偶然误差的处理(精)
实验误差分析及数据处理

u + Δu = f (x + Δx, y + Δy,z + Δz)
由泰勒公式,并略去误差的高次项,得
115
地球物理实验
u + Δu = f (x, y,z) + ∂f Δx + ∂f Δy + ∂f Δz
∂x ∂y ∂z
或
Δu = ∂f Δx + ∂f Δy + ∂f Δz
∂x ∂y ∂z
该式即为误差传递公式。 例如我们通过直接测量圆柱形试件的直径D及高H来计算试件的体积V。
前面提到测量值=真值+误差,这里误差包含了系统误差和偶然误差,则测量值=真值+
系统误差+偶然误差,当系统误差修正后,误差主要即是偶然误差。在多次测量中,偶然误
差是一随机的变量,那么测量值也就是一随机变量,我们则可用算术平均值和标准误差来
描述它。
算术平均值 X :
X
=
1 n
n
∑
i =1
xi
式中xi为第i次测量的测量值,n为测量次数,当n→∞时, X →xt(真值),但是当n增加到 一定程度时, X 的精度的提高就不显着了,所以一般测量中n只要大于10就可以了。
明误差在 ± 1.96s 以外的值都要舍去,这里
1.96s=1.96×1.12=2.19
我们以算术平均值代表真值,表中第4个测量值的偏差 di 为2.4,在 ± 2.19 以外,应当舍
去,再计算其余9个数据的算术平均值和标准误差,有
m = ∑ mi = 416.0 = 46.2
n
9
∑ s =
d
2 i
偶然误差是一种不规则的随机的误差,无法予测它的大小,其误差没有固定的大小和 偏向。
误差分析和数据处理讲解

误差和分析数据处理1 数据的准确度和精度在任何一项分析工作中,我们都可以看到用同一个分析方法,测定同一个样品,虽然经过多少次测定,但是测定结果总不会是完全一样。
这说明在测定中有误差。
为此我们必须了解误差产生的原因及其表示方法,尽可能将误差减到最小,以提高分析结果的准确度。
1.1 真实值、平均值与中位数(一)真实值真值是指某物理量客观存在的确定值。
通常一个物理量的真值是不知道的,是我们努力要求测到的。
严格来讲,由于测量仪器,测定方法、环境、人的观察力、测量的程序等,都不可能是完善无缺的,故真值是无法测得的,是一个理想值。
科学实验中真值的定义是:设在测量中观察的次数为无限多,则根据误差分布定律正负误差出现的机率相等,故将各观察值相加,加以平均,在无系统误差情况下,可能获得极近于真值的数值。
故“真值”在现实中是指观察次数无限多时,所求得的平均值(或是写入文献手册中所谓的“公认值”)。
(二)平均值然而对我们工程实验而言,观察的次数都是有限的,故用有限观察次数求出的平均值,只能是近似真值,或称为最佳值。
一般我们称这一最佳值为平均值。
常用的平均值有下列几种:(1)算术平均值这种平均值最常用。
凡测量值的分布服从正态分布时,用最小二乘法原理可以证明:在一组等精度的测量中,算术平均值为最佳值或最可信赖值。
n x n x x x x ni in ∑=++==121 式中: n x x x 21、——各次观测值;n ――观察的次数。
(2)均方根平均值n x n x x x x n i in∑=++==1222221 均(3)加权平均值设对同一物理量用不同方法去测定,或对同一物理量由不同人去测定,计算平均值时,常对比较可靠的数值予以加重平均,称为加权平均。
∑∑=++++++===n i i n i ii n n n w x w w w w x w x w x w w 11212211式中;n x x x 21、——各次观测值;n w w w 21、——各测量值的对应权重。
10 误差分类与处理方法

2 误差分类与处理
2)相对误差
相对误差:绝对误差与被测量真值的比值,常用百
分数表示,即
