随机过程知识点总结

合集下载

(完整版)随机过程知识点汇总

(完整版)随机过程知识点汇总

第一章随机过程 的基本概念与基本类型 一.随机变量及其分布X ,分布函数 F (x) P(X x) 1.随机变量 离散型随机变量 X 的概率分布用分布列 p P(X x k ) F(x)p kf (t)dt分布函数kxX 的概率分布用概率密度 f (x)F(x)分布函数连续型随机变量 2.n 维随机变量 X (X ,X , , X ) 1 2 n F(x) F(x ,x , ,x ) P(X x , X 2 x , , X n x n ,)其联合分布函数 1 2 n 1 1 2 离散型联合分布列连续型联合概率密度3.随机变量 的数字特征 数学期望:离散型随机变量 XEX x p kkXEX xf (x)dx连续型随机变量2DX E(X EX) 2 EX (EX) 2方差:反映随机变量取值 的离散程度协方差(两个随机变量 X ,Y ):B E[( X EX)(Y EY)] E(XY) EX EYXYB XY相关系数(两个随机变量X,Y ):0,则称 X ,Y 不相关。

若XYDX DY独立不相关itXg(t) E(e )itxe p k 连续 g(t)ke itxf (x)dx4.特征函数离散 g(t) 重要性质: g(0) 1,g(t) 1 g( t) g(t),, g (0) i EX kk k5.常见随机变量 的分布列或概率密度、期望、方差 0-1分布 二项分布P( X 1) p,P( X 0) qEX pDX pqP(X k) C p q n kk kEX npDX n p qnk泊松分布P( X k) ek!EXDX均匀分布略( x a)21 2N(a, ) f (x)222EX a正态分布eDX2xe ,x 0 0, x 011指数分布f (x)EXDX2X (X ,X , ,X ) 的联合概率密度 X ~ N(a, B) 6.N维正态随机变量1 2 n11 2T 1(x a) B (x a)}f (x , x , , x n ) exp{ 11 2n 2(2 ) | B |2a (a ,a , ,a ), x (x , x , ,x ), B (b ) 正定协方差阵 1 2 n 1 2 n ij n n二.随机过程 的基本概念 1.随机过程 的一般定义设 ( , P)是概率空间, T 是给定 的参数集,若对每个 t T ,都有一个随机变量 X 与之对应, X(t,e),t T ( , 是P)上 的随机过程。

随机过程知识点总结

随机过程知识点总结

知识点总结第1章 概率论基础1.1概论空间随机试验,它是指其结果不能事先确定且在相同条件下可以重复进行的试验。

其中,一个试验所有可能出现的结果的全体称为随机试验的样本空间,记为Ω,试验的一个结果称为样本点,记为ω,即}{ω=Ω. 样本空间的某个子集称为随机事件,简称事件.定义1.1.1 设Ω样本空间,是Ω的某些子集构成的集合,如果:(1)∈Ω (2)若∈A ,则∈A(3)若∈n A ,,, ,21n =则∈∞= 1n nA那么称为一事件域,也称为σ域.显然,如果是一事件域,那么(1)∈φ(2)若∈B A ,,则∈-B A(3)若∈n A , ∞==1n n 2,1n A ,则,,定义 1.1.2 设Ω是样本空间,是一事件域,定义在上的实值函数)(⋅P 如果满足:(1)∈∀A 0)(,≥A P ,(2)1)(=ΩP , (3)若∈n A ,,2,1, =n 且,,2,1,,, =≠=j i j i A A j i φ则∞=∞=∑=11)()(n n n n A P A P那么称P 是二元组(,Ω)上的概率,称P (A )为事件A 的概率,称三元组,(Ω),P 为概率空间。

