议超声平测法检测混凝土裂缝深度
基于超声波技术的水泥混凝土裂缝深度检测

Key words: ultrasonic technologyꎬnondestructive testingꎬultrasonic time - distance detection methodꎬcrack depth
Abstract:Cracks are one of the most common diseases of concrete members. The depth of cement concrete cracks is closely related to the
safety performance of components and buildings. In this experimentꎬthe crack depth is non - destructively measured by high energy ultra ̄
在国外ꎬ加拿大的 Leslie 和 CHeesman、英国的 R Jones 成
采用时距法对裂缝进行测量ꎬ将 T、R 换能器分别置于裂缝对
超声波检测和冲击弹性波检测 [1] ꎮ
功使用超声波法对混凝土进行检测[2] ꎬ美国 Chi - Won In 等人
对混凝土内部裂缝位置和深度的计算做了详细研究
[3 - 6]
修补是很有必要的措施ꎮ 在此之前必须对混凝土裂缝进行检
程中能量逐渐减弱ꎬ影响后续波形分析ꎬ造成计算误差ꎻ当收
测ꎬ研究裂缝形成原因、状态的发展趋势ꎬ从而对混凝土质量
发换能器的间距过小时ꎬ超声波波形将产生严重畸变ꎬ导致声
情况评定与计量ꎮ 混凝土裂缝检测方法有多种ꎬ常见方法有
时测量的误差增大ꎬ从而导致裂缝深度测量误差ꎮ 因此ꎬ在对
超声波测混凝土缺陷

超声波测混凝土缺陷摘要:目前对缺陷的无损检测技术大体可以分为两大类:一类是机械波法,包括超声波法、冲击波法等检测方法。
另一类是穿透辐射法,包括χ射线、γ射线、中子流等检测方法。
由于射线的穿透能力有限,尤其对非匀质的混凝土构件,其穿透混凝土进行检测的能力和效果有限,而且产生射线的设备相当复杂,又需要严格的防护措施,现场应用很不方便。
相比较而言,超声波的穿透能力较强,这一特点尤其是用于检测混凝土时更为突出,而且超声波检测设备比较简单,操作也很方便,所以被广泛应用于混凝土结构构件缺陷的检测。
关键词:超声波;缺陷;裂缝近年来随着建设工程的迅速发展,结构型式越来越复杂,对施工过程的要求也越来越高,但常有因施工管理或环境因素等形成的不同形式的混凝土缺陷。
这些缺陷的存在对结构的完整性、力学性能和耐久性能产生了不同程度的影响,因此采用有效的非破损检测方法,在不破坏结构构件的基础上检测出混凝土内部缺陷是非常必要的。
1 实验原理采用超声波脉冲法检测混凝土内部缺陷的基本原理是根据超声波在技术条件相同的混凝土中传播的声时(声速)、接收波的振幅和频率等声学参数的相对变化以及波形畸变来判定混凝土的缺陷。
2 传统超声波法当超声波在混凝土中传播时,如果遇到空洞、裂缝、蜂窝等缺陷,超声波就会绕过这些缺陷继续传播,这样就会导致超声波在混凝土中的传播距离增大,声时就会相应增长。
同时,由于空气中的声阻抗远小于混凝土中的声阻抗,超声波在传播至正常混凝土与缺陷的界面时会发生折射、反射,产生散射衰减从而使声能损失,其中频率较高的成分衰减更快,因此接收信号的波幅会明显降低,频率明显减小或频率谱中高频成分明显减少。
再者,经缺陷折射、绕射的超声波信号与直达波信号之间存在相位差,叠加后互相干扰,致使接收到的信号波形发生畸变。
