静电场的高斯定理复习题,DOC
第三讲静电场电场线和高斯定理(优选)word资料

第三讲静电场电场线和高斯定理(优选)word资料第三讲:静电场——电场线和高斯定理内容:§9-4,1.电场线2.电场强度通量3.高斯定理要求:3.了解电场线的概念;4.掌握电场强度通量的计算方法;1.掌握高斯定理的内容;重点与难点:1.高斯定理的内容;作业:习题:P38:11,12预习:高斯定理的应用§9-4 电场强度通量 高斯定理引言:上一节讨论了静电场电场强度和用积分的方法计算电场强度,本节我们在电场线的基础上,引进电场强度通量的概念;并导出静电场的高斯定理。
一、 电场线(Electric Field Line ) 1.电场线的概念:为了形象地描述电场的分布,可以在电场中画出许多曲线,这些曲线上每一点的切线方向与该点的场强方向相同,而且曲线箭头的指向表示场强的方向,这种曲线称为电场线——法拉第(M.Faraday) 首先引入这一工具。
定义 电场中描述电场强度大小和方向的曲线簇。
规定: (1)曲线上每一点的切线方向表示该点场强的方向;(2)曲线的疏密表示该点场强的大小,即该点附近垂直于电场方向的单位面积所通过的电力线条数满足⊥Φ=dS d E e。
的电力线条数通过面积元积元垂直于电场方向上的面⊥⊥--Φ--dS d dS e2.几种典型的电场线分布:3.电场线密度定义:经过电场中任一点,想象地作一面积元d S ,并使它与该点的场强垂直,若通过d N 面的电场线条数为d N ,则电场线密度为d N /d S 。
若某点的场强较大,则d N 较大,电场线密度较大,因而电场线密度应与场强成正比。
规定 dSdNE =这样就可用电场线密度表示电场强度的大小和方向。
对于匀强电场,电场线密度处处相等,而且方向处处一致。
4.静电场的电场线特点:● 电场线总是起始于正电荷(或来自于无穷远),终止于负电荷(或终止于无穷远),不是闭合曲线;不会在没有电荷的地方中断。
● 任何两条电场线都不能相交。
浙江农林大学静电场中的导体和电介质有介质时的高斯定理习题

四解答题1、如图所示,一导体球半径为&,外罩一半径为冬的同心薄导体球壳,外球壳所带总电荷 为0,而内球的电势为匕,求导体球和球壳之间的电势差 ___________ (填写A 、B. C 或D. 从下而的选项中选取)°答案:A 解设导体球所带电荷为因静电平衡,电荷q 分布在导体球的外表面。
这样一来,就可以把体系看成是两个半径分别为&和电荷分别为q 和Q 的带电球壳。
由电势叠加原理,导体球的电势为一^―+ — = %解出4亦°7?] 4亦()尺2q = 4亦店岭)因此 导体球和球壳之间的电势差为久,=%-仝0=(1-色||匕——0-4码)忌 R?人 4亦。
/?2丿2、如图所示,在一半径为/?i=6.0cm 的金属球A 外而套有一个同心的金属球壳B 。
已知球 壳内,夕卜半径分别为/?2=8.0cnn /?3=10.0cnio 设A 球带有总电^Q A =3x\0^C 9球壳B带有总电量0〃=2xlO*C 。
(1)求球壳B 内表而上带有的电量 ___________ 外表而上带有的 电屋 ________ 以及球A 的电势 _______ 球壳B 的电势 _______A. 5xlO 」CB. -3xlO^C C 、5.6xlO 3VD 、4.5xlO 3V 答案:B, A, C, D(2)将球壳B 接地然后断开,再把球A 接地。
求球A 带有的电量 _______ 球壳B 内表而上带有的电量 ________ 外表面上带有的电量 ________ 以及球A 的电势和球壳B 的电势 ______ o1 / 21 A 、B 、A —Q 1 <心丿1 4碣鸟丿R 2L 4矶尼丿 C. V oQ D 、 岭Q 4矶R? < 4碣尼丿A. -3xlO^C B 、2.1xlO^C C 、—2・lxlO*CD 、-0.9xl0^CE 、8.1xlO 2VF 、0答案:B, C, D, F, E解(l )由高斯泄理可知,B 球壳内表而带的电量等于金属球A 带的电量Qi 的负值,即 缢=-2=-3"0弋因电荷守恒,则B 球壳外表面所带电量为Q Bcxt =Q R + Q A =5xlO-8C= 9.0X 10^X (^ + ^122 + ^)=5.6X 10V 0.06 0.08 0.10球壳B 的电势为^=_L^L = 9.0X 1094亦o 尺3 (2)球壳B 接地后电势(p B =0 ,因此Q^{ = 0 o B 接地断开后总电量变为 Q B =Q B :M =-3xlO-8Co 然后球A 接地,则吩=°。
大学物理练习题高斯定理.pdf

2. 如果对某一闭合曲面的电通量为
(A)
S
面上的
v E
必定为零。
∫S
v E
⋅
v dS
=
0
,以下说法正确的是
(B) S 面内的电荷必定为零。
(C) 空间电荷的代数和为零。
(D) S 面内电荷的代数和为零。
3.
