基于SURF算法的全景图拼接技术与实现

合集下载

基于SURF特征的无人机航拍图像拼接方法

基于SURF特征的无人机航拍图像拼接方法
图像复原就是利用先验知识对退化后的图像进行复原, 使其恢复本来面目。基于本文所选用的航拍图像的像素信 息,本文选用中值滤波对源图像进行复原,来达到图像预 处理的目的。
中值滤波是非线性滤波技术的一种,可用于噪声消除 以及图像增强,基本思想是将以某点(x,y)为中心的小 区域内所有像素灰度按大小顺序排列,将中间值作为(x, y)点处的灰度值,让周围像素值接近于真实值,从而消除 孤立的噪声。本文所选用的中值滤波方法在去除脉冲噪声、 椒盐噪声的同时,又能保留源图像边缘信息。 2 基于 SURF 特征的图像配准算法研究及改进
2006 年首次提出,中文名称为“加速版的具有鲁棒性的特征” 算法。SURF 是由尺度不变特征变换算法 SIFT 算法演变而 来的,SURF 算子最大特征是采用了 harr 特征以及积分图 像概念,大大提升了程序运行速度。经试验总结,SURF 算 法的运行速度比 SIFT 算法快好几倍;SURF 算法多用于计 算机视觉领域中的物体识别和 3D 重构中,SURF 特征提取 效果如 1 所示。
目前,图像配准算法中基于图像特征的研究方法成为 人们研究的热点,基于图像特征图像配准算法的核心思想 提取出图像特征,然后将多幅图像特征进行匹配,从而完 成图像配准。1988 年,Harris 和 Stephens 提出了 Harris 角 点检测算法,该算法的核心是提取待拼接图像角点特征, 通过自相关函数保证特征均匀合理,使得拼接速度大大提 升;Z.Yang 等人同样基于角点特征提出了一种利用仿射不 变量和互加权矩仿射不变量算法来对角点进行匹配,这种 算法优点在于不用建立多幅图像角点间的对应关系,缺点 是极易受到噪声影响。1999 年,Low 最先提出了 SIFT 特 征提取算法,并且在 2004 年对该算法进行了改进;该算法 首先提取待拼接图像的 SIFT 特征向量,然后对该向量进行 匹配,对图像几何变换具有较高的鲁棒性,其中包括几何 旋转、几何缩放和平移变换等。基于 SIFT 特征的图像配准 算法,在近年来成为了基于特征图像匹配的经典算法。

全景图像拼接技术综述与改进

全景图像拼接技术综述与改进

全景图像拼接技术综述与改进概述:全景图像拼接技术是指将多张相互有重叠区域的图像通过某种算法的处理,合成为一张无缝衔接的全景图像的过程。

全景图像拼接技术在虚拟现实、摄影、地理信息系统等领域具有广泛应用。

本文将对全景图像拼接技术的原理、算法以及当前的改进方法进行综述。

一、全景图像拼接技术的原理全景图像拼接技术的实现主要包含以下几个步骤:1. 特征提取与匹配:通过检测图像中的特征点,并计算特征描述子,从而实现不同图像之间的特征匹配。

2. 图像对齐:通过特征点匹配结果,确定图像之间的相对位置关系,并进行图像的配准,使得其能够对齐。

3. 图像融合:将对齐后的图像进行融合,消除拼接边缘的不连续性,实现无缝衔接的全景图像输出。

二、当前的全景图像拼接算法1. 基于特征点的算法:例如SIFT(尺度不变特征变换)和SURF(加速稳健特征)算法,通过提取图像的局部特征点,并进行匹配。

这种算法能够识别出旋转、尺度和视角变化,但对于大尺度图像的拼接效果有限。

2. 基于全局变换的算法:例如全景图像的球面投影映射(Spherical Projection Mapping)算法和全景图像的柱面投影映射(Cylindrical Projection Mapping)算法。

这些算法通过将图像映射为球面或柱面,并进行参数化变换来实现图像的拼接,能够处理大尺度图像,但在局部区域的拼接上可能存在一定的失真。

3. 基于深度学习的算法:近年来,深度学习技术在图像处理领域取得了重大突破。

通过使用深度卷积神经网络,如Pix2Pix和CycleGAN等模型,能够将拼接任务转化为图像到图像的转换问题,取得了较好的拼接效果。

三、全景图像拼接技术的改进方法1. 自动拼接线选取算法:采用自适应拼接线选取算法,根据特征点的分布和拼接图像的几何结构,自动选择合适的拼接线,减少拼接过程中的人工干预,提高拼接效率和准确性。

