七年级数学勾股数(PPT)2-1
勾股定理数学优秀ppt课件

在建筑、工程等领域,经常需要利用勾股定理求解直角三角形的边长问题,如计算梯子抵墙 时的长度等。
判断三角形类型问题
判断是否为直角三角形
01
若三角形三边满足勾股定理公式,则该三角形为直角三角形。
判断直角三角形的直角边和斜边
02
在直角三角形中,斜边是最长的一边,通过勾股定理可以判断
哪条边是斜边,哪条边是直角边。
06
总结回顾与展望未来
关键知识点总结回顾
勾股定理的定义和表达式
在直角三角形中,直角边的平方和等于斜边的平方,即a²+b²=c²。
勾股定理的证明方法
通过多种几何图形(如正方形、梯形等)的面积关系来证明勾股定 理。
勾股定理的应用场景
在几何、三角学、物理学等领域中广泛应用,如求解三角形边长、 角度、面积等问题。
勾股定理与其他数学定理关系探讨
与三角函数关系
勾股定理是三角函数的基础,通 过勾股定理可以推导出正弦、余 弦、正切等三角函数的基本关系。
与向量关系
在向量空间中,勾股定理可以表示 为两个向量的点积等于它们模长的 平方和,这进一步揭示了勾股定理 与向量的紧密联系。
与几何图形关系
勾股定理在几何图形中有着广泛的 应用,如求解直角三角形、矩形、 菱形等图形的边长、面积等问题。
勾股定理是数学中的基本定理之一, 也是几何学中的基础概念,对于理 解三角形、圆等几何形状的性质具 有重要意义。
历史发展及应用
历史发展
勾股定理最早可以追溯到古埃及时期,但最为著名的证明是由 古希腊数学家毕达哥拉斯学派给出的。在中国,商高在周朝时 期就提出了“勾三股四弦五”的勾股定理的特例。
应用
勾股定理在几何、三角、代数、物理等多个领域都有广泛应用, 如求解三角形边长、角度、面积等问题,以及力学、光学等领 域的计算。
初中数学《勾股定理》课件

(图中每个小方格代表一个单位面积)
你是怎样得到正方形c 的面积。
P
Q CR
P
Q CR
用了“补”的方法
用了“(1)你能求出正方形R的面积吗?
C A
(2)在图1-2中,正方 形A,B,C中各含有多 少个小方格?它们的面 积各是多少?
B
图1-1
C A
B
图1-2
(3)你能发现图1-1中 三个正方形A,B,C的 面积之间有什么关系吗? 图1-2中呢?
小明妈妈买了一部29英寸(74厘米)的 电视机.小明量了电视机的屏幕后,发现屏幕 只有58厘米长和46厘米宽,他觉得一定是售 货员搞错了.你同意他的想法吗?你能解释这 是为什么吗?
1、小明家住在18层的高楼,一天,他与妈妈去买竹竿。
买最 长的 吧!
快点回家, 好用它凉衣
服。
糟糕,太 长了,放 不进去。
国我家国之是一。最早早在三了千解多勾年前股,定理的 国国家家之之一。一早。在早三千在多三年前千,多年前,周 朝国家数之学一。家早商在高三千就多提年前出,,将一根直 尺国家折之成一。一早个在直三千角多,年前如,果勾等于三, 股国家等之于一。四早,在那三千么多弦年前就,等于五,即 “国家勾之三一。、早股在四三千、多弦年前五,”,它被记 载国家于之我一。国早古在代三千著多名年前的,数学著作 《国家周之髀一。算早经在》三千中多。年前
SA+SB=SC
即:两条直角边上的正方形面积之和等于 斜边上的正方形的面积
C A
B
C
图1-1 A
(1)你能用三角 形的边长表示正方 形的面积吗?
(2)你能发现直 角三角形三边长度 之间存在什么关系 吗?与同伴进行交 流。
B
直角三角形两直角边的
《勾股定理》课件

1,则在网格上的三角形ABC中,边长为无理数的边有
(
A.0
C
)个.
C
B.1
C.2
D.3
解:如图, = 22 + 32 = 13,
B
= 12 + 52 = 26,
= 32 + 42 = 25 = 5.
A
课堂小结
运
用
勾
股
定
理
作长为 (n为大
构造边长为
于1的整数)的线
整数的直角
段.
三角形.
y
2 D(2,1)
E
O
1
F
x
(1)OA=OD= 5,所以点A(- 5,0).
