高一数学《基本初等函数》测试题

合集下载

高一数学必修一第二章《基本初等函数Ⅰ》测试 附有答案!

高一数学必修一第二章《基本初等函数Ⅰ》测试 附有答案!

高一第二章《基本初等函数Ⅰ》测试一、选择题: 1.若32a =,则33log 82log 6-用a的代数式可表示为( )()A a -2 ()B 3a -(1+a )2 ()C 5a -2 ()D 3a -a 22.下列函数中,值域为(0,)+∞的是( )()A 125xy -= ()B 11()3xy -= ()C y =()D y = 3. 设1a >,实数,x y 满足()xf x a =,则函数()f x 的图象形状大致是(4.世界人口已超过56亿,若按千分之一的年增长率计算,则两年增长的人口就可相当于一个()()A 新加坡(270万) ()B 香港(560万) ()C 瑞士(700万)()D 上海(1200万)5.已知函数l o g (2)a y a x =-在[0,1]上是x 的减函数,则a 的取值范围是 ( )()A (0,1) ()B (0,2) ()C (1,2) ()D [2,+∞)6.函数lg (1)(01)()1lg() (10)1x x f x x x-≤<⎧⎪=⎨-<<⎪+⎩,则它是( )()A 偶函数且有反函数 ()B 奇函数且有反函数 ()C 非奇非偶函数且有反函数 ()D 无反函数 二、填空题:7.函数()1log 15.0-=x y 的定义域是 .8.化简⨯53xx 35xx ×35xx = .9.如图所示,曲线是幂函数y x α=在第一象限内的图象,已知α分别取11,1,,22-四个值,则相应图象依次为 .10.定义在(0,)+∞上的函数对任意的,(0,)x y ∈+∞,都有()()()f x f y f xy +=,且当01x << 上时,有()0f x >,则()f x 在(0,)+∞上的单调性是 . 三、解答题:(.解答应写出文字说明,证明过程或演算步骤.) 11.(Ⅰ)求x x x x f -+--=4lg 32)(的定义域; (Ⅱ)求212)(x x g -=的值域.12.若()1log 3,()2log 2x x f x g x =+=,试比较()f x 与()g x 的大小.13.已知函数2()(0,0)1bxf x b a ax =≠>+.(1)判断()f x 的奇偶性; (2)若3211(1),log (4)log 422f a b =-=,求a ,b 的值.14.已知函数()x f 满足()()()1,01log 12≠>--=-a a xx a a x f a , (Ⅰ)求()x f 的解析式并判断其单调性;(Ⅱ)对定义在()1,1-上的函数()x f ,若()()0112<-+-m f m f ,求m 的取值范围;(Ⅲ)当()2,∞-∈x 时,关于x 的不等式()04<-x f 恒成立,求a 的取值范围.参考答案(仅供参考):ABADCB , 7(1,2), 8、1, 9、C4,C2,C3,C1 10单调递减, 11.(Ⅰ){243}x x x ≤<≠且 (Ⅱ)(0,2] 12.f (x)-g(x)=log x 3x-log x 4=log x 43x.当0<x<1时,f(x)>g(x);当x=34时,f(x)=g(x);当1<x<34时,f(x)<g(x);当x>34时,f(x)>g(x). 13解:(1)()f x 定义域为R ,2()()1bxf x f x ax --==-+,故()f x 是奇函数. (2)由1(1)12b f a ==+,则210a b -+=.又log 3(4a -b )=1,即4a -b =3. 由{21043a b a b -+=-=得a =1,b =1.14. (Ⅰ) 21()()1xxa f x a a a =-- …………………2′证明在(1,1)-上单调递增 ……………………………………4′(Ⅱ)判断函数()f x为奇函数,22111111111m m m m m -<-<⎧⎪-<-<⇒<<⎨⎪-<-⎩…4′(Ⅲ)[2(1,2 ………………4′。