2. 拼接失真校正算法:解决基于全局变换的算法中局部区域存在的失真问题。

基于SURF特征匹配算法的全景图像拼接的开题报告

基于SURF特征匹配算法的全景图像拼接的开题报告

基于SURF特征匹配算法的全景图像拼接的开题报告一、研究背景及意义全景图像拼接是将多张图像拼接起来制成一张大幅面图像的技术,广泛应用于旅游、地图制作等领域,可以提供多角度的视角信息,满足人们多样化的观察需求。

随着数字摄影技术的不断发展,全景图像拼接技术也在不断完善和优化。

然而,由于室内和室外环境的复杂性和拍摄设备的限制,全景图像的拼接困难程度较大,尤其是在拼接后的图像边缘处的匹配和平滑过渡方面存在一定的难点和挑战。

为了解决这些问题,研究者们提出了许多全景图像拼接算法。

其中,基于特征匹配的全景图像拼接算法是一种较为常用的方法。

该方法可以自动提取图像中的特征,并将其匹配到相邻图像中的相应特征上,从而实现图像的平滑过渡。

SURF特征匹配算法是一种基于尺度不变特征变换(SIFT)算法的改进。

该算法包括了高斯差分算法、图像积分算法和方向分布直方图等步骤,适用于图像匹配和全景图像拼接等多个领域。

相比于其他特征提取算法,该算法具有计算速度快,匹配效果好等优点,因此被广泛应用于计算机视觉和图像处理领域。

因此,本文将探索基于SURF特征匹配算法的全景图像拼接方法,旨在提高图像拼接的效率和准确度。

该研究对于加快全景图像拼接技术的实际应用具有一定的意义和价值。

二、研究方法和步骤1.数据采集和预处理采集相关数据集,如室内或室外环境下的多张图像,并进行预处理和修正,包括旋转、裁剪、去除噪声和调整亮度等操作。

2. SURF特征提取和描述子生成利用SURF算法提取图像中的SURF特征,并生成SURF特征描述子,可用于后续的特征匹配。

3. 特征匹配采用SURF特征描述子对相邻图像进行匹配,使用RANSAC算法排除误匹配点,进一步提高匹配精度。

4. 全景图像拼接采用图像融合算法将匹配后的图像进行全景拼接,并进行图像的平滑过渡,使得拼接后的图像具有较好的连续性和真实性。

5. 实验结果分析对于拼接后的全景图像进行质量分析,包括图像清晰度、配准精度和图像处理效果等方面。

基于SURF的图像配准与拼接技术研究共3篇

基于SURF的图像配准与拼接技术研究共3篇

基于SURF的图像配准与拼接技术研究共3篇基于SURF的图像配准与拼接技术研究1近年来,图像配准与拼接技术已经成为了数字图像处理的重要研究方向之一。

在许多应用领域中,例如遥感影像、医学影像、三维建模等,图像配准与拼接技术已经得到了广泛的应用。

随着计算机视觉技术的不断发展,图像配准与拼接技术也在不断的完善和提高。

其中一种最具有代表性的图像配准与拼接技术就是基于SURF的图像配准与拼接技术。

SURF(Speeded-Up Robust Features)是一种高效的图像特征提取算法,它可以在保证特征点数量和质量的同时,提高提取速度。

利用SURF算法提取的特征点几乎不受图像缩放、旋转、平移等变换的影响,具有较好的鲁棒性和准确性。

基于SURF算法的图像配准与拼接技术,可以较好地解决图像缩放、旋转、平移等问题,为数字图像处理提供了更好的技术保障。

在基于SURF的图像配准与拼接技术中,首先需要选取参考图像和待配准图像。

然后,利用SURF算法对两幅图像提取特征点,并进行特征点匹配。

通过对特征点的匹配,可以找到两幅图像之间的几何变换关系。

接下来,可以利用图像配准技术对待配准图像进行校正对准,从而使其与参考图像达到一致。

最后,可以利用图像拼接技术将校正后的待配准图像与参考图像进行拼接,得到最终的拼接结果。

其中,特征点匹配是图像配准与拼接的关键步骤之一。

SURF算法的特征点匹配策略使用的是一种特殊的描述子匹配算法——KD树。

KD树是一种数据结构,在高维空间中构建KD树,可以实现高效的最近邻搜索。

通过KD树可以快速地找到两幅图像中距离最近的特征点,并将其匹配起来。

通过特征点的匹配,可以计算出两幅图像之间的变换关系,并对待配准图像进行校正对准。

除了特征点匹配外,还有一些其他的关键步骤也需要注意。

例如,在图像配准中,需要对待配准图像进行坐标转换,从而使得其与参考图像的坐标系一致。

在图像拼接中,需要实现拼接过程中的图像去重、光照一致性等问题。

基于SURF特征匹配的图像拼接算法

基于SURF特征匹配的图像拼接算法
刘 奇, 何明一
710129) ( 西北工业大学 电子信息学院 Байду номын сангаас息获取与处理陕西省重点实验室 , 陕西 西安