关于事件的概率具有如下性质:(1);0)(=φP(2)若∈nA ,,,2,1,,,,,,2,1,n j i j i A A n i j i =≠==φ 则ni ni i i A P A P 11)()(==∑=(3)若∈B A ,,,B A ⊂则)A P B P A B P ()()(-=-(4)若∈B A ,)()(,,B P A P B A ≤⊂则; (5)若∈A ;1)(,≤A P 则(6)若∈A );(1)(,A P A P -=则(7)若∈n A ,,2,1, =n 则∞=∞=∑≤11)()(n n n i A P A P(8)若∈i A ,,,2,1,n i =则-===∑ ni ni i i A P A P 11)()(∑∑≤<≤≤<<≤--+-+nj i nk j i n n kj ij i A A A P A A A P A A P 11211)()1()()(一列事件∈n A ,2,1,=n 称为单调递增的事件列,如果;,2,1,1 =⊂+n A A n n 一列事件∈n A ,2,1,=n 称为单调递减的事件列,如果,2,1,1=⊃+n A A n n .定理1.1.1 设 ∈n A ,2,1,=n(1)若 ,2,1,=n A n 是单调递增的事件列,则⎪⎪⎭⎫⎝⎛=∞=∞→ 1)(lim n n n n A P A P (2)若 ,2,1,=n A n 是单调递减的事件列,则⎪⎪⎭⎫⎝⎛=∞=∞→ 1)(lim n n n n A P A P 定义1.1.3.设,(Ω),P 为一概率空间,∈B A ,.且,0)(>A P 则称)()()(A P AB P A B P =为在事件A 发生的条件下事件B 发生的条件概率.不难验证,条件概率)|(A P ⋅符合定义1.1.2中的三个条件,即 (1)∈∀B , 0)|(≥A B P ;(2);1)|(=ΩA P (3)设∈n B ,,2,1,,,,2,1, =≠==j j i B B n j i φ则∞=∞=∑=11)|()|(n n n n A B P A B P定理 1.1.2. 设,Ω( ),P 是一概率空间,有: (1)(乘法公式)若∈i A ,,,,2,1n i =且0)(121>-n A A A P ,则)|()()(12121A A P A P A A A P n =(2)(全概率公式)设∈A ,∈iB ,,2,1,0)(, =>i B P i 且∞=⊃=≠=1,,,2,1,,,,i i j i A B j i j i B B φ则∑∞==1)|()()(i i i B A P B P A P(3)(贝叶斯(Bayes)公式)且∈A ∈>i B A P ,0)(,,,,2,1,0)( =>i B P i且 ∞=⊃==1,,,2,1,,i i j i A B j i B B φ则,2,1,)|()()|()()|(1==∑∞=i B A P B P B A P B P A B P j jji i i定义 1.1.4设,(Ω ),P 为一概率空间,,,,2,1,n i F A i =∈如果对于任意的)1(n k k ≤<及任意的,12n i i i k i ≤<<<≤ 有)()()()(2121k k i i i i i i A P A P A P A A A P =则称n 21,,,A A A 相互独立。

第二章 随机过程总结

第二章   随机过程总结

图2-2-3 随机过程的均方值、方差
方差、均方值和均值有数学关系式:
(2.2.18) • 方差描述在该时刻对其数学期望的偏离程度。
• 数学期望、均方值和均方差只能描述随机过程孤 立的时间点上的统计特性。
• 随机过程孤立的时间点上的统计特性不能反映随 机过程的起伏程度。
图2-2-4 随机过程的起伏程度
注:一维概率分布描述了随机过程在各个孤 立时刻的统计特性。 3、二维分布函数
与 , , 和 都有直接的关系, 是 ,, 和 的四元函数,记为: (2.2.4) 被称为随机过程的二维分布函数。
4、二维概率密度函数
如果存在四元函数
ቤተ መጻሕፍቲ ባይዱ
,使
(2.2.5)
成立,则称 为随机过程的二维概率密 度函数,是 ,,和 的四元函数,且满足 (2.2.6)
§2.3
平稳随机过程
• 平稳随机过程的定义
• 严平稳随机过程及其性质 • 宽平稳随机过程及其性质
图2-3-1 初相角随机的正弦信号
图2-3-2 幅度随机的正弦信号
图2-3-3 频率随机的正弦信号
图2-3-4 频率、相位和幅度随机的正弦信号
图2-3-5 云层背景下的飞机
2.3.1 随机信号 的统计特性(如概率密度函 数、相关函数),部分或全部在观察点或观察 点组的位置变化时,保持不变或变化。在随机 信号理论中就称该随机信号的相应统计特性具 有平稳或非平稳性。 2.3.2 随机信号统计平稳性有多种情况: (1)对整个观察点位置 变化的平稳性; (2)对观察点中时间位置 变化的时间平稳性; (3)对观察点空间位置 变化的平稳性; (4)对观察点中空间位置的部分坐标变化的平 稳性。
例2.8 设有随机过程 ,式中A是高斯 随机变量, 为确定的时间函数。试判断 是否为严平稳过程。 解:已知A的概率密度函数