2.1 超声波检测混凝土中裂缝深度(1)单面平测法当混凝土结构构件的开裂部位只有一个可测表面,预估计的裂缝深度又不大于500mm时,可采用单面平测法检测。
超声波检测混凝土裂缝深度JGHNT05

1. 适用范围、检测项目及技术标准1.1.适用范围本细则适用于测量混凝土建筑物中深度不大于500mm 的裂缝。
不适用于裂缝内有水或穿过裂缝的钢筋太密的情况。
1.2.基本原理:利用超声波绕过裂缝末端的传播时间(简称声时)来计算裂缝深度。
如图8.10.2所示,将换能器对称地置于裂缝两側, 测得传播时问为t, (t1是超声波绕过裂缝末端所需的时间),设混*v)/2=AD图裂缝深度测试凝土声速为 v,可得: (t1则裂缝深度为: d'一两换能器之间的净距; d一超声传播的实际距高将换能器平置于无缝的混擬土表面上, 相距同样为d' , 测得传播时间为t0,则t0·v=d,代入上式,则可得另一公式:1.3.检测项目超声波法检测混擬土裂缝深度(平测法)。
1.4.引用标准JTJ270-98《水运工程混凝土试验规程》2.检测设备2.1.非金属超声检测仪: 技术性能应符合JTJ270-98规程附录G中的有关规定;2.2.钢卷尺。
3.试验步骤3.1.无缝处平测声时和传播距离的计算:将发、收换能器平置于裂缝附近有代表性的、质量均匀的混凝i表面上,两换能器相距(以换能器内边缘为准)为d',在不同的d'值(如50、100、150、200、250、300mm等,必要时再适当增加)的情况下,测读出一一系列各相应的传播时间t0。
以距离d'为纵坐标,时间t0为横坐标,将数据点绘在坐标纸上。
若被测处的混凝土质量均匀、无缺陷, 则各点应大致在一条直线上, 根据图形计算出这直线的斜率(用直线回归计算法) , 该斜率即为超声波在该处混擬土中的传播速度v (简称声速) 。
按公式d= t0·v计算出发、收换能器在不同的距离下的一系列超声波传播距离d, d大于相应的d'。
3.2.绕缝传播时间的测量:(1) 垂直裂缝:将发、收换能器平置于混凝土表面上裂缝的各一側, 两换能器中心的联线应垂直于裂缝的走向, 换能器对称于裂缝, 在同一连线上彼此相距(以换能器内边缘为准)为 d'。
超声波检测混凝土表观及内部缺陷操作规程

超声波检测混凝土表观及内部缺陷操作规程一、裂缝深度检测1、单面平测法(1)当结构的裂缝部位只有一个可测表面,估计裂缝深度又能源工业大于500mm时,可采用单面平测法。
平测时应在裂缝的初测部位,以不同的测距,按跨缝和不跨缝布置测点(布置测点时应避开钢筋影响)进行检测,其检测步骤为:1)不跨缝的声时测量:将T和R换能器置于裂缝附近同一侧,以两个换能器内边缘间距(l’)等于100、150、200、250mm……分别读取声时值(t i),绘制“时—距”坐标(见《超声波检测混凝土缺陷技术规程》图5.2.1-1)或用回归分析的方法求出声时与测距之间的回归直线方程: li=a+bti,每测点超声波实际传播距离li为: li= l’+ a式中li——第i点的超声波实际传播距离(mm)l’——第i点的R、T换能器内边缘间距(mm)a——“时——距”图中l’轴的截距或回归直线方程的常数项(mm)不跨缝平测的混凝土声速值为:v=(ln’-l1’)/(tn-t1)(km/s)或v=b(km/s)式中ln’、 l1’——第n点和第1点的测距(mm)tn、t1——第n点和第1点读取的声时值(us)b——回归系数2)跨缝的声时测量:(见《超声波检测混凝土缺陷技术规程》CECS21:2000图5.2.1-2)所示,将T、R换能器分别置于以裂缝对称的两侧,l’取100、150、250mm……分别读取声时值t i0,同时观察首波相位的变化。