摘要: 提出了一种了基于 SURF ( speed up robust features) 特征匹配的图像拼接算法 。 SURF 方法是一种 快速且鲁棒性较好的特征提取算法, 用该算法提取图像特征后, 使用改进 BBF ( best b in f irst) 的快速匹 配算法来寻找图像间的匹配点; 用 L M 算法对单应性矩阵进行优化时, 本文提出使用梯度误差函数增 强对光照变化的鲁棒性; 最后采用多分辨率融合方法进行图像融合, 有效地消除了拼接痕迹, 并保持较 高的分辨率 。实验结果验证了该算法的高效性 , 对存在旋转、 尺度缩放、 视角以及光照变化的图像都具 有良好的效果。 关键词 : SURF 特征匹配; 单应性矩阵 ; 图像拼接 ; 多分辨率融合 中图分类号 : TP391 文献标识码: A 文章编号: 1000- 8829( 2010) 10- 0027- 05
收稿日期 : 2009- 12- 21 作者简介 : 刘奇 ( 1985 ), 男 , 山东济宁人 , 硕士研究生 , 主要研 究方向为图像处理 、 计算机视觉 、 生物医学传感 器技术 ; 何明一 ( 1958 ), 男 , 四川人 , 教授 , 博 士生导 师 , 实验 室主 任 , 主 要研 究方向为信息获取 、 处理与传输技术 、 光电探测 与图像处 理 、 智 能信息处理以及三维 测量技术 。
的应用。基于特征的图像拼接重点在于特征提取, 其 中由 L ow e 等人提出的 SIFT 算法是目前该领域比较流 行的方法, 在图像配准、 图像拼接、 检索等领域被广泛 采用 。但 SIFT 算法也存在着检测和匹配速度慢、 对视角变化 较敏 感等 缺点。为 此有 人提 出了 PCA [ 6] S IFT 和 GLOH 等改进算法, 但效果不太理想 。近年 [ 7] 来由 Bay 等人提出的 SURF 算法 , 除在可重复性和 鲁棒性方面优于现有方法外, 还能够获得较快的计算 速度, 因此在实时物体识别、 图像检索、 图像拼接等方 面有较大的应用价值。 本文提出一种基于 SURF 特征匹配的图像拼接算 法 , 首先使用 SURF 算 法进行特 征提取 , 使用改 进的 BBF快速匹配算法得到图像间的初始匹配点; 然后使 用 RANSAC 算法剔除误匹配, 并提出新的非线性优化 方法求解单应性矩阵 , 对图像进行变换和配准 ; 最后使

基于SURF的序列图像快速拼接方法

基于SURF的序列图像快速拼接方法
s q e c s mo a c i b a n d wi i g u i n o e u n e s i s o ti e t ma e f so fm ̄ i m ,wh c s a an ts a n l mi ai n v rai n .Th x e i n a e h mu ih i g i s e ms a d i u n t a t s l o i o e e p rme t l - r s i h w a eme h d i a tf rs a e si g e u n e s co e il a r lto m ,i r b s n a e ti mc c v l u t s o t tt t o fs o e ml s ma e s q e c s mo a fv h ce c me ap a r s h h s i f s o u t d h sc ra n p d  ̄ a— a
杨 云涛 , 莹 , 毓 , 冯 曹 陈运锦
( 国防科 学技 术大 学 光 电科 学与工程 学 院, 南 长沙 4 0 7 ) 湖 1 0 3
摘 要: 针对车载 摄像平 台的序列 图像拼 接问题 , 提出一种基 于 S R U F的 序列 图像快 速 拼接 方法 。首先 , 对经 预处 理后 的
( ol eo po l t n c n ea d E gn e n , ai a U ies yo C l g f t e r i S i c n n ie r g N t n l nv r t f e O e co c e i o i
Dee s e h oo y fneT c n lg ,Ch n s a4 0 7 a gh 1 0 3,C ia hn )
Ab t a t A a t to a e n SURF i p o o e o g e u n e s c o e i l ai r lto m. F r t URF a Ue r sr c : f s h d b d o me s s r p s d f ri ma e s q e c s mo a f v h ce c l e a p af r i l is .S i cf s a e