(word完整版)高一数学基本初等函数测试题

(word完整版)高一数学基本初等函数测试题

8、若集合R} , M={y|y=x2,x R},则下列结论中正确的是…高一数学《基本初等函数》测试题一、选择题:本大题共 15小题,共50分.在每小题给出的四个选项中,只有一项是符合 题目要求的.1下列函数是幕函数的是4、若 100a 5, 10b 2,则 2a b =C 、25、函数y= log 1(2x 1)的定义域为1A.( 3 , +x ) B . [ 1, +x )2A 、 y 2xB 、y x 3xC 、y 3x1x 212、 计算-log 312 log 3 2 •…2A. '、3B. 2 3C.— 2 3、 设集合A {x|x 1 0},BD.3{x|log 2 x 0|},则A B等于A . {x| x 1}B . {x| x 0}C . {x|x 1}D . {x | x()1C.( 1,1]D. ( — x, 1)6、已知f(x)=|lgx|,则匕)、f (3)、 f(2)的大小关系是……A. f(2)f(3)f(;)B. f(4)f(1)f(2)C. f (2)f(4)f©D.f(1)f(2)7、方程:lgx lg(x 3) 1的解为 x =(A 5 或-2、无解CB-2D、5A 、a 5或 a 2B 、2 a 3或3 a 5C 、2a5D 、3a4xxe e11、 已知f (x)- ............................................................ ——,则下列正确的是 ()2A •奇函数,在R 上为增函数B •偶函数,在R 上为增函数C .奇函数,在R 上为减函数D •偶函数,在R 上为减函数1112、 ................................................................ 已知logalog b 0,则a,b 的关系是 .............................................. () 33A 1<b<aB 1<a<bC 0<a<b<1D 0<b<a<1 13、世界人口已超过56亿,若按千分之一的年增长率计算,则两年增长的人口就可相当于一个 ............................................... ()A.M np={2 , 4}B. M HP ={4 , 16}C.M=PD.P M9、已知 f (X) lOg a X , g(x) lOg bh(x) log d x 的图象如图所示则A. c d aC. d c ab B.cd b a b D. d c b a 10. 在 b log (a 2) (5a)中,实数a 的取值范围是A.新加坡(270万)B •香港(560万)C •瑞士( 700万)D.上海(1200万)14若函数f (x) log a x(0 a 1)在区间a,2a上的最大值是最小值的3倍,则a的值为C、(a 1)x2在同坐标系中的图象只能是图中的二、填空题.(每小题3分)16•函数y (2 a)x在定义域内是减函数,则a的取值范围是__________________ 。