x 100%
x0
相对误差比绝对误差能更好地说明测量的精确程度。在上面的例子中10.001 100% 10
0.01%
2
0.01 100% 200
0.005%
显然,后一种长度测量仪表更精确。
2 误差分类与处理
测量条件
引•起误 在实际相同条件下,对同一被测量进行多次等精度测
差的原
因 量时,由于各种随机因素(如温度、湿度、电源电压波
动、磁场等)的影响,各次测量值之间存在一定差异,
这种差异就是随机误差。
误差特点
•
特点:随机误差表示了测量结果偏离其真实值的分
散情况。一般分布形式接近于正态分布。
•
消除方法:可采用在同一条件下,对被测量进行足
误差分类与处理方法
梁长垠 教授
误差分类与处理方法
1
误差基本概念
2 误差分类与处理
3
1 误差基本概念
• 一、误差概念 • 真值(True value) :任何一个量的绝对准确
值。
• 约定真值:与真值的差可以忽略而可以代替真 值的值。
• 误差(error) :用测量仪表对被测量进行测 量时,测量的结果与被测量的约定真值之间的 差。
为1.0的仪表,在使用时它的最大引用误差不超过±1.0%,也就
是说,在整个量程内它的绝对误差最大值不会超过其量程的±1%。
在具体测量某个量值时,相对误差可以根据精度等级所确定
的最大绝对误差和仪表指示值进行计算。
2 误差分类与处理
例1 一台测量仪表,其标尺范围为0-400℃。已知其绝对误
误差分析和数据处理

误差和分析数据处理1 数据的准确度和精度在任何一项分析工作中,我们都可以看到用同一个分析方法,测定同一个样品,虽然经过多少次测定,但是测定结果总不会是完全一样。
这说明在测定中有误差。
为此我们必须了解误差产生的原因及其表示方法,尽可能将误差减到最小,以提高分析结果的准确度。
1。
1 真实值、平均值与中位数(一)真实值真值是指某物理量客观存在的确定值.通常一个物理量的真值是不知道的,是我们努力要求测到的。
严格来讲,由于测量仪器,测定方法、环境、人的观察力、测量的程序等,都不可能是完善无缺的,故真值是无法测得的,是一个理想值。
科学实验中真值的定义是:设在测量中观察的次数为无限多,则根据误差分布定律正负误差出现的机率相等,故将各观察值相加,加以平均,在无系统误差情况下,可能获得极近于真值的数值。
故“真值”在现实中是指观察次数无限多时,所求得的平均值(或是写入文献手册中所谓的“公认值”)。
(二)平均值然而对我们工程实验而言,观察的次数都是有限的,故用有限观察次数求出的平均值,只能是近似真值,或称为最佳值.一般我们称这一最佳值为平均值。
常用的平均值有下列几种:(1)算术平均值这种平均值最常用。
凡测量值的分布服从正态分布时,用最小二乘法原理可以证明:在一组等精度的测量中,算术平均值为最佳值或最可信赖值。
n x n x x x x ni in ∑=++==121 式中: n x x x 21、——各次观测值;n ――观察的次数.(2)均方根平均值n x n x x x x n i in∑=++==1222221 均(3)加权平均值设对同一物理量用不同方法去测定,或对同一物理量由不同人去测定,计算平均值时,常对比较可靠的数值予以加重平均,称为加权平均。
∑∑=++++++===n i i n i ii n n n w x w w w w x w x w x w w 11212211式中;n x x x 21、—-各次观测值;n w w w 21、—-各测量值的对应权重。
实验数据的误差与结果处理(精)

7
2.2 实验数据处理及结果评价 2.2.1 数理统计的几个基本概念