随机过程知识点汇总

随机过程知识点汇总

随机过程知识点汇总随机过程是指一组随机变量{X(t)},其中t属于某个集合T,每个随机变量X(t)都与一个时刻t相关联。

2.随机过程的分类随机过程可以分为离散时间随机过程和连续时间随机过程。

离散时间随机过程是指在离散的时间点上取值的随机过程,例如随机游走。

连续时间随机过程是指在连续的时间区间上取值的随机过程,例如XXX运动。

3.随机过程的数字特征随机过程的数字特征包括均值函数和自相关函数。

均值函数E[X(t)]描述了随机过程在不同时刻的平均取值。

自相关函数R(t1,t2)描述了随机过程在不同时刻的相关程度。

4.平稳随机过程平稳随机过程是指其均值函数和自相关函数都不随时间变化而变化的随机过程。

弱平稳随机过程的自相关函数只与时间差有关,而不依赖于具体的时间点。

强平稳随机过程的概率分布在时间上是不变的。

5.高斯随机过程高斯随机过程是指其任意有限个随机变量的线性组合都服从正态分布的随机过程。

高斯随机过程的均值函数和自相关函数可以唯一确定该过程。

6.马尔可夫随机过程马尔可夫随机过程是指其在给定当前状态下,未来状态的条件概率分布只依赖于当前状态,而与过去状态无关的随机过程。

马尔可夫性质可以用转移概率矩阵描述,并且可以用马尔可夫链来建模。

7.泊松过程泊松过程是指在一个时间段内随机事件发生的次数服从泊松分布的随机过程。

泊松过程的重要性质是独立增量和平稳增量。

8.随机过程的应用随机过程在金融学、信号处理、通信工程、控制理论等领域有广泛的应用。

例如,布朗运动被广泛应用于金融学中的期权定价,马尔可夫链被应用于自然语言处理中的语言模型。

t)|^2]协方差函数BZs,t)E[(ZsmZs))(ZtmZt))],其中Zs和Zt是Z在时刻s和t的取值。

复随机过程是由实部和虚部构成的随机过程,其均值和方差函数分别由实部和虚部的均值和方差函数计算得到。

协方差函数和相关函数也可以类似地计算得到。

复随机过程在通信系统中有广泛的应用,例如调制解调、信道编解码等。

随机过程知识点汇总3

随机过程知识点汇总3

第一章随机过程的基本概念与基本类型一. 随机变量及其分布1随机变量X,分布函数F(x)二P(X < x)X连续型随机变量X的概率分布用概率密度 f (x) 分布函数F(x)二f (t)dt2. n维随机变量X =(X i,X2,…,X n)其联合分布函数F(x) H F a’X?,…,X n) =P(X1空X-X2乞x2,…,X n乞x n,)离散型联合分布列连续型联合概率密度3 .随机变量的数字特征数学期望:离散型随机变量X EX =二x k p k连续型随机变量X EX二"xf (x)dx匚方差:DX = E(X -EX)2二EX2-(EX)2反映随机变量取值的离散程度协方差(两个随机变量X,Y ):B XY =E[(X — EX)(Y —EY)] =E(XY) — EX .EY独立=不相关:=:-=0予oO 予离散g(t)二' e iX k P k 连续g(t) e iX f (x)dx'J重要性质:g(0)=1 , g(t) <1 , g(—t)=g(t) , g k(0)=i k EX k5 •常见随机变量的分布列或概率密度、期望、方差0 —1分布P(X =1) =p,P(X =0) =q EX二p DX = p q二项分布k k n -kP(X = k) = C n p q EX=np DX=n pq泊松分布-kP(X =k) =e EXk!DX=扎均匀分布略离散型随机变量X的概率分布用分布列P k 二P(X 二X k)分布函数F(x) = 7 P k相关系数(两个随机变量X,Y ):B XYDX DY若'=0,则称X,Y不相关。