高一数学基本初等函数精选测试题

高一数学基本初等函数精选测试题

基本初等函数练习卷一、选择题(本大题共12小题,每小题5分,共60分) 1、函数1213log (1)(1)y x x -=++-的定义域是()A .(-1,0)B .(-1,1)C .(0,1)D .(0,1]2、下列函数在(0,+∞)上是增函数并且是定义域上的偶函数的是( )A .23y x = B .12xy ⎛⎫= ⎪⎝⎭C .y =ln xD .y =x 2+2x +33、已知x x f 26log )(=,则=)8(f ( )A.34 B. 8 C. 18 D.21 4、已知函数e 1,1,()ln ,1,x x f x x x ⎧-≤=⎨>⎩那么f (ln 2)的值是( )A .0B .1C .ln(ln 2)D .25、函数x y a =与log (0,1)a y x a a =->≠且在同一坐标系中的图象可能是( )A B C D6、设a =log 0.50.6,b =log 1.10.6,c =1.10.6,则a ,b ,c 的大小关系是( )A .a <b <cB .b <c <aC .b <a <cD .c <a <b 7、函数(为自然对数的底数)对任意实数、,都有( )A. B. C. D. 8、已知幂函数()f x 的图象经过点(4,2), 则下列命题正确的是( )A. ()f x 是偶函数B. ()f x 是单调递增函数C. ()fx 的值域为R D. ()f x 在定义域内有最大值9、若y=log a (2-ax)在[0,1]上是减函数,则a 的取值范围为( ) (A)(0,1) ( B)(1,2) (C)(0,2) (D)(1,+∞)10、已知函数2()1,()43x f x e g x x x =-=-+-,若有()()f a g b =,则b 取值范围( )()()()f x y f x f y =+()()()f x y f xf y =()()()fx y fx fy +=+()()()f x y f x f y +=y x e ()xf x e=yxyxyxy xA. 22,22⎡⎤-+⎣⎦B. (22,22)-+C. []1,3D. ()1,311、函数y =e|-ln x |-|x -1|的图象大致是( )12、给出幂函数①f(x)=x ;②f(x)=x 2;③f(x)=x 3;④f(x)=x ;⑤f(x)=1x. 其中满足条件f 12()2x x +>12()()2f x f x + (x 1>x 2>0)的函数的个数是 ( ) A .1个 B .2个 C .3个 D .4个 二、填空题(本大题共4小题,每小题4分,共16分)13、当a >0且a ≠1时,函数f (x)=a x -2-3必过定点 . 14、函数652-+-=x x y 的单调增区间是15、已知函数2()f x x bx c =++,对任意x R ∈都有(1)()f x f x +=-,则(2)f -、 (0)f 、(2)f 的大小顺序是 .16.下列说法中:① 若2()(2)2f x ax a b x =+++(其中[21,4]x a a ∈-+)是偶函数,则实数2b =; ② 20132013)(22-+-=x x x f 既是奇函数又是偶函数;③ 函数()()43ln 2--=x x x f 的减区间是⎪⎭⎫ ⎝⎛+∞,23;④ 已知()f x 是定义在R 上的不恒为零的函数,且对任意的,x y R ∈都满足()()()f x y x f y y f x ⋅=⋅+⋅,则()f x 是奇函数。

高一数学基本初等函数Ⅰ试题答案及解析

高一数学基本初等函数Ⅰ试题答案及解析

高一数学基本初等函数Ⅰ试题答案及解析1.方程的根的情况是()A.仅有一根B.有两个正根C.有一正根和一个负根D.有两个负根【答案】C【解析】主要考查指数函数、对数函数的图象和性质。

解:采用数形结合的办法,在同一坐标系中,画出的图象可知。

2.已知 .【答案】8【解析】主要考查指数函数、二次函数的性质。

利用换元法。

解:可化为,令,又因为所以,,,故。

3.若下列命题正确的个数为()A.0B.1C.2D.3【答案】B【解析】主要考查对数运算法则。

解:根据对数的运算性质易知只有④是正确的。

4.已知_____________【答案】【解析】主要考查对数运算。

解:5.已知镭经过100年,剩留原来质量的95.76%,设质量为1的镭经过x年的剩留量为y,则y 与x的函数关系是A.y=(0.9576)B.y=(0.9576)100xC.y=()x D.y=1-(0.0424)【答案】A【解析】设每年减少q%,因为镭经过100年,剩留原来质量的95.76%,所以=95.76%, q%=1-(0.9576),所以=(0.9576)。

故选A。

【考点】主要考查函数的概念、解析式,考查应用数学知识解决实际问题的能力。

点评:审清题意,构建函数解析式。

6.一个体户有一种货,如果月初售出可获利100元,再将本利都存入银行,已知银行月息为2.4%,如果月末售出可获利120元,但要付保管费5元,问这种货是月初售出好,还是月末售出好?【答案】当成本大于525元时,月末售出好;成本小于525元时,月初售出好.【解析】解:设这种货的成本费为a元,则若月初售出,到月末共获利润为:y1=100+(a+100)×2.4%若月末售出,可获利y2=120-5=115(元)y 2-y1=0.024a-12.6=0.024(a-525)故当成本大于525元时,月末售出好;成本小于525元时,月初售出好.【考点】主要考查函数模型的广泛应用,考查应用数学知识解决实际问题的能力。

高一数学必修1《基本初等函数Ⅰ》测试卷(含答案)

高一数学必修1《基本初等函数Ⅰ》测试卷(含答案)