(2)平测法检测,裂缝深度应按下式计算详见《超声波检测混凝土缺陷技术规程》CECS21:2000式5.2.2-1和5.2.2-2。
(3)裂缝深度的确定方法如下:1)跨缝测量中,当在某测距发现首波反相时,可用该测距及两个相邻测距的测量值按《超声波检测混凝土缺陷技术规程》CECS21:2000式5.2.2-1计算h ci值,取此三点h ci的平均值作为该裂缝的深度值(h c)。
2)跨缝测量中如难于发现首波反相,则以不同测距按式5.2.2-1、5.2.2-2计算h ci及其平均值(m hc)。
超声波检测混凝土裂缝深度

江 苏 省 交 通 科 学 研 究 院
JIANGSU TRANSPORTATION RESEARCH INSTITUTE
(2)数字式 )
接收信号转化为离散数字量,具有采集、 接收信号转化为离散数字量,具有采集、储存数字信号 、测读声学参数和对数字信号处理的智能化功能。 测读声学参数和对数字信号处理的智能化功能。 现有: ( ) 现有:RS-ST01D(P)便携式超声波非破损数字显示测 试仪; 数字超声波探伤仪; 试仪;HUD30数字超声波探伤仪;CTS-2000数字超声波探 数字超声波探伤仪 数字超声波探 伤仪; 伤仪; USN-15型数字超声波探伤仪;EPOCH-4型数字超 型数字超声波探伤仪; 型 声波探伤仪; 型便携式数字超声波探伤仪等 声波探伤仪;KM-180型便携式数字超声波探伤仪等。 型便携式数字超声波探伤仪
四、局限性
1.被测裂缝中不得有积水或泥浆等; 被测裂缝中不得有积水或泥浆等; 被测裂缝中不得有积水或泥浆等 2.被测混凝土的均匀性对结果影响很大,均匀性差或混凝土 被测混凝土的均匀性对结果影响 内存在缺陷可能导致结果误差较大甚至得出错误结果; 内存在缺陷可能导致结果误差较大甚至得出错误结果; 3.测试过程对操作者有较高要求,要有熟练的经验和理论 测试过程对操作者有较高要求, 测试过程对操作者有较高要求 基础; 基础; 4.对换能器与混凝土的接触面要求较高,常采用耦合剂, 对换能器与混凝土的接触面要求较高,常采用耦合剂, 对换能器与混凝土的接触面要求较高 如有不平和麻面时需进行打磨。 如有不平和麻面时需进行打磨。
江 苏 省 交 通 科 学 研 究 院
JIANGSU TRANSPORTATION RESEARCH INSTITUTE
如难于发现首波反相,则以不同测距按 式和(3.2)式 如难于发现首波反相,则以不同测距按(3.1)式和 式和 式
超声法结合钻芯法检测大体积混凝土裂缝深度

超声法结合钻芯法检测大体积混凝土裂缝深度卓林,李艳(安徽省建筑工程质量监督检测站,安徽合肥230000)[摘要]大体积混凝土浇筑后容易产生裂缝,为检测其裂缝开展深度一般采用无损检测方法—超声法检测,并结合微破损检测方法—钻芯法进行验证。
本文实例为查明某水闸闸墩裂缝产生的原因,保证水闸的安全运行,采用超声法结合钻芯取样检测裂缝开展深度。
根据两种检测方法对比,钻芯法检测的结果更准确、直接,但覆盖范围较小,不方便用于大面积的检测,超声法检测结果较钻芯法检测结果略有差异,且有周期短、成本低、操作简单、效率高等优点。
因此采用两种检测方法相结合,基本能反应工程的实际情况,为裂缝的处理提供依据。
[关键词]超声法;双面斜测法;钻芯法;裂缝;大体积混凝土[中图分类号]TV544+.91;TU528.07;TU317.8[文献标识码]A[文章编号]1002—0624(2019)10—0028—03随着现代水利工程发展的需要及施工技术的推进,大体积混凝土应用越来越广泛,然而,大体积混凝土结构在施工和使用过程中,容易出现裂缝,裂缝的存在既影响结构的美观和耐久性,又对安全性造成一定的影响。