1. 总体(universe)(或母体)——分析研究的对象 的全体 2. 样本(swatch)(或子样)——从总体中随机抽取 一部分样品进行测定所得到的一组测定值 3. 个体(individual)——样本中的每个测定值xi 4. 样本容量(capacity of sample)(或样本大小)— 样本中所含个体的数目,用n表示
1 x (79.58 79.45 .... 79.38)% 79.50% 6
s
2018年9月28日7时8分
X
i X
2
n 1
0.09%
SX S / 6 0.04%
14
2.2 实验数据处理及结果评价
2.2.3 置信度与置信区间
偶然误差的正态分布曲线:
对于有限次测定,结果的平均 值与总体平均值 关系为 : s x t sx x t n
5. 样本平均值
1 x xi n
6. 极差: 表示数据的分散程度
2018年9月28日7时8分
R xmax xmin
8
2.2 实验数据处理及结果评价
2.2.2 少量数据的统计处理 1. 平均偏差
平均偏差又称算术平均偏差,用来表示一组数据的精密度 平均偏差: 相对平均偏差:
1 1 d xi x d i n n
s——有限次测定的标准偏差 n——测定次数
t 值表 ( t——某一置信度下的几率系数)
置信度——真值在置信区间出现的几率 置信区间——以平均值为中心,真值出现的范围 讨论: 1. 置信度不变时: n 增加,t 变小,置信区 间变小 2. n不变时:置信度增加, t变大,置信区 间变大 2. n, t不变时:s增加,置信区间变大,准 确度降低 2018年9月28日7时8分
(完整版)测量误差的分类以及解决方法

测量误差的分类以及解决方法1、系统误差能够保持恒定不变或按照一定规律变化的测量误差,称为系统误差。
系统误差主要是由于测量设备、测量方法的不完善和测量条件的不稳定而引起的。
由于系统误差表示了测量结果偏离其真实值的程度,即反映了测量结果的准确度,所以在误差理论中,经常用准确度来表示系统误差的大小。
系统误差越小,测量结果的准确度就越高。
2、偶然误差偶然误差又称随机误差,是一种大小和符号都不确定的误差,即在同一条件下对同一被测量重复测量时,各次测量结果服从某种统计分布;这种误差的处理依据概率统计方法。
产生偶然误差的原因很多,如温度、磁场、电源频率等的偶然变化等都可能引起这种误差;另一方面观测者本身感官分辨能力的限制,也是偶然误差的一个来源。
偶然误差反映了测量的精密度,偶然误差越小,精密度就越高,反之则精密度越低。
系统误差和偶然误差是两类性质完全不同的误差。
系统误差反映在一定条件下误差出现的必然性;而偶然则反映在一定条件下误差出现的可能性。
3、疏失误差疏失误差是测量过程中操作、读数、记录和计算等方面的错误所引起的误差。
显然,凡是含有疏失误差的测量结果都是应该摈弃的。
解决方法:仪表测量误差是不可能绝对消除的,但要尽可能减小误差对测量结果的影响,使其减小到允许的范围内。
消除测量误差,应根据误差的来源和性质,采取相应的措施和方法。
必须指出,一个测量结果中既存在系统误差,又存在偶然误差,要截然区分两者是不容易的。
所以应根据测量的要求和两者对测量结果的影响程度,选择消除方法。
一般情况下,在对精密度要求不高的工程测量中,主要考虑对系统误差的消除;而在科研、计量等对测量准确度和精密度要求较高的测量中,必须同时考虑消除上述两种误差。
1、系统误差的消除方法(1)对测量仪表进行校正在准确度要求较高的测量结果中,引入校正值进行修正。
(2)消除产生误差的根源即正确选择测量方法和测量仪器,尽量使测量仪表在规定的使用条件下工作,消除各种外界因素造成的影响。
分析化学中的误差与数据处理(精)