第二章《基本初等函数Ⅰ》测试卷考试时间:120分钟 满分:150分一.选择题.(本大题共12小题,每小题5分,共60分)1.给出下列说法:①0的有理次幂等于0;②01()a a R =∈;③若0,x a R >∈,则0a x >;④11221()33-=.其中正确的是( )A.①③④B.③④C.②③④D. ③ 2.552log 10log 0.25+的值为( )A.0B.1C.2D.4 3.函数2()3x f x =的值域为( )[A.[)0,+∞B.(],0-∞C.[)1,+∞D.(),-∞+∞4.幂函数2()(1),(0,)m f x m m x x =--∈+∞当时为减函数,则m 的值为( ) A.1 B.1- C.12-或 D.25.若函数2013()2012(0,1)x f x a a a -=->≠且,则()f x 的反函数图象恒过定点( ) A.(2013,2011)B.(2011,2013)C.(2011,2012)D.(2012,2013)6.函数22()log (1)()f x x x x R =++∈的奇偶性为( ) A.奇函数而非偶函数 B.偶函数而非奇函数C.非奇非偶函数D.既是奇函数又是偶函数-7. 若函数()log (01)a f x x a =<<在区间[],2a a 上的最大值是最小值的2倍,则a 的值为( )A. 24B. 22C. 14D. 128.如果60.7a =,0.76b =,0.7log 6c =,则( )A.a b c <<B.c b a <<C.c a b <<D.b c a <<9.函数2()log (1)2f x x =++的单调递增区间为( ) A.()1,-+∞ B.[)0,+∞ C.[]1,2 D.(]0,110.当1a >时,在同一坐标系中,函数x y a -=与log xa y =的图象是下图中的( )}11.对于0,1a a >≠,下列说法中,正确的是( )①若M N =则log log a a M N =; ②若log log a a M N =则M N =; ③若22log log a a M N =则M N =; ④若M N =则22log log a a M N =?A.①②③④B.①③C.②④D.②12.已知R 上的奇函数()f x 和偶函数()g x 满足()()2(0,1)x x f x g x a a a a -+=-+>≠且,若(2),(2)g a f =则的值为( )A.2B.154 C.174D.2a 二.填空题.(本大题共4小题,每小题5分,共20分)13.设12322()((2))log (1)2x e x f x f f x x -⎧<⎪=⎨-≥⎪⎩,,则的值为, . 14.函数215()log (1)f x x =+的单调递减区间为 .15.已知23234(0),log 9a a a =>则的值为 .16.关于函数()2x f x -=,对任意的1212,,x x R x x ∈≠且,有下列四个结论:&()(0)0()0,F x F x F x ∴=⎧⎪=⎨又是a0∴<①当max 1241()()/xf t -⎡∴∈⎢⎣=5.0lg1.5L =+(0)1(2)f ∴=对任意的。