如图所示.有一电场强度
v E
平行于
x 轴正向的均匀电场,
则通过图中一半径为 R 的半球面的电场强度通量为
电场强度的大小为
。
5. 真空中一半径为 R 的均匀带电球面,总电量为 Q(Q > 0)。今在球
R
O
ΔS
面上挖去非常小块的面积ΔS(连同电荷),且假设不影响原来的电荷
分布,则挖去ΔS 后球心处电场强度的大小 E =
。其方向
为
。
6. 一半径为 R 的半球面放在水平面上,如图所示,在距球心 O 的正 上 方 l(l>R) 远 处 有 一 点 电 荷 q , 则 通 过 该 半 球 面 的 电 通 量
12ε 0
(B) q 。 6ε 0
(D) q 。 24ε 0
d
l/2
q
l b
c
8. 两个同心均匀带电球面,半径分别为Ra 和Rb (Ra < Rb),所带电量分别为Qa 和Qb,设某点
与球心相距r,当Ra < r < Rb 时,该点的电场强度的大小为:
(A) 1 ⋅ Qa + Qb 。
4πε 0
r2
( ) 5. QΔS 16π2ε0R4 ;由球心 O 点指向ΔS,
6.
q
2ε 0
⎜⎛ ⎝
1
−
静电场 高斯定理

q q Ua U U ( ) 4 0 r1 r2 q r2 r1 4 0 r1r2
当a点很远时r>>L,则r1≈r2≈r,
1
q L cos 1 P cos Ua 2 4 0 r 4 0 r 2
r2 r1 r cos
电偶极子轴线上的场强(电势梯度法) 电偶极子电场中的电势: 轴线延长线上的电势:
有电介质存在时的高斯定理的应用
(1)分析自由电荷分布的对称性,选择适当的高斯面 ,求出电位移矢量。 (2)根据电位移矢量与电场的关系,求出电场。 (3)根据电极化强度与电场的关系,求出电极化强度。 (4)根据束缚电荷与电极化强度关系,求出束缚电荷。
非极性分子
E0
极性分子
E0
电极化强度(偶极矩密度)
1、电极化强度:
其中 pei 是第i个分子的电偶极矩
单位是[库仑/米2]、[C/m2].