为了解裂缝的现状,分析其产生的原因、对结构的损害程度,为后续处理提供相关依据,对裂缝深度进行检测是十分必要的[1]。
裂缝深度检测可借助于热记录仪、超声波、雷达电磁波及工业CT等无损检测技术,也可借助于钻芯取样微破损检测方法。
1检测原理超声法作为无损检测技术的一种,指采用带波形显示功能的超声波检测仪,测量超声脉冲波在混凝土中的传播速度、首波幅度和接受信号的主频率等声学参数,并根据这些参数及其对应变化,判定混凝土中的缺陷情况。
超声法检测混凝土内部缺陷,具有探测距离大、不破坏结构性能、探伤灵敏度较高、周期短、成本低、操作简单、效率高等优点;缺点是对工作表面要求平滑,要求富有经验的检验人员才能辨别缺陷种类,对缺陷没有直观性。
混凝土无裂缝时可视为匀质体,超声波在其内部正常传播,当出现裂缝时,混凝土的连续性被破坏,混凝土在裂缝处形成不连续的界面,超声波经过此界面时将产生反射、散射及折射等现象,超声波的声学参数亦将随之变化,如声速减小、振幅降低、波形发生畸变等[2]。
混凝土裂缝深度超声波检测方法(完整)

混凝土裂缝深度超声波检测方法林维正1 原来裂缝深度检测方法对混凝土浅裂缝深度(50cm以下)超声法检测主要有以下几种方法,如图1所示的t c-t0法,图2所示的英国标准BS-4408法等,“测缺规程”推荐使用t c-t0法[2,3]。
上述方法中,声通路测距BS-4408法以二换能器的边到边计算,而t c-t0法则以二换能器的中到中计算,实际上声通路既不是二换能器的边到边距离,也不是中到中距离,“测缺规程”中介绍了以平测“时距”坐标图中L轴的截矩,即直线议程回归系数的常数项作为修正值,修正后的测距提高了t c-t0法测试精度,但增加了检测工作量,实际操作较麻烦,且复测时,往往由于二换能器的耦合状态程度及其间距的变化,使检测结果重复性不良。
应用BS-4408法时,当二换能器跨缝间距为60cm,发射换能器声能在裂缝处产生很大衰减,绕过裂缝传播到接收换能器的超声信号已很微弱,因此日本国提出了“修改BS-4408法”方案,此方案将换能器到裂缝的距离改为a1<10cm,这样就使二换能器跨缝最大间距缩短在40cm以内。
“测缺规程”的条文说明部分(表4.2.1)中,当边-边平测距离为20.25cm时,按t c-t0法计算的误差较大,表4.2.1中检测精度较高的数据处理判定值为舍弃了该两组数据后的平均值。
条文说明第4.3.1条仅作了关于舍弃Lˊ<d c数据的提示,实际上当二换能器测距小于裂缝深度时,超声波接收波形产生了严重畸变,导致声时测读困难,这就是造成较大误差的直接原因。
表4.2.1中未知数t c-t0法在现场检测中对错误测读数值的取舍是一个不易处理的问题。
“测缺规程”的条文说明第4.1.3条指出:当钢管穿过裂缝而又靠近换能器时,钢管将使声信号“短路”,读取的声时不反映裂缝深度,因此换能器的连线应避开主钢管一定距离a,a 应使绕裂缝而过的信号先于经钢管“短路”的信号到达接收换能器,按一般的钢管混凝土及探测距离L计算,a应大于等于1.5倍的裂缝深度。
公路工程混凝土构件裂缝的超声波单面平测法探讨

公路工程混凝土构件裂缝的超声波单面平测法探讨摘要:随着我国社会经济的不断发展,公路工程中的混凝土工程数量也在不断增加,但由于设计和施工方面的欠缺、不可预测的自然灾害、难以防范的外物撞击等多方面的不利原因,导致混凝土结构产生裂缝,对结构的安全性及耐久性造成一定的影响。