(完整word版)高一年级数学《基本初等函数》测试题

(完整word版)高一年级数学《基本初等函数》测试题

高一数学《基本初等函数》测试班级 姓名 座号一、选择题(共42分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1、下列函数是幂函数的是A、22y x = B 、3y x x =+ C 、3xy = D 、12y x = 2、计算331log 12log 22-= A. 3 B. 23 C. 21D.33、设集合 等于A .}1|{>x xB .}5.0|{-<x xC .}1|{-<x xD .}11|{>-<x x x 或4、若210,5100==ba,则b a +2=A 、0B 、1C 、2D 、3 5、函数12y=log (21)x -的定义域为A .(21,+∞) B .[1,+∞) C .(21,1] D .(-∞,1) 6、已知f(x)=|lgx|,则11()()(2)43f f f 、、的大小关系是A. )41()31()2(f f f >>B. )2()31()41(f f f >>C. )31()41()2(f f f >>D. )2()41()31(f f f >>7、在(2)log (5)a b a -=-中,实数a 的取值范围是A 、52a a ><或B 、2335a a <<<<或C 、25a <<D 、34a <<8、已知()log a f x x =,()log b g x x =,()log c r x x =,()log d h x x =的图象如图所示则a,b,c,d 的大小为A.c d a b <<<B.c d b a <<<C.d c a b <<<D.d c b a <<< 9.方程2||lg +=x x 的解的个数为A 、0B 、1C 、2D 、310、已知2)(xx e e x f --=,则下列正确的是BA x xB x x A ⋂>=<+=则},0||log |{},012|{2A .奇函数,在R 上为增函数B .偶函数,在R 上为增函数C .奇函数,在R 上为减函数D .偶函数,在R 上为减函数 11、已知031log 31log >>b a,则a,b 的关系是 A 1<b<a B 1<a<b C 0<a<b<1 D 0<b<a<112、世界人口已超过56亿,若按千分之一的年增长率计算,则两年增长的人口就可相当于一个A .新加坡(270万)B .香港(560万)C .瑞士(700万)D .上海(1200万) 13、若函数 ()log (01)a f x x a =<<在区间[],2a a 上的最大值是最小值的3倍,则a 的值为A 、24 B 、22 C 、14 D 、1214、已知0<a <1,则函数xy a =和2(1)y a x =-在同坐标系中的图象只能是图中的题号 1234567891011121314答案二、 填空题.(每小题3分,共18分)15.幂函数)(x f 的图象过点(2,22),则)(x f = 。

高一数学基本的初等函数有答案

高一数学基本的初等函数有答案

xxxXXXXX 学校XXXX 年学年度第二学期第二次月考XXX 年级xx 班级姓名:_______________班级:_______________考号:_______________一、填空题(每空? 分,共? 分)1、已知函数的值域为,则的取值范围是 ▲ .2、函数的减区间是3、已知函数的定义域为导函数为,则满足的实数的取值范围为4、若满足,满足,则+= .二、选择题(每空? 分,共? 分)5、已知函数图象的两条对称轴x =0和x =1,且在x ∈[-1,0]上单调递增,设,,,则的大小关系是 ( )A .B .C .D .6、已知,则的解集为 ( )A.(-∞,-1)∪(0,) B.(-∞,-1)∪(,+∞)C.(-1,0)∪(,+∞) D.(-1,0)∪(0,)7、计算= ( )A. B. C. D.8、设偶函数上递增,则的大小关系是()A. B.C. D.9、函数在区间上的值域是 ,则点的轨迹是图中的()A.线段AC和线段BD B.线段AB和线段CDC.线段AD和线段BC D.线段AB和线段AD10、偶函数上单调递增,则的大小关系是()A. B.C. D.11、如下四个函数:①②③④,性质A:存在不相等的实数、,使得,性质B:对任意,以上四个函数中同时满足性质A和性质B的函数个数为()A.4个 B.3个 C. 2个 D.1个12、函数与的图像关于直线()对称;A. B C D13、定义在R上的函数满足当时,是单调增函数,若且,则的值为()A.恒小于零B.可能为零C.恒大于零D.不确定14、若,则(A) (B) (C) (D)15、设函数是定义在R上周期为3的奇函数,若,则有A .且 B. 或 C. D.16、已知函数的定义域为,若其值域也为,则称区间为的保值区间.若的保值区间是,则的值为A.1 B . C. D.三、计算题(每空?分,共?分)17、已知函数R ,且.(I )若能表示成一个奇函数和一个偶函数的和,求的解析式;(II)命题P:函数在区间上是增函数;命题Q:函数是减函数.如果命题P、Q有且仅有一个是真命题,求a的取值范围;(III)在(II)的条件下,比较的大小.18、已知函数是上的奇函数,且单调递减,解关于的不等式,其中且.19、已知函数f(x)=,x∈[1,+∞(1)当a=时,求函数f(x)的最小值(2)若对任意x∈[1,+∞,f(x)>0恒成立,试求实数a的取值范围(3)求f(x)的最小值20、设,,函数,(1)设不等式的解集为C,当时,求实数取值范围;(2)若对任意,都有成立,试求时,的值域;(3)设,求的最小值.参考答案一、填空题1、102、(0, 1)3、4、 5二、选择题5、D6、A7、B8、B9、 B10、D11、C12、B13、C14、C15、B16、A三、计算题17、.解:(1)解得(2)在区间上是增函数,解得又由函数是减函数,得∴命题P为真的条件是:命题Q为真的条件是:.又∵命题P、Q有且仅有一个是真命题,(2)由(1)得设函数.∴函数在区间上为增函数.又18、解:因为是上的奇函数,所以可化为.又单调递减,且,所以,即. ……………….4分①当时,,而,所以;……………………………6分②当时,,解得或;…………………..8分③当时,,而,所以. ……………………………….10分综上,当或时,不等式无解;当时,不等式的解集为. ………………………………………………12分19、解(1) 当a=时,f(x)=x++2∵f(x)在区间[1,+∞上为增函数,∴f(x)在区间[1,+∞上的最小值为f(1)= .。

