人教版数学六年级下册鸽巢问题例三教学设计
人教版数学六年级下册鸽巢问题教案3篇2024

人教版数学六年级下册鸽巢问题教案3篇2024〖人教版数学六年级下册鸽巢问题教案第【1】篇〗鸽巢问题教案教学目标:了解“鸽巢问题”的特点,理解“鸽巢原理”的含义;经历“鸽巢原理”的学习过程,体验观察,猜测,实验,推理等活动的学习方法,渗透数形结合的思想;通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。
重点:整合教材,由浅入深,逐层深入引导学生把具体问题转化成鸽巢问题,最终达到深入浅出解决问题。
难点:找出鸽巢问题解决的窍门进行反复推理。
并对一些简单的实际问题加以“模型化”。
教学准备:课件、扑克牌。
学生准备:小棒、杯子。
教学过程:一、情境导入:由游戏“抢凳子”引入课题并板书课题“鸽巢问题”二、探究新知1.动手操作,动画演示(1)(摆一摆)4只鸽子飞进3个鸽巢,会怎么飞呢?请同学们用小棒当鸽子,杯子做鸽巢,试试看!并把各种结果用你喜欢的方法记录下来。
(2)(议一议)教师引导学生分析各种情况,得出结论,不管怎么飞,总有一个鸽巢里至少飞进了2只鸽子。
(3)(飞一飞):4只鸽子飞进3个鸽巢,要使每个鸽巢里鸽子最少,该怎么飞?你能发现什么?通过引导让学生说出平均分的'方法。
2.以此类推,发现规律(1)6只鸽子飞进了5个鸽巢,总有一个鸽巢里至少飞进了()只鸽子?你是怎么想的?(2)100只鸽子飞进了99个鸽巢,总有一个鸽巢至少飞进了()只鸽子?3.由浅入深,逐层深入(1)(飞一飞)5只鸽子飞进了3个鸽巢,总有一个鸽巢里至少飞进了()只鸽子?是怎么飞的?通过演示鸽子飞的过程,引导学生理解平均分后,剩下的鸽子数不能超过鸽巢数,把剩下的鸽子再平均分,才能保证总有一个鸽巢里至少有的鸽子数。
(2)(说一说)7本书放进3个抽屉,总有一个抽屉里至少放进了()本书?你是怎么想的?4.动画演示,掌握规律14只鸽子飞进了4个鸽巢,总有一个鸽巢至少飞进了4只鸽子。
为什么?5.学以致用,总结规律(1)10支铅笔放进3个笔筒中,总有一个笔筒里至少有4支铅笔,为什么?(2)28本书放进5个抽屉,总有一个抽屉里至少放进了几本书?为什么?(3)33只鸽子飞进了4个鸽巢,总有一个鸽巢至少飞进了9只鸽子?为什么?(4)思考:你能发现什么规律吗?引导学生总结出计算方法,列出算式,最终得出至少数=商+1。
人教版六年级下学期数学《 鸽巢问题》教学设计-

人教版六年级下学期数学《鸽巢问题》教学设计-一. 教材分析人教版六年级下学期数学《鸽巢问题》是本册教材中的一个重要内容,主要让学生掌握鸽巢原理的基本概念和应用。
通过本节课的学习,学生能够理解鸽巢问题的本质,学会用数学的方法解决实际问题。
二. 学情分析六年级的学生已经具备了一定的逻辑思维能力和解决问题的能力,但对于鸽巢问题可能还是初次接触,需要通过实例和练习来逐步理解和掌握。
在教学过程中,教师要关注学生的学习兴趣,激发学生的探究欲望,引导学生主动参与课堂活动。
三. 教学目标1.知识与技能:让学生掌握鸽巢问题的基本概念和解决方法,能够运用鸽巢原理解决实际问题。
2.过程与方法:通过探究、合作、交流的方式,培养学生解决问题的能力和团队协作精神。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自信心和克服困难的意志。
四. 教学重难点1.重点:让学生理解和掌握鸽巢问题的基本概念和解决方法。
2.难点:如何引导学生运用数学方法证明鸽巢原理,并解决实际问题。
五. 教学方法1.情境教学法:通过生活实例引入鸽巢问题,让学生在实际情境中感受和理解鸽巢原理。
2.启发式教学法:引导学生主动思考、探究,发现解决问题的方法。
3.合作学习法:鼓励学生之间相互讨论、交流,共同解决问题。