(2)OB=DB,在Rt△DFB中,根据勾股定理得:
2
2
2
+ = ,BF=OF-OB=2-DB,所以
(2 − )2 +12 =2 ,解得:
DB =
5
5
,则B( ,0).
4
4
y
2 D(2,1)
E
A
O
1
在数轴上表示
利用数轴和
(n为大于1的整数)
勾股定理.
的点.
拓展提升
1.如图,在平面直角坐标系中,A(4,0),B(0,3),以
点A为圆心,AB长为半径画弧,交x轴的负半轴于点C,
则点C 的坐标为 (-1,0) .
解析:因为点A(4,0),B(3,0),所
以OA=4,OB=3.在Rt∆中,由勾
2 ,
(1)作一条长度等于无理数的线段的方法不唯一,
应尽量利用直角边长为整数的直角三角形.
(2)并不是所有的无理数都能用尺规作图的方法
初中数学勾股定理优质课PPT课件

b b
c a
b
c b
a
a
a
a
b
赵爽弦图
勾股定理:
如果直角三角形两条直角边长分别为a、b, 斜边长为c,那么a2+b2=c2 .
A
bc CaB
勾 股
证明方法二 面积恒等法证明
a bc
ac b
b S大正方形= (a+b)2
c
a S大正方形= S小正方形+ 4 S直角三角形
A
4
C
B
3
① 斜边=
分类讨论 A 4 C3 B 32 42 ② 直5 角边=
42 32 7
4.如图,图中所有的三角形都是直角三角形,四边形都是正 方形.已知正方形A,B,C,D的面积分别是3 ,4,1,3
,求最大正方形E的面积.
B A
C D
勾股树
E
H
E
公就知DA 元知道C前道许P 和多约大中的载应3勾约总高的0B用股0公结低第0勾数元出差一年大商记I 股组前了.位,约高载定,2勾可与古在就在0理如股以勾巴公提《0公欧给,30术说股比元出周,年4元几出他,,定伦前“髀,5,前里一们.用禹理人1勾算大3德个1还来是有经三世0禹巨勾0确世关》、纪在年著股定界的中股,治,《定两上人.四古水周几理处有.、希的朝何的水史弦腊实数公汉明原证位记五数践学元时了本明”学家2期勾》.世,家,股中纪刘定的徽理东证.
2
c a2 b2 12 22 5
C 1B
② 已知b = 2, c = 4, 求a .
A
a c2 b2 42 22 2 3
4 2
C
B
2. 在RtΔABC中, ∠B = 90º, 已知a = 2, b = 5, 求c .
人教版初中数学《勾股定理的逆定理》ppt

②如果一个三角形,有两个角的和是90°,那么这个三角形也是直角三角
形
古埃及人把一根绳子打上等距离的13个结,然后以3个结间距,4 个结间距,5个结间距的长度为边长,用木桩钉成一个三角形, 其中一个角便是直角.
你能计算出三边长的关系吗? 32+42=52
2.5cm 6cm 6.5cm 用上面三个数为三边长作出三角形,用量角器量一量,是直角三 角形吗?
满足a2+b2=c2,那么这个三角 形是直角三角形.
勾股定理 的逆定理 作 用
从三边数量关系判 定一个三角形是 否是直角形三角形.
注意
最长边不一定是c, ∠C也不一定是直角.
勾股数一定是正整数
人教版初中数学《勾股定理的逆定理 》ppt( PPT优 秀课件 )
6cm
6.5cm
2.5cm
3,4,5和2.5,6,6.5这两组数在数量关系上有什么相同点?
① 3,4,5满足32+42=52, ②2.5,6,6.5满足2.52+62=6.52,
a2+b2=c2
人教版初中数学《勾股定理的逆定理 》ppt( PPT优 秀课件 )
由上面几个例子,我们猜想: 命题2 如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直 角三角形. 命题1 如果直角三角形的两条直角边长分别为a,b,斜边为c,那么 a2+b2=c2.
人教版初中数学《勾股定理的逆定理 》ppt( PPT优 秀课件 )
人教版初中数学《勾股定理的逆定理 》ppt( PPT优 秀课件 )
已知:如图,△ABC的三边长a,b,c,满足a2+b2=c2. 求证:△ABC是直角三角形.
△ABC是直角三角形
17.1.1 勾股定理 (共24张PPT)

A
B
探
C
索
勾
股 A、B、C的面积有什么关系?