第3章分析化学中的误差与数据处理一、选择题1.下列叙述错误的是()A.误差是以真值为标准的,偏差是以平均值为标准的,实际工作中获得的所谓“误差”,实质上仍是偏差B.对某项测定来说,它的系统误差大小是不可测量的C.对偶然误差来说,大小相近的正误差和负误差出现的机会是均等的D.标准偏差是用数理统计方法处理测定的数据而获得的2.四位学生进行水泥熟料中SiO2 , CaO, MgO, Fe2O3 ,Al2O3的测定。
下列结果(均为百分含量)表示合理的是()A.21.84 , 65.5 , 0.91 , 5.35 , 5.48 B.21.84 , 65.50 , 0.910 , 5.35 , 5.48C.21.84 , 65.50 , 0.9100, 5.350 , 5.480 D.21.84 , 65.50 , 0.91 , 5.35, 5.483.准确度和精密度的正确关系是()A.准确度不高,精密度一定不会高B.准确度高,要求精密度也高C.精密度高,准确度一定高D.两者没有关系4.下列说法正确的是()A.精密度高,准确度也一定高B.准确度高,系统误差一定小C.增加测定次数,不一定能提高精密度D.偶然误差大,精密度不一定差5.以下是有关系统误差叙述,错误的是()A.误差可以估计其大小B.误差是可以测定的C.在同一条件下重复测定中,正负误差出现的机会相等D.它对分析结果影响比较恒定6.滴定终点与化学计量点不一致,会产生()A.系统误差B.试剂误差C.仪器误差D.偶然误差7.下列误差中,属于偶然误差的是()A.砝码未经校正B.容量瓶和移液管不配套C.读取滴定管读数时,最后一位数字估计不准D.重量分析中,沉淀的溶解损失8.可用于减少测定过程中的偶然误差的方法是()A.进行对照试验B.进行空白试验C.进行仪器校准D.增加平行试验的次数9.下列有效数字位数错误的是()A.[H+]=6.3×10-12mol/L (二位) B.pH=11.20(四位)C.CHCl=0.02502mol/L (四位) D.2.1 (二位)10.由计算器算得9.250.213341.200100⨯⨯的结果为0.0164449。
误差以及数据处理

定义
粗大误差是由于观测者疏 忽或外界干扰引起的误差, 其大小和方向都是不定的。
产生原因
观测者的疏忽、记录错误、 外界干扰等。
特性
单次测量结果明显偏离正 常值,且多次测量结果的 平均值也不稳定。
02
数据处理方法
数据清洗
数据预处理
对原始数据进行必要的预处理,包括数据格式化、缺失值处理、 异常值处理等。
误差处理
误差来源识别
识别并分类误差来源 是误差处理的第一步, 这有助于确定哪些因 素最可能导致误差。
误差估计
对每个来源的误差进 行量化评估,这可以 通过统计分析、实验 或经验公式来完成。
误差校正
根据误差的性质和量 级,可以采用不同的 校正方法,如系统校 准、数据平滑等。
预防措施
为了避免误差的产生, 可以采取一系列预防 措施,如提高测量设 备的精度、标准化操 作流程等。
03 特性
单次测量结果难以预测,但大量测量结果的平均 值是稳定的。
系统误差
01 定义
系统误差是由某些固定因素引起的误差,其大小 和方向是固定的。
02 产生原因
测量工具的固有偏差、实验方法的缺陷、理论公 式的近似等。
03 特性
单次测量结果具有一致性,多次测量结果的平均 值也不变。
粗大误差
01
02
03
案例分析
例如,某医院进行一项临床试验,通过误差处理发现实验 数据存在偏差,经过重复实验和数据校准后,得到了更为 准确的结果。
气象数据误差传递
01
气象数据误差来源
气象数据误差可能来源于观测站网布局、观测仪器、观测方法等方面,
如观测误差、传输延迟等。
02
误差和时间传递,空间传递是指误差随
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§1.2偶然误差的处理
在这一节里,我们假定在没有系统误差存在的情况下,来讨论偶然误差问题。