六. 教学准备1.课件:制作课件,展示鸽巢问题的实例和解决方法。
2.练习题:准备一些有关鸽巢问题的练习题,用于巩固所学知识。
3.教学工具:黑板、粉笔、投影仪等。
七. 教学过程1. 导入(5分钟)教师通过一个生活实例引入鸽巢问题,如:“假设有一个班级有20名学生,有一天,老师发现至少有3名学生没有完成作业。
那么,这个班级中至少有几名学生完成了作业?”让学生思考并回答,引出本节课的主题。
2. 呈现(10分钟)教师展示课件,讲解鸽巢问题的基本概念和解决方法。
通过举例和图示,让学生理解鸽巢原理,并学会用数学方法证明。
3. 操练(10分钟)教师提出一些有关鸽巢问题的练习题,让学生独立解答。
人教版数学六年级下册鸽巢问题教案模板(推荐3篇)

人教版数学六年级下册鸽巢问题教案模板(推荐3篇)人教版数学六年级下册鸽巢问题教案模板【第1篇】第2课时教学内容教科书P69例2,完成教科书P71“练习十三”中第2、3、6题。
教学目标1.经历“鸽巢原理”的探究过程,进一步了解“鸽巢原理”,会用“鸽巢原理”解决简单的实际问题。
2.经历从直观到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力,渗透模型思想。
3.在探究过程中,经历将具体数学问题数学化的过程,培养学生的模型思维。
教学重点掌握“鸽巢原理”的一般形式,会运用除法算式来解决实际问题。
教学难点对“把多于kn(k是正整数)个物体任意分放入n个空抽屉,总有一个抽屉里至少有(k+1)个物体”形成一般性理解。
教学准备课件。
教学过程一、复习导入,揭示课题课件出示教科书P69“做一做”第2题。
【学情预设】预设1:我们把4把椅子看成4个“鸽巢”,把5个人放进4个“鸽巢”中,总有1个“鸽巢”里至少有2个人,即总有一把椅子上至少坐2人。
预设2:我用算式表示:5÷4=1……1,1+1=2,所以总有一把椅子上至少坐2人。
师:同学们研究了物体数比盛放物体的工具数多1的情况,得出了总有一个盛放物体的工具里至少放有两个物体。
“鸽巢原理”真是这样吗今天我们继续来研究相关问题。
【设计意图】通过复习,帮助学生回忆例1学习的有关知识,并直接揭示课题,为新课学习作准备。
二、自主探究,建立模型1.课件出示教科书P69例2。
师:请你试着证明这个结论。
(学生用自己的方式证明。
)【学情预设】预设1:我随便放放看,一个抽屉1本,一个抽屉2本,一个抽屉4本。
可以证明总有一个抽屉里至少放进3本书。
预设2:我用假设法来思考,如果每个抽屉最多放2本,那么3个抽屉最多放6本,最后的1本书一定会放到3个抽屉中的任何一个,可以证明总有一个抽屉里至少放进3本书。
预设3:我用算式来证明:7÷3=2……1,2+1=3。
师:你能理解这道算式表示的意思吗?(板书算式:7÷3=2……1,2+1=3)【学情预设】指导学生规范表达:把7本书平均放进3个抽屉,每个抽屉里放2本,还剩一本。
人教版六年级数学下册鸽巢问题优秀教学设计

人教版六年级数学下册鸽巢问题优秀教学设计【教学内容】教科书第67页例1、做一做及相关练习题。
【教学目标】1.采用枚举法及假设法探究“鸽巢问题”,理解并掌握“鸽巢原理”。
2.会运用“鸽巢原理”解决简单的实际问题或解释相关的现象。
3.体会逻辑推理思想和模型思想,提高学习数学的兴趣。
【教学重点】经历“鸽巢原理”的探究过程,理解“总有”、“至少”的含义。
【教学难点】会用“鸽巢原理”解决简单的实际问题或解释相关的现象。
【教学方法】教法:猜测法、引导法、讨论法、探究法、讲授法学法:动手操作、自主探索、合作交流【教具准备】多媒体课件、铅笔、纸杯。
【教学过程】一、游戏激趣,导入新知。
1.组织学生做“抢凳子游戏”。
游戏规则:4个人围着凳子转,老师喊“停”,4人必须都坐到凳子上。
师:我不用看,就能猜到,总有一个凳子上至少做了两个同学。