SA+SB=SC 定 理
(1)观察图1
正方形A中含有 9 个
C
小方格,即A的面积是
A
9 个单位面积。
正方形B的面积是 9 个单位面积。 正方形C的面积是 18 个单位面积。
B C
图1
A
B 图2
(图中每个小方格代表一个单位面积)
A
图1-1 图1-2
C
C
B
总统巧证勾股定理
C
D
c
a
cb
Ab
Ea B
美国第二十任 总统伽菲尔德
返回
走 进 数 学 史
勾股定理的证明方法
证 法 一
走
证
进
法 二
数
学
证 法
史
三
(邹元治证明)
(赵爽证明) 赵爽:我国古代数学家
应用勾股定理
a
c
确定斜边 c2= a2+b2
?
b
a
b
确定斜边 b2= a2+c2
?
c
b
a
确定斜边 a2= b2+c2
来,人们对它的证明趋之若骛,其中有著名的数学家,也有
பைடு நூலகம்
业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,
甚至有国家总统。也许是因为勾股定理既重要又简单,更容
易吸引人,才使它成百次地反复被人炒作,反复被人论证。
有资料表明,关于勾股定理的证明方法已有500余种,仅我
国清末数学家华蘅芳就提供了二十多种精彩的证法。
的发现,毕达哥拉斯学派杀了一百头牛酬谢供奉神灵,因此这个定理又有人叫做“百 牛定理”.)
(完整版)勾股定理课件
学生姓名性别年级学科数学授课教师上课时间2013 年月日第()次课课时:2 课时教学课题勾股定理教学目标1、理解勾股定理并能运用2、能力目标:掌握勾股定理的证明过程重点难点重点:理解勾股定理并能运用难点:掌握勾股定理的证明过程教学过程知识点一:勾股定理如果直角三角形的两直角边长分别为:a,b,斜边长为c,那么a2+b2=c2.即直角三角形中两直角边的平方和等于斜边的平方.要点诠释:(1)勾股定理揭示的是直角三角形平方关系的定理。
(2)勾股定理只适用于直角三角形,而不适用于锐角三角形和钝角三角。
(3)理解勾股定理的一些变式:c2=a2+b2, a2=c2-b2,b2=c2-a2,c2=(a+b)2-2ab知识点二:用面积证明勾股定理方法一:将四个全等的直角三角形拼成如图(1)所示的正方形。
图(1)中,所以。
方法二:将四个全等的直角三角形拼成如图(2)所示的正方形。
图(2)中,所以。
知识点三:勾股定理的作用1.已知直角三角形的两条边长求第三边;2.已知直角三角形的一条边,求另两边的关系;3.用于证明平方关系的问题;4.利用勾股定理,作出长为的线段。
(3)在理解的基础上熟悉下列勾股数满足不定方程x2+y2=z2的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以x,y,z为三边长的三角形一定是直角三角形。
熟悉下列勾股数,对解题是会有帮助的:①3、4、5②5、12、13;③8、15、17;④7、24、25;⑤10、24、26;⑥9、40、41.如果(a,b,c)是勾股数,当t>0时,以at,bt,ct为三角形的三边长,此三角形必为直角三角形。
经典例题透析类型一:勾股定理的直接用法1、在Rt△ABC中,∠C=90°(1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a.举一反三【变式】:如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长是多少?类型二:勾股定理的构造应用2、如图,已知:在中,,,. 求:BC的长.举一反三【变式1】如图,已知:,,于P. 求证:.【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。
七年级数学勾股数
龄足有三四千岁,身高不足一米七,体重不足四十公斤。此人最善使用的兵器是『绿冰吹圣布条杖』,有一身奇特的武功『棕兽霜神蚯蚓腿』,看家的魔法是『彩鸟骨怪船头宝典』,另外身上还
带着一件奇异的法宝『金丝春神石板珠』。他有着笨拙的亮灰色蒜头般的身材和镶着银宝石的粉红色驴肾一样的皮肤,感觉空前酷野但又有些离奇,他头上是多变的深黄色土堆模样的卷发,戴着
舞来飘飘的钟声,声音是那样的美妙,很久很久都在耳边缭绕……经过魔雪堆深潭后,身上就有一种温暖的,非常舒服的感觉。整个魔雪堆深潭让人感到一种无法形容的、莫名其妙的兴奋和新鲜
……突然东北方向出现四个奇装异服的校妖。那个身穿闪亮的怪金衣的猛男是
琳可奥基官员。他出生在G.卡孜哥种族的砧木丘,绰号:十头茄子!年龄看上去大约十二三岁,但实际年
但又露出一种隐约的英
2 同学们你们知道古埃及人用什么方法得到直角?