4 .特征函数g(t)二E(e itX)6.N 维正态随机变量 X =(X ,,X 2^ ,X n )的联合概率密度II T A.f(X i ,X 2, ,X n )二 ---------- n-exo{(x-a) B (x-a)} 2 (2 二)2|B|2a =(a .,a 2,…,aj , x =(x i , X 2,…,X n ), B = (b ij )nn 正定协方差阵二•随机过程的基本概念 1•随机过程的一般定义设r 1, P)是概率空间,T 是给定的参数集,若对每个r T ,都有一个随机变量 X 与之对应, 则称随机变量族fx (t,e),t ・T /是 (JP)上的随机过程。

随机过程知识点总结

随机过程知识点总结
= ∑


∑ = 1

矩阵表示
= ()
3、 各状态平均返回时间
=
1

第五章 连续时间马尔可夫链
1、 转移概率 (, ) = {( + ) = |() = }
齐次转移概率 (, ) = ()
2、 转移速率
()
() = ∑ , ≥ 0
=1

[()] = [1 ];[()] =
[12]
第四章 马尔可夫链
4.1 马尔可夫链概念与状态转移概率
1、


2、
马尔可夫过程:未来状态只与当前状态有关,而与过去状态无关。
时间、状态都是离散的,称为马尔可夫链。
马尔可夫链的统计特性完全由条件概率{+1 = +1 | = }确定。
随机矩阵:各元素非负且各行元素之和为 1;
步转移矩阵是随机矩阵;
闭集 C 上所有状态构成的步转移矩阵仍是随机矩阵。
周期为的不可约马氏链,其状态空间可唯一地分解为个互不相交的子集之和,即
−1
= ⋃ , ∩ = ∅, ≠
=0
且使得自 中任一状态出发,经一步转移必进入+1 中( = 0 )。
[ ( + ) − ()] −[ (+)− ()]


!
+
( + ) − () = ∫
()

相较与齐次泊松过程 → ( + ) − ()
5、 复合泊松过程(独立增量过程)
是由对泊松过程的每一点赋予一独立同分布的随机变量而得的随机过程。
=1
′′ (0)(− 2 )