2.揭示课题:知道老师为什么不看就能猜出来吗?因为老师知道这里面蕴含着有趣的数学原理。
这节课就让我们用数学的眼光探究“鸽巢问题”。
(板书课题:鸽巢问题)二、检查预习,发现困惑。
1.课前通过预习,你知道了什么?(学生回答)2.你的困惑是什么?预设学生的困惑:1.什么是“鸽巢问题”?2.“鸽巢原理”的基本形式是什么?3.如何运用“抽屉原理”解决相关的实际问题或解释相关的现象。
下面就让我们带着这些问题开启我们的新课之旅吧!三、呈现问题,引出探究。
1、课件出示例题1:把4支铅笔放进3个笔筒中,不管怎么放,总有1个笔筒里至少有支铅笔。
(1)理解“总有”、“至少”的含义师:“总有”和“至少”是什么意思?你能举例说明吗?生:“总有”就是一定有,“至少”就是最少,不少于。
比如,至少有2支铅笔就是最少有2支,比2支多也行,3支4支也符合要求。
(2)猜测:师:大家猜一猜例1的结果?生:2支。
师:大家的猜测对不对呢?我们需要用实验来进行验证,请大家结合试验要求在小组内快速进行实验验证。
可以用摆一摆、画一画、写一写等方法把自己的想法表示出来。
人教版六年级下册《鸽巢问题(3)》教学设计及反思

课题
鸽巢问题(3)
课型
新授课
设计说明
本节课教学是“鸽巢原理”的具体应用,即运用“鸽巢原理”进行逆向思维。教师呈现问题后,先让学生通过猜测、验证等方式找到答案,形成初步感悟;在得出答案后,教师引导学生把实际问题转化为“鸽巢问题”。教学中,教师努力让学生经历将具体问题“数学化”的过程,帮助学生从现实素材中找出最本质的数学模型,发展学生的思维能力,帮助他们积累数学活动的经验和方法。
(2)方法总结。
用鸽巢原理解题的步骤:
①分析题意:找好“抽屉”与分放的物品。
②设计鸽巢问题。(有时需要构造抽屉)
③运用原理,得出“抽屉”中分放物品的个数。
巩固练习
1.完成教材第70页“做一做”。
2.完成教材第71页第4、5题。(第4题教师注意适当引导)
课堂小结,拓展延伸。
1.说一说你本节课的收获。
2.布置作业。
教法
情景教学法,实验探究引导。
学法
实验备:每组准备红球、蓝球各4个、1个不透明的盒子。
课时安排
1课时
教学环节
教学过程
个性设计
谈话导入
上一节课,我们认识了“鸽巢原理”,学会了用“鸽巢原理”解决简单的实际问题。除此之外,我们还可以用它来解决哪些问题呢?今天,我们继续来探究“鸽巢原理”在生活中的应用。
教学板书
教学反思
本节课教学,教师应充分利用学具操作,为学生提供主动参与的机会,把抽象的数学知识同具体的实物结合起来,化难为易,化抽象为具体,让学生体验和感悟数学,为学生营造宽松自由的学习氛围和学习空间,让学生能自己动脑解决一些实际问题,从而更好地理解鸽巢问题。
教学目标
1.进一步理解“鸽巢原理”,运用“鸽巢原理”进行逆向思维,解决实际问题。
人教版数学六年级下册鸽巢问题教案模板3篇2024

人教版数学六年级下册鸽巢问题教案模板3篇2024〖人教版数学六年级下册鸽巢问题教案模板第【1】篇〗《鸽巢问题(第1课时)》教学设计一、教学目标1.引导学生经历“鸽巢问题”的抽象过程,初步了解“鸽巢原理”并用其解决相关生活中的简单问题。
2.通过猜测、验证、观察、分析等数学活动,提高学生有根据有条理的进行思考和推理的能力。
3.经历从具体到抽象的探究过程,建立数学模型,培养“模型思想”。
4.灵活应用“鸽巢原理”,提高学生解决数学问题的能力和兴趣。
二、教学重点教学重点:理解鸽巢原理,掌握先“平均分”,再调整的方法。
教学难点:理解“总有”“至少”的意义,理解“至少数=商数+1”。
三、教学准备纸杯、吸管、多媒体课件。
四、教学过程(一)创设情境揭示课题多媒体演示“二桃杀三士”的成语故事【设计意图】通过问题引发学生思考,激发学生学习的兴趣和求知欲望,为原本枯燥的数学注入了活力,从而提出需要研究的数学问题。