基本初等函数练习题与答案

基本初等函数练习题与答案

5.
1
3x 3x 3x 3x 3, x 1 1 3x
6.

x
|
x

1

,y
|
y

0,
且y

1
2x
1
0,
x

1

y

1
8 2 x 1

0, 且y
1

2
2
7. 奇函数 f (x) x2 lg(x x2 1) x2 lg(x x2 1) f (x)
84 411
212 222
212 (1 210 )
3. 2 原式 log2 5 2 log2 51 log2 5 2 log2 5 2
4. 0 (x 2)2 ( y 1)2 0, x 2且y 1, logx ( yx ) log2 (12 ) 0
4.若函数
f
(x)
1
m ax 1
是奇函数,则 m
为__________。
5.求值:
2
27 3

2log2 3
log2
1 8

2 lg(
3
5
3
5 ) __________。
三、解答题
1.解方程:(1) log4 (3 x) log0.25 (3 x) log4 (1 x) log0.25 (2x 1)

log a
(1
1 a
)

log a
(1

a)

log a
(1

1 a
)
③ a1a
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题:本大题共15小题,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1、下列函数是幂函数的是…………………………………………………( ) A、2
2y x = B 、3
y x x =+ C 、3x
y = D 、12
y x =
2、计算331
log 12log 22
-=…………………………………………………( )
A. 3
B. 23
C. 2
1
3、设集合 等于 ( )
A .}1|{>x x
B .}0|{>x x
C .}1|{-<x x
D .}11|{>-<x x x 或 4、若210,5100==b a ,则b a +2=………………… …………………( )
A 、0
B 、1
C 、2
D 、3
5、函数12
y=log (21)x -的定义域为 ………………………………………( )
A .(2
1,+∞)
B .[1,+∞)
C .(
2
1
,1] D .(-∞,1)
6、已知f(x)=|lgx|,则11
()()(2)43f f f 、、的大小关系是……………………( )
A. )41()31()2(f f f >>
B. )2()31
()41(f f f >>
C. )31()41()2(f f f >>
D. )2()41
()31(f f f >>
7、方程:lg lg(3)1x x +-=的解为x = ( )
A 、5或-2
B 、5
C 、-2
D 、无解 8、若集合x P={y|y=2,x R}∈,2M={y|y=x ,x R}∈,则下列结论中正确的是…( )
∩P={2,4} B. M ∩P ={4,16} =P M
9、已知()log a f x x =,()log b g x x =,()log c r x x =,
B A x x B x x A ⋂>=>-=则|},0log |{},01|{2
()log d h x x =的图象如图所示则a,b,c,d 的大小为 ( )
A.c d a b <<<
B.c d b a <<<
C.d c a b <<<
D.d c b a <<<
10