因此,在公路工程中加强混凝土结构裂缝的检测和后续监测工作尤为重要。
采用超声波对裂缝深度进行检测是目前裂缝深度检测的主要方法,超声波检测裂缝深度的方法有单面平测法、双面斜测法、钻孔对测法、负波及首波相位反转法和正波法等。
关键词:公路工程;混凝土构件裂缝;超声波单面平测法引言混凝土是最常见的公路工程材料,在社会公路设施的建设中必不可少。
但是,由于干燥收缩、温度应力等原因,裂缝成为混凝土结构中不可避免的缺陷,混凝土结构所处环境、受力不同,形成的裂缝状态、位置也不同,对公路工程的危害程度也就有很大的区别——严重的裂缝可能危害结构的整体性和稳定性,进而影响混凝土结构的安全运行;而表面温度变化导致的浅裂缝对结构美观有一定影响,对其使用功能则无大的影响。
此外,对于混凝土裂缝的修补,需要事先明确裂缝的状态、成因,方能切实、合理地进行。
因此,及时进行裂缝检测、了解裂缝状态并采取对应的修补措施对于混凝土结构具有深远意义。
1道路桥梁施工裂缝的安全隐患首先要了解,桥梁道路最主要的修建材料就是混凝土材料,混凝土材料与桥梁道路的施工质量等是相互联系、相互挂钩的,这会直接对以后的安全问题和裂缝有一定的影响,通常,混凝土的材料组成分别是水泥、水、粗骨料以及细骨料还有外加剂这五个重要的合成物,同时在制作和进行加工混合混凝土的时候,一般情况下都是要分成三种系统,第一个就是砂石料生产系统,然后就是混凝土拌和系统以及混凝土运输浇筑系统,修建桥梁道路上所出现的裂缝现象有非常大的可能性是由静荷载还有动荷载应力两个方面引出的,再表达具体一点,其实最主要的问题危害就是道路与桥梁所出现的裂缝,都会对桥梁整体的结构造成一定的损害,这样桥梁道路稳定性和安全性就会大大降低,甚至有一些裂缝直接出现在重要结构上,这样就能直接损坏桥梁的道路系统,伴随着裂缝的不断放大和渗入,桥梁道路的稳定性就会越来越低,同时,如果道路稳定性出现问题,不可避免桥梁道路的钢筋就会暴露在表面,如果这些钢筋长时间地暴露在外面,就会容易发生腐蚀,这样就更容易损害桥梁结构。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
议超声平测法检测混凝土裂缝深度
议超声平测法检测混凝土裂缝深度当混凝土结构的裂缝部位只有一个可测表面,估计裂缝深度又不大于50毫米时,采
用单面平测法。
测试方法是分别检测跨缝和不跨缝的声时和测距后,计算出裂缝深度。
其基本原理是根据在同一测距
下,不跨缝声波是直线传播,而跨缝声波需绕过裂缝末端形成折线传播,传播声时延长,在认为跨缝与不跨缝测试的混
凝土声速基本一致的条件下,根据其传播声时的差别计算出裂缝的深度。
(一)存在的问题在实际测试中,经常碰到
在同一个裂缝深度部位,用不同的测距,由所测声时计算出的裂缝深度差异较大,造成这种(裂缝)测试值离散大的主
要原因是1、
平测法计算缝深中采用的声速是测量不跨缝条件下不同测距的声时,再以“时—距”法计算混凝土的平均声速,但由于混凝土是一种非均匀的弹塑性材料,即使是正常混凝土各点的声速值也必然存在差异;2、平测时如果发、收换能器
被邻近的钢筋“短路”,那么读取的声时就不对应裂缝部位混凝土的声速,更不能对应声波绕过裂缝末端的声时,造成声时
误差,尤其当裂缝较深时,首波信号微弱,更容易造成首波读数误差甚至丢波;3、混凝土由骨料、水泥和内部微小气
泡组成,混凝土在形成时内部就存在很多微细裂缝,这些裂缝是混凝土材料本身所固有的,属于无害裂缝,当由于各种
原因在混凝土内部产生拉应变,会造成有害裂缝,由于裂缝的形成原因和发展都很复杂,其分布和走向是不确定的,但