(二)探索新知(1)初步感知。
把3个磁扣放到2个圆圈里,有哪些放法?(学生思考)师:“不管怎么放,总有一个圆圈里至少有2个磁扣”,这句话说得对吗?师:这句话里“总有”“至少”是什么意思?【设计意图】从学生喜欢的游戏入手,设置悬念,激发学生学习的兴趣和求知欲望,为原本枯燥的数学注入了活力,从而提出需要研究的数学问题。
教师:“总有一个圆圈里至少有2个磁扣”,这句话说得对吗?教师:这句话里“总有”“至少”是什么意思?【设计意图】此处设计注意了从最简单的数据开始摆放,有利于学生观察、理解,有利于调动所有的学生积极参与进来。
通过对“总有”“至少”的意思的单独说明,让学生更深入地理解“不管怎么放,总有一个圆圈里至少有2个磁扣”这句话。
(2)逐步深入初建模型把4根吸管放到3个纸杯里,有哪些放法? 4人为一组动手试一试。
(学生思考—组内交流—汇报)【设计意图】通过操作,将抽象的结论具体化,学生得到了四种全部情况,从而获得了支持这个结论所有的实物图像表征,为后面的“说理”提供了有力的支撑。
2023年人教版数学六年级下册鸽巢问题优秀教案(优选3篇)

人教版数学六年级下册鸽巢问题优秀教案(优选3篇)〖人教版数学六年级下册鸽巢问题优秀教案第【1】篇〗一、教材分析“鸽巢问题”是六年级下册教学内容,“鸽巢原理”又称“抽屉原理”,是组合教学中最基本最简单的原理之一,灵活多变,应用广泛。
教学“鸽巢问题”,教材安排了两个例题。
这节课教学内容是例1。
例1把4支铅笔放进3个笔筒中的操作情景,介绍“鸽巢原理”的最基本形式。
初步接触“鸽巢问题”对于学生来说,有一定的难度。
教学时,应放手让学生自主探索。
教师要引导学生对教材上提供的两种方法进行比较,思考枚举的方法有什么优越性和局限性,假设的方法有什么独特的优点,使学生逐步学会运用一般性的数学方法来思考问题。
二、教学内容教材第68页例1及“做一做”第1、2题。
三、教学目标1.让学生经历“鸽巢问题”的探究过程,通过数学活动理解“鸽巢原理”,学会简单的“鸽巢问题”分析方法,并解决一些简单问题。
2.结合具体的实际问题,通过实验、观察、分析、归纳等数学活动使学生经历“鸽巢原理”的形成过程,体会和掌握逻辑推理思想和模型思想,提高解决实际问题的能力。
3.在主动参与数学活动的过程中,让学生感受到数学的魅力,提高学习数学的兴趣。
四、教学重难点教学重点:能用“鸽巢原理”解决最基本的相关实际问题。
教学难点:初步理解“鸽巢原理”,能口头表达推理过程。
五、教学准备一副扑克牌、课件等。
六、教学过程(一)引入新知1.抢凳子游戏。
2.抽扑克牌游戏。
教师:这类问题在数学上称为鸽巢问题(板书)。
因为52张扑克牌数量较大,为了方便研究,我们先来玩数量较小的抢凳子游戏。
【设计意图】从学生喜欢的“抢凳子”“魔术”入手,设置悬念,激发学生学习的兴趣和求知欲望,从而提出需要研究的数学问题。
(二)探究新知1.教学例1。
(1)把3枝铅笔放进2个笔筒中。
想一想:可以怎样放?有几种不同的放法?(不考虑笔筒摆放顺序,学生可用笔盒当笔筒)摆一摆:先用来学具摆一摆,然后用自己喜欢的方法表示出来,如画一画,写一写。
六年级下册数学人教版鸽巢(抽屉)问题教学设计

2.在解决问题时,可能难以从众多信息中抓住关键,需要引导和训练。
3.合作意识逐渐增强,但小组讨论、交流的能力还需进一步培养。
4.学习兴趣和动机方面,部分学生对富有挑战性的问题表现出较高的兴趣,但也有部分学生可能因为难度增加而产生畏惧心理。
因此,在教学过程中,教师应关注学生的个体差异,采用差异化教学策略,激发学生的学习兴趣,帮助他们克服困难,逐步提升解决问题的能力。同时,注重培养学生的合作意识和团队精神,使他们相互学习、共同成长。
3.教师提出问题:如果管理员有11只鸽子,他还是只有5个鸽巢,那么他还能不能像刚才那样,让每个鸽巢里都只有一只鸽子呢?为什么?