考研随机过程知识点浓缩

考研随机过程知识点浓缩

考研随机过程知识点浓缩随机过程是概率论中的重要分支,研究随机事件在时间上的演变规律。

在考研数学中,随机过程是一个重要的知识点,涉及到概率论和数理统计等多个领域。

本文将对考研随机过程的知识点进行浓缩总结,帮助考生更好地掌握重点内容。

1. 随机过程的定义随机过程是一个定义在时间轴上的随机变量族,即一系列随机变量组成的集合。

随机过程可分为连续时间随机过程和离散时间随机过程,根据时间参数的取值范围来进行区分。

2. 随机过程的分类根据随机过程的状态空间,可以将随机过程分为离散状态随机过程和连续状态随机过程。

离散状态随机过程中,状态空间为有限集合或者可列无限集合,如泊松过程;连续状态随机过程中,状态空间为连续集合,如布朗运动。

3. 马尔可夫性质马尔可夫性质是随机过程的重要性质之一,指的是在给定当前状态的条件下,未来的发展只依赖于当前状态,与过去的状态无关。

具有马尔可夫性质的随机过程可以简化计算和分析。

4. 随机过程的平稳性平稳性是随机过程的另一个重要性质,分为弱平稳和严平稳。

弱平稳指的是均值和自协方差不依赖于时间的特性;严平稳则要求联合分布在时间上的平移具有不变性。

平稳性的性质可以简化对随机过程的研究。

5. 随机过程的独立增量性质随机过程的独立增量性质指的是在不相交的时间间隔内,随机变量之间是相互独立的。

具有独立增量性质的随机过程可以通过对各个时间间隔内的随机变量进行独立分析。

6. 随机过程的马尔可夫链马尔可夫链是一种特殊的离散时间随机过程,具有马尔可夫性质。

马尔可夫链的状态空间是离散的,状态转移概率只与当前状态有关,与过去的状态无关。

马尔可夫链通常用状态转移矩阵来描述状态之间的转移规律。

7. 泊松过程泊松过程是一类具有无记忆性的离散状态随机过程,是一种常用的数学模型。

泊松过程描述了在一段时间内随机事件发生的次数,具有独立增量和稳定增量的性质。

8. 布朗运动布朗运动是连续时间的连续状态随机过程,具有平稳增量、独立增量和高斯增量的特性。

第一讲随机过程的概念

第一讲随机过程的概念
第十章
随机过程的基本知识
引例:热噪声电压
一、随机过程的定义
定义1 设E是一随机实验,样本空间S={e},T为参数集
若对每个eS ,X(e,t)都是实值函数, 则称{X(e,t),t T}
为随机过程,简记为X(t),t T 或X(t),也可记为X(t).
称族中每一个函数称为这个随机过程的样本函数。
样本函数: xi (t ) a cos( t i ) , i (0 , 2 )
状态空间:I=(-a,a)
例3: 掷骰子试验
伯努利过程 (伯努利随机序列)
以上都是随机过程,状态空间都是:I={1,2,3,4,5,6}
二、随机过程的分类
离散型随机过程
1. 依状态离散还是连续分为:
s, t 0, C X ( s, t ) DX [min{s, t }].
④ C X ( s, t ) Cov( X ( s), X (t ))
E[ X ( s) X ( s)][X (t ) X (t )]
为{X(t),tT}的协方差函数.
⑤ Rx(s,t)=E[X(s)X(t)]为{X(t),tT}的自相关函数, 简称相关函数
诸数字特征的关系:
X (t ) f ( x, t )
称 f ( x, t ) 为随机过程的一维密度函数 称{ f ( x, t ), t T } 为一维密度函数族.
X t 0 ,其中 X Y ( t ) te 例4 设随机过程
e( ) ,求
{Y (t ),t 0}的一维密度函数
y P( X ln ) , t 解: F ( y; t ) P[Y (t ) y ] P(te y ) 0 ,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章:
考试范围1.3,1.4
1、计算指数分布的矩母函数.
2、计算标准正态分布)1,0(~N X 的矩母函数.
3、计算标准正态分布)1,0(~N X 的特征函数.
第二章:
1. 随机过程的均值函数、协方差函数与自相关函数
2. 宽平稳过程、均值遍历性的定义及定理
3. 独立增量过程、平稳增量过程,独立增量是平稳增量的充要条件
1、设随机过程()Z t X Yt =+,t -∞<<∞.若已知二维随机变量(,)X Y 的协方差矩阵为2122σρρσ⎡⎤⎢⎥⎣⎦
,求()Z t 的协方差函数. 2、设有随机过程{(),}X t t T ∈和常数a ,()()()Y t X t a X t =+-,t T ∈,计算()Y t 的自相关函数(用(,)X R s t 表示).
3、设12()cos sin X t Z t Z t λλ=+,其中212,~(0,)Z Z N σ是独立同分布的随机变量,λ为
实数,证明()X t 是宽平稳过程.
4、设有随机过程()sin cos Z t X t Y t =+,其中X 和Y 是相互独立的随机变量,它们都分别以0.5和0.5的概率取值-1和1,证明()Z t 是宽平稳过程.
第三章:
1. 泊松过程的定义(定义3.1.2)及相关概率计算
2. 与泊松过程相联系的若干分布及其概率计算
3. 复合泊松过程和条件泊松过程的定义
1、设{(),0}N t t ≥是参数3λ=的Poisson 过程,计算:
(1). {(1)3}P N ≤; (2). {(1)1,(3)3}P N N ==; (3). {(1)2(1)1}P N N ≥≥.
2、某商场为调查顾客到来的客源情况,考察了男女顾客来商场的人数. 假设男女顾客来商场的人数分别独立地服从每分钟2人与每分钟3人的泊松过程.
(1).试求到某时刻t 时到达商场的总人数的分布;
(2). 在已知t 时刻有50人到达的条件下,试求其中恰有30位女性的概率,平均有多少个女性顾客?
3、某商店顾客的到来服从强度为4人/小时的Poisson 过程,已知商店9:00开门,试求:
(1). 在开门半小时中,无顾客到来的概率;
(2). 若已知开门半小时中无顾客到来,那么在未来半小时中,仍无顾客到来的概率。