def P lim
V
pei
i
V
以下将电极化强度矢量简称为极化强度 束缚电荷就是指极化电荷。
电介质的极化规律
在外电场 E0中,介质极化产生的束缚 电荷,在其周围无论介质内部还是外 部都产生附加电场 E ' 称为退极化场。
i
②极性分子 在无外场作用下存在固有电矩 因无序排列对外不呈现电性。 当有电场作用时,极性分子发 生偏转。
在外电场中的电介质
E0
E0
l
无外场下,所具有的电偶极矩称为固有电偶极矩。 在外电场中产生感应电偶极矩。
极化电荷
在外电场中,均匀介质内部各处仍呈电中性, 但在介质表面要出现电荷,这种电荷不能离开电 介质到其它带电体,也不能在电介质内部自由移 动。我们称它为束缚电荷或极化电荷。
大学物理复习题

图1-9 1-9(1-121、静电场的高斯定理描述了它是 场。
2、在点电荷+q 的电场中,若取图1-2中P 点处电势为零点,则M 点的电势为: 。
3、如图1-3电路中两个电容器1和2,串联以后接上电动势恒定的电源充电。
在电源保持联接的情况下,若把电介质充入电容器2中,则电容器1上的电势差 电容器1极板上的电量 ;电容器2上的电势差 电容器2极板上的电量 。
(填增大、减小、不变) 5、载有电流为I 的无限长导线,弯成如图1-5所示形状,其中有一部分为半径为R 的半圆弧,则其圆心O 点的磁感应强度的大小为 ,方向为 。
6、闭合导体回路电阻R =5 ,回路所包围面积为0.08m 2,均匀磁场垂直于线圈平面。
欲使电路中有一稳定的感应电流i = 0.08 A ,则磁感应强度的变化率为:d B /d t = T/s 。
7、产生动生电动势和感生电动势的非静电力分别为 、 。
8、磁场能量密度为: ,电场能量密度为: 。
一个电容器加了电压之后储存的电场的能量为: 。
一个自感回路,其中通有电流时,其周围空间磁场的能量为: 。
9、如图1-9,一个矩形线圈与通有相同大小电流的平行直导线在同一平面,而且处在两导线的中央,如图(1-9)所示。
(1)两电流同向且随时间均匀增大时,线圈中有无感应电流 。
(2)两电流反向且随时间均匀增大时,线圈中有无感应电流 。
10、真空中两只长直螺线管1和2,长度相等,单层密绕匝数相同,直径之比d 1/d 2 =1/2,当它们通以相同电流时,两螺线管贮存的磁能之比为W 1/W 2= 。
11、杨氏双缝干涉实验时,用红光和绿光分别做实验时,红光的干涉条纹间距比绿光图1-3图1-5 图1-2的 。
(填:宽 或 窄)。
12、获得相干光常用的方法有两种是: , 。
13、波长为 的单色光垂直照射到宽a 的单缝上,单缝后面放置一个凸透镜, 在凸透镜的焦平面上放置一个屏幕,用以观测衍射条纹,今测得屏幕上中央明条纹两侧第二级暗纹之间的距离为 d ,则透镜的焦距 f 为: 。
习题09 电场线 电通量 真空中的高斯定理

一、选择题1.关于高斯定理的理解有下面几种说法,其中正确的是( )。
(A )如果高斯面上E处处为零,则该面内必无电荷。
(B )如果高斯面内无电荷,则高斯面上E 处处为零。
(C )如果高斯面上E 处处不为零,则高斯面内必有电荷。
(D )如果高斯面内有净电荷,则通过高斯面的电通量必不为零。
2.如右图所示,闭合面S 内有一点电荷q ,P 点为S 面上一点,在S 面外A 点处有一点电荷q ′,若将q ′移至B 点,则( )。
(A )S 面的总电通量改变,P 点的场强不变。
(B )S 面的总电通量不变,P 点的场强改变。
(C )S 面的总电通量和P 点的场强都不改变(D )S 面的总电通量和P 点的场强都改变3.如右图所示,半径为R 1的均匀带电球面1,带电量为Q 1,其外有一同心的半径为R 2的均匀带电球面2,带电量为Q 2,则离球心为r (R 1< r <R 2)处的某点P 的场强为( )。
(A )r r Q E 2014πε= (B )r rQ Q E 20214πε+= (C )r r Q E 3014πε= (D )r r Q Q E 30214πε+= 二、填空题1.如右图所示,三个平行的“无限大”均匀带电平面,其电荷面密度都是+σ,则A 、B 、C 、D 四个区域的电场强度分别为:A E = ,B E = ,C E = ,DE = ,(设方向向右为正)。
2.带电量分别为1q 和2q 的两个点电荷单独在空间各点建立的静电场分别为1E 和2E ,空间各点总场强为21E E E +=。