4.学生讨论,尝试给出答案。教师趁机引出本节课的主题——鸽巢问题。
(二)讲授新知
1.教师给出鸽巢原理的定义:如果有n个鸽巢和n+1只鸽子,至少会有一个鸽巢里有两只或以上的鸽子。
8.情感教育,渗透德育:在教学中,适时进行情感教育,培养学生遵守规则、尊重他人的意识。
四、教学内容与过程
(一)导入新课
1.教师出示一个关于鸽子的小故事:有一位鸽巢管理员,他负责把10只鸽子放到5个鸽巢里。请问,他有多少种不同的放法?
2.学生思考并回答问题,教师引导学生通过实际操作或画图的方式来寻找答案。
4.培养学生的公平、公正意识,使他们能够在生活中遵循规则,尊重他人。
二、学情分析
六年级的学生已经在数学学习上具备了一定的基础,对于基本的数量关系、逻辑推理以及问题解决策略都有一定的了解。在本章节的学习中,学生将面临更高层次的抽象思维挑战。他们需要将现实生活中的问题抽象成数学模型,运用鸽巢原理进行分析和解决。此时,学生可能在学习上存在以下特点:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:“鸽巢问题”的具体应用
教学内容:教材第70页例3,及“做一做”,及第71页练习十三的3-6题。
教学目标:
1、知识与技能:在了解简单的“鸽巢原理”的基础上,使学生学会用此原理解决简单的实际问题。
2、过程与方法:经历探究“鸽巢原理”的学习过程,体验观察、猜测、实验、推理等活动的学习方法,渗透数形结合的思想。
3、情感态度和价值观:通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。
教学重点:引导学生把具体问题转化成“鸽巢问题”。
教学难点:找出“鸽巢问题”中的“鸽巢”是什么,“鸽巢”有几个,在利用“鸽巢原理”进行反向推理。
教具准备:多媒体课件
教学过程:
一、创设情境、引入新课:
师:一天晚上,有一个小女孩正要从抽屉里拿袜子。
抽屉里有黑白两种颜色的袜子各10双。
突然停电了。
小女孩至少摸出多少只袜子,才能保证拿出相同颜色的袜子?
学生思考、发言。
师:学习了这节课我们就能解决类似的问题了。
------出示课题
二、合作交流,探究新知
(一)出示例3:盒子里有同样大小的红球和蓝球各4个,要想摸出的球一定有2个同色的,至少要摸出几个球?
1、学生提出猜想。
2、用预先准备的学具,小组合作交流。
3、小组反馈,师相机板书:
4、得出结论:把颜色看作抽屉。
有两种颜色,只要摸出的球比他们的颜色至少多1,就能保证有两个球同色。
(二)研究规律
师:如果盒子里有蓝、红、黄球各6个,从盒子里摸出两个同色的球,至少要摸出几个球?
分小组讨论后汇报。
再出示“做一做”第2题,汇报后得出:问题结论只与球的颜色种数也就是抽屉数有关。
小结:确定什么是抽屉什么是物体是解决抽屉问题的关键。
三、巩固新知,拓展应用
1、第70页“做一做”第1、2题。
2、解决课前有趣的问题
3、有红色、白色、黑色的筷子各10根混放在一起,让你闭上眼睛去摸,
(1)你至少要摸出几根才敢保证有两根筷子是同色的?
(2)至少拿几根,才能保证有两双同色的筷子?为什么?
4、练习十三第3题。
四、全课总结,畅谈收获
1、通过今天的学习你有什么收获?
2、回归生活:你还能举出一些能用抽屉原理解释的生活中的例子吗?
五、作业:练习十三第4、5、6题。