在平测法中以裂缝纵深走向垂直于混凝土表面且声波绕过裂缝末端为计算公式的物理模型,简化的物理模型与实际情况
之间有必然的差异。
(二)改进的方法为了提高测试的准确度,在提高测试参量测试精度的同时,要有正确的测试方法
和数据处理方法,减少测试误差:1、布置测点时应避免换能器连线与邻近的钢筋平行,如能保持45°左右的夹角最好,
以避免钢筋对首波的“短路”;2、选择被测裂缝部位时,应选择测距范围内混凝土表面平整,无表面龟裂;3、与缝深相比
测距过小或过大时声时的测试误差较大,当测距与缝深相近时,测试较准,因此技术规程作出舍弃小于平均缝深的测距
点和舍弃大于3倍平均缝深的测距点的测距限制,并以首波反相作为判断测距与缝深相接近的判据。
在计算缝深平均值
时要根据测试情况舍弃可能造成大误差的测量值,纠正测点越多其平均值越准确的认识误区。
NM-4型超声仪性能剖析
NM-4型超声仪性能剖析,NM-4与进口同类超声仪的比较自20世纪70年代,混凝土超声仪在我国研制生产和推广应用,历经模拟仪器、数字式仪器和智能型仪器三个阶段。
20世纪70年代、80年代以小规模集成电路为核心元件的模拟式超声仪为主,80年代后期、90年代初期推出以Z80单板机为核心处理单元的数字式超声仪,90年代中期以后相继推出了以微电脑为核心处理单元的智能型超声仪,目前智能型超声仪已经成为混凝土超声仪的主流。
NM-4超声仪与目前市场销售的进口混凝土超声仪比较,价位接近,但仪器的配置、性能、功能等诸方面却有本质的区别,NM-4以微电脑(386/486)为主控系统,进口同类超声仪器以单片机为主控系统,N M-4在运算速度、运算能力、内存容量等方面有明显优势,属于最新一代的智能型仪器。
现抛开技术指标,仅从用户使用需求角度,将NM-4与进口同类超声仪器做简单比较:1、声参量测试:
NM-4可以测试声时、幅度、(频率)、波形,进口同类超声仪只能测试声时。
2、
波形采集并显示:
波形在混凝土检测中十分重要,混凝土的内部缺陷将导致波形畸变,NM-4可以采集、存储、显示波形,进口同类超声仪无此功能。
NM-4对波形的高速实时动态显示功能是基于主控系统和信号采集系统(A/D)的高速采集和高速传输能力而实现的,在进口同类超声仪上是不可能实现的。
3、
声参量的自动判读:
NM-4与进口同类超声仪虽然都有声参量的自动判读功能,但方法有本质的区别,NM-4的声参量的自动判读方法可以保证声时判读精度,从根本上解决了丢波或误判问题,获中国发明专利。
4、内存容量:
NM-4与进口同类超声仪虽然都是芯片存储,但存储容量差别很大,NM-4存储量为MByte(兆字节)级(4M、16M、72M可选),而进口同类超声仪的存储量仅为KByte(千字节)级(1M=1024K),进口同类超声仪只存储数据,不存波形,而NM-4可以存储波形在3000条以上,存储数据就更多了。
5、软件可扩展能力:
NM-4的用户可以从康科瑞公司的网站上直接下载升级软件后在仪器上升级,进口同类超声仪无软件扩展能力6、后处理功能:
NM-4的高速运算能力支持具有很强的数据处理能力,包括对波形的处理(数字滤波、指数放大、频谱分析等)和对数据的处理(依据规范进行强度、缺陷、裂缝等的计算),进口同类超声仪只能做简单的计算7、打印:
NM-4可以支持打印,进口同类超声仪不直接支持打印8、屏幕显示:
NM-4的屏幕显示是640*480LCD(半反半透式,在强光和弱光下都可清晰显示),清晰、分辨率高,而进口同类超声仪一般是
128*128LCD
漫谈首波波幅
声波的传播速度是介质质点振动传递的速度,反映的是介质内声波的运动学特征。