基于特征匹配的全景图像拼接

基于特征匹配的全景图像拼接
基于特征匹配的全景图像拼接
研究内容与论文结构
1 研究意义
2
图像拼接理论及算法研究
3
全景图生成实现及实验结果分析 未来工作展望
一、研究意义
图1.1 日常拍照
图1.2 航拍
图像拼接技术可以将普通相机拍摄的若干幅具有一 定重叠区域的小视域图片进行拼接,得到高清晰度的宽 视角图片,并且看不出拼接痕迹。
研究意义
图像 输入 建立 金字 塔 提取 局部 极值 计算 特征 点方 向 提取 特征 矢量 特 征 输 出
SURF特征提取原理图
SURF特征提取效果图
2.2 基于SURF特征的图像配准原理
利用最近邻搜索法进行特征粗匹配
SURF特征粗匹配效果图
2.2 基于SURF特征的图像配准原理
3、匹配对提纯及变换参数估计
图1.3 指纹识别
图1.4 医学图像分析
图1.5 军事监控
从上述在各个领域图像拼接技术所起的重要作用,我们可 以看出它的发展前景是很可观的,因此,对它的研究有着很重 要的现实意义。
二、图像拼接理论及算法研究
1 图像拼接基本原理 基于SURF特征的图像配准 图像融合原理及实现
2
3
2.1 图像拼接基本原理
3.1全景图生成流程
本文实现图像拼接的具体流程如下所示:
输入图像 估 算 变 换 参 数 焦距 是否存 是 估计 在有效 和图 匹配图 片排 像 序 否 剔除干扰图片
. . .
输入图像
特 征 提 取
特 征 匹 配
柱 面 投 影
图 像 融 合
图 像 拼 接
全景图生成流程图
3.2 全景图合成实验及结果分析
拉普拉斯金字塔原理
高斯塔顶层 Reduce 高斯塔2层 Reduce 高斯塔1层 Reduce 高斯塔底层 Expand + 拉氏塔顶层

图像处理中的图像拼接算法分析与设计

图像处理中的图像拼接算法分析与设计

图像处理中的图像拼接算法分析与设计图像拼接是图像处理领域中一项重要的技术,可以将多幅图像拼接成全景图像、大场景图像或高分辨率图像。

本文将对图像拼接算法进行深入分析与设计,介绍常用的图像拼接算法,包括特征点匹配、图像融合和图像校正等步骤。

1. 特征点匹配特征点匹配是图像拼接算法中的关键步骤之一,它通过寻找两幅图像之间的共同的特征点来实现图像对齐。

常用的特征点匹配算法包括SIFT、SURF和ORB等。

SIFT(尺度不变特征变换)算法是一种局部不变的特征描述子算法。

它通过检测局部的极值点,并提取出这些局部特征。

然后,通过计算特征点周围区域的图像梯度,得到特征点的方向信息。

最后,通过特征点周围区域的自适应尺度空间,生成特征向量表示。

SURF(加速稳健特征)算法是一种基于Hessian矩阵的特征描述子算法。

它通过计算图像上的特征点的Hessian矩阵,找到极值点,并生成特征向量。

SURF算法对旋转、尺度变化和亮度变化具有较好的不变性。

ORB(旋转不变二进制)算法是一种二进制特征描述子算法。

它将图像进行金字塔尺度空间变换,并使用FAST特征点检测器检测关键点。

然后,通过构建特征描述子,将每个特征点的周围区域划分为若干个方向以及尺度的网格,并计算二进制描述子。

2. 图像融合图像融合是指将特征点匹配后的图像进行无缝拼接,使拼接后的图像看起来自然平滑。

常用的图像融合算法包括线性混合、多频段融合和全局优化等。

线性混合是最简单的图像融合算法,它将两幅图像按照一定的权重进行线性加权混合。

权重可以根据特征点匹配的准确度来确定,使得特征点匹配准确的区域权重较大,特征点匹配不准确的区域权重较小。

多频段融合是一种将两幅图像按照不同的频率分解为多个子带,然后将对应的子带进行融合,最后将融合后的子带进行合成的算法。

通过这种方式,可以更好地保留图像的细节和平滑度。

全局优化是一种通过最小化拼接区域的能量函数来实现图像融合的算法。

能量函数可以由特征点匹配的误差、图像亮度的一致性等因素组成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 0 1 2年1 2月 第3 3卷 第1 2期
计算机程与设计
C OMP UT E R E NG I N E E R I NG AN D D E S I GN
D e c . 2 0 1 2 V o l . 3 3 N o . 1 2

