
A.2 B.-2 C.4 D.-4
5.已知 则
-9a2+5a-4
随堂即练
6.若mn=m+3,则2mn+3m-5mn+10=___1___.
7.计算
随堂即练
(1)-
5 3
ab3+2a3b-
9 2
a2b-ab3-
1 2
a2b-a3b.
(1)做这两个纸盒共用料多少平方厘米?
c ab
2c
2b 1.5a
新课讲解
解:小纸盒的表面积是(2ab +2bc+2ca)cm2 大纸盒的表面积是( 6ab +8bc + 6ca)cm2
(1)做这两个纸盒共用料 (2ab+2bc+2ca)+(6ab+8bc+6ca) =2ab+2bc+2ca+6ab+8bc+6ca =8ab+10bc+8ca(cm2)
的和等于
随堂即练
,
2.长方形的一边长等于3a+2b,另一边比它大a-b,那么 这个长方形的周长是( A ) A.14a+6b B.7a+3b C.10a+10b D.12a+8b
随堂即练
3.若A是一个二次二项式,B是一个五次五项式,
则B-A一定是( D )
A.二次多项式
B.三次多项式
C.五次三项式
整式加减的应用
结果中不能再有同类项
练一练:求上述两多项式的差.
答案: − 12x2+5x+7
新课讲解
1.几个整式相加减,通常用括号把每一个整式 括起来,再用加、减连接,然后进行运算. 2.整式加减实际上就是: 去括号、合并同类项. 3.运算结果,常将多项式的某个字母(如x)的 降幂(升幂)排列.
2 整式的加减的应用
例3 一种笔记本的单价是x元,圆 珠笔的单价是y元.小红买这种笔 记本3本,买圆珠笔2支;小明买 这种笔记本4本,买圆珠笔3支.买 这些笔记本和圆珠笔,小红和小 明一共花费多少钱?
新课讲解
新课讲解
解:小红买笔记本和圆珠笔共花费(3x+2y)元, 小明买笔记本和圆珠笔共花费(4x+3y)元.
小红和小明一共花费(单位:元) (3x+2y)+(4x+3y) =3x+2y+4x+3y =7x+5y 你还能有其 他解法吗?
新课讲解
(2)做大纸盒比小纸盒多用料多少平方厘米? 小纸盒的表面积是(2ab+2bc+2ca)cm 2 大纸盒的表面积是(6ab+8bc+6ca)cm 2
(2)做大纸盒比做小纸盒多用料 (6ab+8bc+6ca)-(2ab+2bc+2ca) =6ab+8bc+6ca- 2ab-2bc-2ca =4ab+6bc+4ca(cm 2)
2πR+2πr1+2πr2+2πr3=2πR+2π(r1+r2+r3), 因为2r1+2r2+2r3=2R,所以r1+r2+r3=R,因此图(2)
的周长为2πR+2πR=4πR. 这两种方案,用材料一样多,将三个小圆改为n个 小圆,用料还是一样多.
课堂总结
整式的加减
整式加减的步骤
列代数式 去括号 合并同类项
+
1
2
4
a2b)-2b2+3的值”,马小虎做题时把a=2错
4
抄成a=-2,王小真没抄错题,但他们做出的结果
却都一样,你知道这是怎么回事吗?说明理由.
解:将原多项式化简后,得-b2+b+3.
因为这个式子的值与a的取值无关,所以
即使把a抄错,最后的结果都会一样.
1.已知一个多项式与 则这个多项式是(A )
随堂即练
8.某公司计划砌一个形状如下图(1)的喷水池, 后有人建议改为如下图(2)的形状,且外圆直径 不变,只是担心原来备好的材料不够,请你比较两 种方案,哪一种需用的材料多(即比较两个图形的 周长)?若将三个小圆改为n个小圆,又会得到什 么结论?
随堂即练
2r1+2r2+2r3=2R R
思路点拨: 设大圆半径为R,小圆半径依次为r1,r2,r3, 则图(1)的周长为4πR,图(2)的周长
2.2 整式的加减
第3课时 整式的加减
学习目标
一、基本目标 【知识与技能】 1.理解同类项的概念,在具体情境中认识同类项. 2.理解合并同类项的概念,掌握合并同类项的法则. 【过程与方法】 通过活动讨论得出同类项的定义,培养同学的分类、归纳思想. 【情感态度与价值观】 经历同类项概念的形成过程,培养学生自主探索知识和合作交流的能力,体会数学与生活 的密切联系. 二、重难点目标 【教学重点】理解同类项的概念,掌握合并同类项的法则. 【教学难点】根据同类项的概念在多项式中找同类项,并能正确地合并.
新课讲解
分别计算笔记本 和圆珠的花费.
另解:小红和小明买笔记本共花费(3x+4x)元, 买圆珠笔共花费(2y+3y)元.
小红和小明一共花费(单位:元)
(3x+4x)+(2y+3y) =7x+5y
新课讲解
例4 做大小两个长方体纸盒,尺寸如下(单位:cm): 长宽高
小纸盒 a b c 大纸盒 1.5a 2b 2c
新课讲解
总结归纳: 整式加减解决实际问题的一般步骤:
⑴ 根据题意列代数式; ⑵ 去括号、合并同类项.; ⑶ 得出最后结果.
新课讲解
例5
求
1 2
x
2( x
1 3
y2
)
(
3 2
x
1 3
y
2
)
的值,
其中 x 2, y 2
3
先将式子化简,
解: 1 x 2(x 1 y2 ) ( 3 x 1 y2 )
2
3
23
再代入数值进 行计算
﹜ 1 x 2x 2 y2 3 x 1 y2
2
3 23
→去括号
将式子化简
3x y2
→合并同类项
当
x
2,
y
2 3
时,
原式
(3) (2)
2 3
2
6
4 9
6
4. 9
能力提升
有这样一道题“当a=2,b=-2时,求多项式
3a3b3- 1 a2b+b-(4a3b3- 1 a2b-b2)+(a3b3
827,由728 -827= -99.你能看出什么规律并
验证它吗?
任意一个三位 数可以表示成 100a+10b+c
新课讲解
验证: 设原三位数为100a+10b+c,百位与个
位交换后的数为100c+10b+a,它们的差为:
(100a+10b+c)-( 100c+10b+a)
= 100a+10b+c-100c-10b-a