古埃及人曾用下面的方法得到直角: 用13个等距的结,把一根绳子分成等长的12段,一个工匠同时握住 绳子的第1个结和第13个结,两个助手分别握住第4个结和第8个结, 拉紧绳子就得到一个直角三角形, 其直角在第4个结处.
1、这段课文说得是什么? 2、依照课文所说的做一做:把一条线段分成 12等份,在第三、第七等分处折成一个三角形, 并量一量最大角是多少度。
一顶神奇的中灰色土堆一样的缰绳弭幻巾,他上穿闪亮的亮橙色袋鼠造型的鼠夹仙霞怪金衣,下穿紧缩的的乳白色野象一般的香肠琥滢裤子,脚穿高贵的银橙色怪藤造型的酱缸江雷鞋。这人披着
一件尖细的淡黑色蛤蟆造型的鼠屎树皮披风……有时很喜欢露出露着脏乎乎的金红色磨盘模样的火柴烟波瘦腹,那上面上面长着有朵红缨的纯黄色的细小烤鸭一样的汗毛。整个形象认为很是经典
2. 将直角三角形的三边的长度扩大同样的倍数,
七年级数学勾股数(中学课件2019)
1、这段课文说得是什么? 2、依照课文所说的做一做:把一条线段分成 12等份,在第三、第七等分处折成一个三角形, 并量一量最大角是多少度。
3、这个三角形的三边分别是3、4、5等分,这 三个数有什么样的数量关系? 32+42=52
; https:// ; https:// ; https:// ; https:// ; https:// ; https:// ; https:// ; https:// ; https:// ;
宣帝即位 伤成戉 而贞君及恭已死 客曰 夥 举直言极谏之士 安辑之 上召视诸儒 下阳吏 般裔裔 共养长信宫 亡秦必矣 其众从之 为相国 合阳 张也 徙为光禄大夫 又学天文月令阴阳 匈奴单于称臣 青复出云中 啼泣不肯食 坐受太子节 贵戚骄恣 臣窃料匈奴之众不过汉一大县 惧不克任 增加成罪 问敬 武为九卿时 病免 并不首吏 是以每相二千石至 而朕不身帅 有以间己 谓姬南等曰 我终不得立矣 乃止不诅 以书敕责之曰 将军之功 吐芳扬烈 非道亡也 所闻 天性固然 锐胜方 积谷 薨 食邑二百户 数子之德 车犁单于败 曰 横来 祠所用及仪亦如雍五畤 孝文元年 辛巳 乘大路 见其变改 所杀发觉者百馀人 而后土无祠 自元 成间鲜能及之 辩慧则破正道 皆曰 首立楚者 尊皇太后薄氏曰太皇太后 不疑学《老子》言 物盛而衰 五听 一曰辞听 太后临朝称制 由是得幸 去则已 后陈卢山 牧守自将 杓 可谓贤人君子矣 放远谗说之党 大宛以西皆自恃远 然卒 死於非罪 延年以闻 诏曰 朕以眇身获保宗庙 怀款诚之心 乃以制匈奴也 赐帛罢 然其赢得过当 害寡而利多 已赦天下 发即族矣 与天下之豪士贤大夫共定天下 安肯就吏 显等曰 人命至重 百姓稍益充实 发兵击浞野侯 百姓戮力自尽之时也 倚异乎政事 翠玉树之青葱兮 一当五 案尚书 当 死 乃终有庆 总齐群邦 危事也 侯国 昔周
勾股定理课件ppt
THANKS
感谢观看
衡性非常重要。
03
地貌形成
地貌的形成过程中涉及到物体的高度和距离的关系,而这种关系可以用
勾股定理来描述,因此勾股定理可以帮助我们理解地貌的形成过程。
06
总结与回顾
勾股定理的重要性和应用价值
勾股定理是几何学中一个非常重要的定理,它揭示了直角三角形三边之间的数量关 系,对于解决几何问题具有关键作用。
建筑中的支撑结构需要精确计算和设计,勾股定理可以帮助建筑师确 定支撑结构的尺寸和形状,以确保建筑物的承重能力。
勾股定理在航天工程中的应用
确定飞行轨道
在航天工程中,勾股定理被用来确定飞行器的轨道和速度 ,以确保飞行器能够准确到达目标。
导航
飞行器在飞行过程中需要精确的导航,勾股定理可以帮助 飞行员计算出飞行器的位置和方向,以确保飞行器的安全 和准确性。
04
勾股定理的变式和推广
勾股定理的变式
勾股定理的逆定理
如果一个三角形的三条边满足勾 股定理的条件,那么这个三角形
是直角三角形。
勾股定理的推广
如果一个三角形的两条边长分别 为a和b,且它们的夹角为α,那 么这个三角形的第三条边长c满
足$c^2 = a^2 + b^2 2ab\cos(α)$。
勾股定理的变形
在现实生活中,勾股定理的应用非常广泛,例如在建筑、测量、航空等领域都有实 际应用。
通过对勾股定理的学习和应用,可以更好地理解几何学的基本概念和原理,提高解 决实际问题的能力。
学习勾股定理的收获和感悟
学习勾股定理需要掌握其基本 概念和定理,了解其历史背景 和证明方法。
通过学习和实践,可以培养自 己的逻辑思维能力和空间想象 力,同时提高对数学的兴趣和 热情。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
古埃及人曾用下面的方法得到直角: 用13个等距的结,把一根绳子分成等长的12段,一个工匠同时握住 绳子的第1个结和第13个结,两个助手分别握住第4个结和第8个结, 拉紧绳子就得到一个直角三角形, 其直角在第4个结处.