一、测量结果的最佳值——多次测量的平均值
对某一物理量进行测量时,最好进行多次重复测量。
根据多次重复测量的结果,可能获得一个最接近真值的最佳值。
在相同条件下,对某物理量x进行了n次重复测量,其测量值分别
当测量次数无限增多时,根据偶然误差的性质可以证明:该平均值
作为测量的结果。
二、算术平均绝对误差
真值无法得到,误差也就无法估算。
由于平均值是最佳值,可以把它作为近真值来估算误差。
一般定义测量值与平均值之差为“偏差”或“离差”,它们与误差是有区别的。
然而当测量次数很多时,“偏差”会接近误差。
在以下讨论中,不去严格区分“偏差”和误差,把它们统称为误差。
取
量结果表达式可写为
三、标准误差——方均根误差a
在现代实验测量中,通常用标准误差来衡量一组测量值的精密度,标准误差就是均方根误差。
物理量x的标准误差用σx表示,它的定义是:当测量次数无限多时,有
测量次数不可能无限多,根据误差理论,当测量次数有限时,(1-4)式应改写成:
(1-5)式是n次重复测量中单次测量的标准误差,n次测量结果平均
当偶然误差用标准误差来表示时,测量结果应写为
四、相对误差
我们把测量结果及其偶然误差写为x±Δx的形式,其中x是测量值,它可以是一次测量值,也可以是多次测量的平均值;Δx是绝对误差,它可以是一次测量中绝对误差的绝对值,也可以是平均绝对误差或标准误差。
在对同一对象采用不同精度的仪器或测量方法来测量时,Δx能够表示出测量的不同精确度。
但对不同对象进行测量时,却反映不出不同的精确度。
例如,用米尺测量两物体的长度,测量结果为:
x1=100.00±0.05cm,x2=10.00±0.05cm,两者的绝对误差相同,均为0.05cm,但误差点测量值的比例不同,前者的精确度高于后者。
因此,引入相对误差,它可以评价上述两测量结果精确度的差别。
相对误差通常用百分比表示,所以又称为百分比误差。
相对误差E定义为
(1-8)式中的x通常取平均值,也可以用公认值或理论值代替。
例对某电压测量的数据处理(见表1-1)。
表1-1电压的测量
在计算过程中,误差一般取一位且应与测量值的尾位对齐,误差的尾数只进不退。
本例中的偶然误差分别用平均绝对误差、标准误差、平均标准误差来表示时,其对应的测量结果为
U=10.00±0.02V;U=10.00±0.03V;U=10.00±0.02V。
五、间接测量的误差估算
物理实验中的被测量N,往往通过与直接测量量的函数关系计算出来。
我们称N为间接测量量或复合量。
计算间接测量量值时,是将各直接测量量的平均值代入有关函数式求出。
由于各直接测量量的平均值均有误差,因此计算的结果也必然具有一定的误差,这
称为误差的传递,其误差的大小取决于各直测量误差的大小以及函数的具体形式。
设间接测量量与若干个直测量有下述函数关系:
N=f(x,y,…) (1-9)
x,y,…表示直测量。
对上式求全微分,得:
式中,d x,d y,…和dN都是微小改变量,可以看成是各量值的误差,并分别用Δx,Δy,…和ΔN代替它们,则绝对误差公式表示为
(1-11)式称为函数误差算术传递的基本公式。
将(1-10)式两边平方后略去高阶小项,得
根据(1-11)式和(1-13)式,我们把常用函数的误差算术传递公式和标准误差传递公式列成表1-2以备查用。
表1-2常用函数的误差传递公式
例测得一金属圆柱体的质量m=162.38±0.01g,长度1=39.92±0.01mm、直径d=24.927±0.002mm,求其密度和误差
若题设中的误差为平均绝对误差,用误差算术传递公式:
求得其密度为ρ=(8.335±0.003)g·cm3
若题设中的误差为标准误差,用标准误差传递公式:
求得其密度为ρ=(8.335±0.003)g·cm3。