而声波的波幅反映的是声波的动力学特征,也就是声波能量衰减变化的规律与特征。
在混凝土中声波波幅与混凝土内部结构特征的相关关系是有一定规律的,故波幅成为可用的声参量。
(1)关于发射换能器发射的超声脉冲波在讨论声波的动力学特征之前,必须先了解发射换能器向混凝土中发射的超声脉冲波(可称其为“子波”)。
一般情况下其特点是:从发射的那一刻,波幅从首波开始按指数规律增长,到最大值后再按指数规律衰减到零。
.发射换能器发射的超声脉冲波用某工程实测波形说明接收声信号首波波幅的动力学特征。
(2)密实、匀质混凝土接收超声信号的特征
当混凝土匀质且密实,此时声波传播路径简单,衰减较小,接收波形和发射换能器的发射波形相近,波形的特点大体是脉冲波的波幅按指数规律增长至最大后,再按指数规律衰减。
图2.密实、匀质混凝土的接收超声波形
(3)匀质性差或有缺陷时的接收声信号由于混凝土匀质性差,如漏振捣的部位、二次浇灌面,或存在异物、离析、蜂窝、
空洞等。
声波传播到这些部位,将发生折射、反射再折射、绕射等,于是从不同路径传播到达接收点的声波信号叠加后被接收换能器接收,波形匀质性差、有缺陷混凝土超声波形
(4) 混凝土密实性、匀质性差,声波衰减较快(其中高频成份衰减更快),如换能器的首次波比又较小,会出现首波掉波
现象,如图4。
此时只要适当加大仪器接收放大器的放大倍数,混凝土质量差的部位出现掉波发现掉波后加大放大倍数首波又可出现首波即可出现,当然,当穿透距离较大,仪器的放大倍数不够时,也会出现掉波现象。
这时需要人工对首波进行追踪判断,来读取首波声时。
(5)测距相同,但混凝土存在严重缺陷如严重离析,尽管发、收换能器相距距离相同,(但其传播时间可达635.6µs,比上
述传播时间大一倍多,在这种情况,加大仪器放大倍数后,仍可正确判读出首波声时及波幅,
(6)讨论以上虽仅数例,但可见一般规律,即:
A).密实、匀质混凝土接收到的声波脉冲信号“波组”简单,与“子波”相近,余振较短;
B)在匀质性差或有缺陷的混凝土部位,接收到的信号与“子波”已大相径庭。
原因是声波在这些部位由于折射、反射又折射、绕射后,不同传播路径的声波,先后到达接收点,形成“波组”的叠加与相互干涉,造成接收声信号“波形畸变”、余振拉长。
在此,值得一提的是:上述的“波组”叠加与相互干涉对首波的影响最小,故以首波波幅作为度量声波的波幅,并用来研究声波的动力学特性,才会少受干扰,也才有价值。
此外,应提及的是,在检测混凝土柱、礅、梁以及灌注桩时,由这些结构物侧面产生的反射“波组”,也往往是造成续至波组余振加长的另一种原因,但其出现的时间较后。
另外,接收声信号余振复杂、加长,还有另一原因即缺陷及非匀质部位产生折射横波,会使接收声信号余振加长,在此不加细论。
C)当测距较大或混凝土质量较差时,有可能出现掉波现象。
应加注意观查首波是否因仪器放大倍数不够而掉波。
在此应提及的是,由于仪器、换能器型号的不同,首波的相位可能是正起跳(向上),也可能是负起跳(向下),须在正常混凝土部位或把发、收换能器置于水桶中加以确认,并在整个测试过程中,对首波进行“相位追踪”,确认后读取首波声时及首波波幅。
D)最后,要强调一下,上述首波波幅及波形随混凝土质量的变化关系,是有一定代表性的,只说明其变化规律,不能把这些波形作为“量板”来使用。
E)具体到首波波幅随传播距离L 的变化规律如下式Lme A A α − =
式中Am:发射的首波波幅;L:传播距离(指声波在介质内的真实传播距离,应包括经折射、绕射等后的传播距离);
α:声衰减系数;e :自然对数的底;A:传播L 距离后的接
收点首波波幅。