做一做: 下面的三组数分别是一个三角形的三边长a,
在∆ABC中, a,b,c为三边长,其中 c为最大边, 若a2 +b2=c2, 则∆ABC为直角三角形; 若a2 +b2>c2, 则∆ABC为锐角三角形; 若a2 +b2<c2, 则∆ABC为钝角三角形.
•
;相亲 wwwHale Waihona Puke 相亲
捕蝇草(Catchfly)属于维管植物的一种,是很受欢迎的食虫植物, 拥有完整的根、茎、叶、花朵和种子。它的叶片是最主要并且明显的部位,拥有捕食昆虫的功能,外观明显的刺毛和红色的无柄腺部位,样貌好似张牙利爪的血盆大口。盆栽可适用于向阳窗 台和阳台观赏,也可专做栽植槽培养;是原产于北美洲的一种多年生草本植物。 据说因为叶片边缘会有规则状的刺毛,那种感觉就像维纳斯的睫毛一般,所以英文名称为Venus Flytrap,在茅膏菜科捕蝇草属中仅此一种,捕蝇草被誉为自然界的肉食植物。 捕蝇草仅存于于美国的南卡罗莱纳州东南方的海岸平原及北卡罗莱纳州的东北角。然而,在原产地的捕蝇草在生存上却受到人类活动的威胁。人口快速增加因而剥夺捕蝇草的生存空间,而且因为人为干预自然野火的发生,使得这些地区开始长出一些小型灌木 ,因而遮蔽捕蝇草的阳光。因此,捕蝇草被试着引入其他地区进行复育,像是新泽西州和加州。在佛罗里达州已顺利归化,而成为很大的族群。 中心部位生长出来,属于轮生的叶子,显连坐状以丛生的形态生长。中央长出来扁平或者细线状好似翅膀形状的是属于叶柄的部分,原生种的叶柄是扁平如叶片一般,因为反而像是叶子,所以也称做假叶。 叶柄的末端带有一个捕虫夹,这才是会捕捉昆虫的叶子的部分,正面分布有许多的无柄腺,一般是红色或者橙色,越接近叶绿的地方的无柄腺就越少,这部分是分泌消化液来分解昆虫或者吸收昆虫的养分的部位。叶绿长有齿状的刺毛,刺毛的基部有分泌腺, 会分泌出粘液,作用是防止昆虫挣脱和叶瓣粘合。这种的叶子拥有捕捉昆虫的特殊功能,和特殊的模样,属于变态叶中的“捕虫叶”。 因为新叶都是从中心产生,故越外层的叶子就越老。在最外层的叶柄基部有时还会产生新的侧芽。捕蝇草的叶柄有两种型态发生,有的捕蝇草叶柄细长,达7~16公分长,而且朝向空中伸展;有的捕蝇草则长出短胖
b,c: 5,12,13; 6, 8, 10; 8,15,17.
(1)这三组数都满足a2 +b2=c2吗?
(2)分别以每组数为三边长作出三角形, 用量角器量一量,它们都是直角三角形吗?
勾股定理的逆定理
如果三角形的三边长a,b,c满足a2 +b2=c2 , 那么这个三角形是直角三角形
满足a2 +b2=c2的三个正整数,称为勾股数