(2)log (5)
a b a -=-中,实数a 的取值范围是
( )
A 、52a a ><或
B 、2335a a <<<<或
C 、25a <<
D 、34a <<
11、已知2
)(x
x e e x f --=,则下列正确的是……………………………( )
A .奇函数,在R 上为增函数
B .偶函数,在R 上为增函数
C .奇函数,在R 上为减函数
D .偶函数,在R 上为减函数
12、已知03
1
log 31log >>b a ,则a,b 的关系是……………………………………( )
A 1<b<a
B 1<a<b
C 0<a<b<1
D 0<b<a<1
13、世界人口已超过56亿,若按千分之一的年增长率计算,则两年增长的人口就可相当于一个………………………………………………………………( ) A .新加坡(270万) B .香港(560万) C .瑞士(700万)D .上海(1200万) 14、若函数 ()log (01)a f x x a =<<在区间[],2a a 上的最大值是最小值的3倍,则a 的值为( ) A 、
2 B 、2 C 、14 D 、1
2
15、已知0<a <1,则函数x y a =和2(1)y a x =-在同坐标系中的图象只能是图中的
二、 填空题.(每小题3分)
16.函数(2)x y a =-在定义域内是减函数,则a 的取值范围是 。

17.若lg2=a ,lg3=b ,则log 512=________.
18.已知函数)]91
(f [f ,)0x (20)(x x log )x (f x
3则,,⎩
⎨⎧≤>=的值为 19、函数2)23x (lg )x (f +-=恒过定点 20.幂函数()f x
的图象过点,则()f x 的解析式是
__
21、a
4
log 15
<,则a 的取值范围是_________________________. 三、解答题 (每题都要求写出详细的解答过程) 22、求下列各式中的x 的值(共15分,每题5分)
1)1x (ln )1(<- 0231)2(x
1<-⎪


⎝⎛-
23、求下列各式的值:(共10分,每题5分)
(1)100
1
(e e )+log 2(log 216) (2)245lg 8lg 3
4
4932lg 21+-
24、用定义证明:函数21()2f x x x -=+在(0,1]上是减函数。

(6分)
1.a 0a ,1)3(2
12≠>⎪


⎝⎛>--且其中x x a a
25、已知函数1])2
1[(
log )x (f x
2
1-=, (1)求f(x)的定义域; (5分) (2)讨论函数f(x)的增减性。

(5分)
26.设函数22()log (4)log (2)f x x x =⋅,
1
44
x ≤≤, (1) 若t=log 2x ,求t 取值范围; (5分)
(2) 求()f x 的最值,并给出最值时对应的x 的值。

(6分)
参考答案:
一、选择题
DCABC BBDAD ADDAD 二、填空题
16.(1,2) 17。

a
b a -+12 18。

41
19.(1,2) 20。

x y = 21。

(0,
5
4
)),1(+∞⋃ 三、解答题 22.解:(1)⎩⎨
⎧〈-〉-e
x x 10
1 所以 11+〈〈e x
(2)2311〈⎪


⎝⎛-x
2log 13〉-x 即2log 13+〈x
(3)当x x x a 即-〉-〈〈212,101〉 当〈-〈-〉x x x a 即212,11 23.解:(1)原式=2-2+
4log 2
32+=27
(2)原式=)42457
32
lg(245lg 8lg 732lg 32
÷⨯=+- =2
1
10lg =
24.证明:设]1,0(,,2121∈〈x x x x 且则,
()()=-21x f x f 221+x 1222112----x x x
=()()()021122121122122
2
1
〉⎥⎦
⎤⎢⎣⎡+--=⎪⎪⎭⎫ ⎝⎛-+-x x x x x x x x x x 所以()122-+=x x x f 在(]1,0上是减函数。

25.解:(1)0,0121<>-⎪⎭

⎝⎛x x
即。

定义域为{}
0<x x
(2)是减函数121-⎪⎭

⎝⎛=x
y ,
()x
x f 2
1log =是减函数。

())0,(121log 21-∞⎥⎥⎦

⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛=∴在x x f 是增函数。

26.解:(1)44
1
,log 2≤≤=x x t 4log 4
1
log 22
≤≤∴t 即22≤≤-t
(2)()2log 3log 222++=x x x f
x t 2log =∴令,则,4123232
2-⎪⎭

⎝⎛+=++=t t t y
23
22,23log 23-=-=-=∴x x t 即当时,()4
1
min -=x f
当()12,42max ===x f x t 时即
/。

相关文档
最新文档