+ ,G S ONG Y a n s h u a n E NG N a n - g
( ,N ,Y ) C o l l e e o f I n f o r m a t i o n E n i n e e r i n o r t h w e s t A r i c u l t u r e a n d F o r e s t r U n i v e r s i t a n l i n 7 1 2 1 0 0, C h i n a g g g g y y g g
a n o r a m i c R e s e a r c h a n d i m l e m e n t a t i o n o f m o s a i c t e c h n i v e o f i m a e p p g g b a s e d o n S UR F a l o r i t h m g
基于 S U R F 算法的全景图拼接技术研究与实现
宋延爽 , 耿 楠 +
( ) 西北农林科技大学 信息工程学院 , 陕西 杨凌 7 1 2 1 0 0
摘 要 : 针对云台网络摄像机监控系统 , 提出一种基于摄像机视频流 的 全 景 图 生 成 算 法 , 以 构 建 更 大 的 监 控 场 景 。 根 据 帧 ,加速鲁棒性特 间重叠区域的大小选取关键帧 , 进行柱面投影 , 利用计算性 能 优 越 的 S UR F( S e e d e d U R o b u s t F e a t u r e s p p 征 ) 算法对所选取的关键帧进行特 征 点 提 取 , 使 用 基 于 哈 希 映 射 的 特 征 点 匹 配 算 法 加 快 特 征 点 的 匹 配 , 并 结 合 R AN S A C ( , 随机抽样一致 ) 算法剔除误匹 配 , 估 计 关 键 帧 之 间 的 变 换 关 系 。 实 验 结 果 表 明 , 该 方 法 能 R AN d o m S Am l e C o n s e n s u s p 较好实现视频序列的快速拼接 , 鲁棒性强 , 具有较高的实用价值 。 关键词 : 视频拼接 ; 关键帧 ; 快速鲁棒特征算法 ; 图像配准 ; 全景视频 )1 中图法分类号 : T P 3 9 9 文献标识号 :A 文章编号 : 1 0 0 0 7 0 2 4( 2 0 1 2 2 4 6 4 7 0 5 - - -
: A b s t r a c t I n o r d e r t o b u i l d a n e t w o r k C a m e r a s u r v e i l l a n c e s s t e m, ap a n o r a m a m o s a i c a l o r i t h m b a s e d o n v i d e o s e u e n c e c a - y g q p , t u r e d b n e t w o r k C a m e r a i s r o o s e d . F i r s t l t h e a l o r i t h m s e l e c t s k e f r a m e s a c c o r d i n t o t h e s i z e o f o v e r l a i n a r e a b e t w e e n y p p y g y g p p g , r e l a t i v e r o e c t s f r a m e s a n d t h e k e f r a m e s t o c l i n d r i c a l s e a r a t e l . T h e n a b s t r a c t i n f e a t u r e s f r o m t h e k e f r a m e s u s e s S UR F p j y y p y g y w i t h s u e r i o r c o m u t a t i o n a l e r f o r m a n c e . F o r t h e f e a t u r e m a t c h i n a s e c t t h e a l o r i t h m u s e s a m a t c h i n m e t h o d b a s e d m e t h o d p p p g p g g , o n r o r e s s h a s h m a i n t o a c c e l e r a t e t h e m a t c h i n a n d t h e n a R AN S A C a l o r i t h m i s u s e d t o e l i m i n a t e o u t l i e r s a n d e s t i m a t e p g p p g g g t r a n s f o r m a t i o n b e t w e e n k e f r a m e s . E x e r i m e n t a l r e s u l t s s h o w t h a t t h i s m e t h o d w i t h s t r o n r o b u s t n e s s a c h i e v e a r a m e t e r s t h e y p g p f a s t m o s a i c o f v i d e o f r a m e s e u e n c e a n d h a s h i h l v a l u a b l e i n r a c t i c e . q g y p
相关文档
最新文档