4、设有一泊松过程{(),0}N t t ≥,若有两个时刻,s t ,且s t <,试证明 {()()}1k n k k n s s P N s k N t n C t t -⎛⎫⎛⎫===- ⎪ ⎪⎝⎭⎝⎭, 0,1,,k n =.
5、设顾客以泊松分布抵达银行,其到达速率为λ.若已知在第一个小时内有两个顾客抵达银行,试计算:
(1).此两个顾客在最初的20分钟内抵达银行的概率;
(2).至少有一个顾客在最初的20分钟内抵达银行的概率.
第四章:
1. 更新过程、更新方程及其解得存在唯一性
2. Wald 等式
3. 更新定理及其在概率计算中的应用
1、设12{1},{2}33i i P X P X ====,令1
,1n n i i T X n ==≥∑.对于更新过程()sup{:}n N t n T t =≤,计算(1)N 和(2)N 的概率分布.
2、某控制器用一节电池供电,设电池寿命),2,1( =i X i 服从(30,60)(单位:h )内的均匀分布,电池失效时需要去仓库领取,领取新电池的时间),2,1( =i Y i 服从期望为0.5小时的均匀分布.计算长时间工作时控制器更换电池的速率.
3、设有一个单服务员银行,顾客到达可看作速率为20(人/小时)的Poisson 分布,服务员为每一位顾客服务的时间是随机变量,服从均值为2(分钟/人)的指数分布.顾客到达门口只有在服务员空闲时才准进来.试求:
(1).顾客进银行的速率;
(2).服务员工作的时间所占营业时间的比例.
第五章:
1. Markov 链的定义,转移概率矩阵,C-K 方程
2. 状态的周期,常返态、非常返态的定义及判别(定理5.2.3,推论5.
3.3,5.3.4)
3. 极限定理及平稳分布
1、设明天是否有雨仅与今天的天气有关,而与过去的天气无关.又设今天下雨明天也下雨 的概率为0.7,而今天无雨明天有雨的概率为0.4,计算星期一有雨,星期四天仍有雨的概 率.
2、设某厂的商品的销售状态(按一个月计)可分为三个状态:滞销(用1表示)、正常(用2表示)、畅销(用3表示)。

若经过对历史资料的整理分析,其销售状态的变化(从这月到下月)与初始时刻无关,且其状态转移概率为ij p (ij p 表示从销售状态i 经过一个月后转为销售状态j 的概率),一步转移概率矩阵为:
1/21/201/31/95/91/62/31/6⎛⎫ ⎪ ⎪ ⎪⎝⎭
试对经过长时间后的销售状况进行分析。

3、一质点在1,2,3三个点上作随机游动,1和3是两个反射壁,当质点处于2时,下一时刻处于1,2,3是等可能的。

写出一步转移概率矩阵,判断此链是否具有遍历性,若有,求出极限分布。

4、设有一马尔可夫链,其转移状态有两种:1E 、2E ,经计算得一阶转移概率矩阵为
⎪⎪⎭
⎫ ⎝⎛=41.059.021.079.0)1(P ,求证该链具有遍历性,并求出极限分布。

5、设{1,2,3,4}I =,其一步转移概率矩阵为
1/21/2001
00001/32/301/201/20⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭
试对其状态进行分类,确定哪些状态是常返态,并确定其周期.
6、设齐次Markov 链的转移概率矩阵为
000q p q
p q p ⎛⎫ ⎪ ⎪ ⎪⎝⎭
,1p q +=,01p <<,
证明:此Markov 链有遍历性,并求其平稳分布.
第六章
1. 鞅及停时的定义
2. 鞅的证明
1、设 ,,21X X 是一族零均值的独立随机变量序列,且∞<)(i X E ,∑==n i i n X
S 1,证明:{}n S 是关于}{n F 的鞅.
2、证明Brown 运动是鞅.
第七章
1. Brown 运动的定义及相关概率计算
2. Gauss 过程及相关概率计算
3. Brown 的最大值变量及反正弦律
1、 设}0),({≥t t B 是标准Brown 运动,计算}0)2(,0)1({≤≤B B P .
2、 设}0),({≥t t B 是标准Brown 运动,计算)3(3)2(2)1(B B B ++的分布.
3、 设}0),({≥t t B 是标准Brown 运动,计算}32)({10>⎰dt t B P .
第八章
考试范围:P157性质8.2.1第二条,伊藤公式。

相关文档
最新文档