现在作一封闭曲面S ,如下图所示,则以下两式可分别求出通过S 的电通量:3.(1)点电荷q 位于一个边长为a 的立方体中心,试求在该点电荷电场中穿过立方体一面的电通量是 。
(2)如果将该场源点电荷移到立方体的的一个角上,这时通过立方体各面的电通量是 ; 。
一 D B C二 1. 032A E σε=-,02B E σε=-02C E σε=032D E σε= 2.10q ε,20q ε 3,06q ε,024q ε,0三 计算题1.解:薄板可近似为带电面分析知,场强分布是面对称的,因而建立如图所示的关于薄板面对称的柱形高斯面,两个底面分别为S 1和S 2。
浙江农林大学静电场的高斯定理习题
四、计算题1、 两个无限大的平行平面都均匀带电,电荷的面密度分别为1σ和2σ,试求空间各处场强. 两面间 , 1σ面外 , 2σ面外 . (填写A 、B 、C 或D ,从下面的选项中选取)A 、n E )(21210σσε-=B 、1201()E n σσε=+C 、n E )(21210σσε+-=D 、n E)(21210σσε+=答案:A ,C ,D解: 如图所示,两带电平面均匀带电,电荷面密度分别为1σ与2σ,两面间, n E)(21210σσε-=1σ面外, n E)(21210σσε+-= 2σ面外, n E)(21210σσε+=n:垂直于两平面由1σ面指为2σ面.2、一无限长带电直线,电荷线密度为λ,傍边有长为a , 宽为b 的一矩形平面, 矩形平面中心线与带电直线组成的平面垂直于矩形平面,带电直线与矩形平面的距离为c ,如图,求通过矩形平面电通量的大小. . (填写A 、B 、C 或DA 、()0arctan 22a b c λπε⎡⎤⎣⎦ B 、()0arctan 2a b c λπε⎡⎤⎣⎦ C 、()0arctan 24a b c λπε⎡⎤⎣⎦ D 、()02arctan 2a b c λπε⎡⎤⎣⎦ 答案:Bλ解:取窄条面元adx ds =,该处电场强度为rE 02πελ=过面元的电通量为()220022cos xc acdxadx r s d E d e +=⨯=⋅=Φπελπεθλ ()⎰⎰-+=Φ=Φ2/2/2202b b e e xc acdxd πελ2/2/0arctan 12b b cxc ac -⋅=πελ()[]02arctan πελc b a =3、 如图所示,在x -y 平面内有与y 轴平行、位于x=a / 2和x =-a / 2处的两条“无限长”平行的均匀带电细线,电荷线密度分别为+λ和-λ.求z 轴上任一点的电场强度.. . (填写A 、B 、C 或D ,从下面的选项中选取)A 、()2204a i a z λπε-+B 、()22024a i a z λπε-+ C 、()22024a i a z λπε-+ D 、()22044a i a z λπε-+ 答案:C解:过z 轴上任一点(0 , 0 , z )分别以两条带电细线为轴作单位长度的圆柱形高斯面,如图所示.按高斯定理求出两带电直线分别在该处产生的场强大小为 ()r E 02/ελπ=± 场强方向如图所示. 按场强叠加原理,该处合场强的大小为r a r E E 2/c o s 20⋅π==+ελθ ()22042z a a +π=ελ方向如图所示. 或用矢量表示 ()iz a a E 22042+π-=ελ4、均匀带电球壳内半径6cm ,外半径10cm ,电荷体密度为2×510-C·m -3求距球心5cm 的场强 ,8cm 的场强 ,12cm 的场强 . (填写A 、B 、C 或D ,从下面的选项中选取).A 、43.4810⨯1C N -⋅, 方向沿半径向外 B 、44.1010⨯1C N -⋅ ,沿半径向外C 、44.1010⨯1C N -⋅,方向沿半径向外D 、 0 答案: D, A ,B解: 高斯定理0d ε∑⎰=⋅qS E s,02π4ε∑=q r E当5=r cm 时,0=∑q ,0=E8=r cm 时,∑q 3π4p=3(r )3内r - ∴ ()2023π43π4rr r E ερ内-=41048.3⨯≈1C N -⋅, 方向沿半径向外. 12=r cm 时,3π4∑=ρq -3(外r )内3r ∴ ()420331010.4π43π4⨯≈-=rr r E ερ内外 1C N -⋅ 沿半径向外.5、有两个半径分别为1R 、2R 的同心球壳,带电分别为1Q 、2Q ,试求空间电场分布。
(整理)浙江省大学物理试题库302-静电场的高斯定理
题号:30232014
分值:2分
难度系数等级:2
一闭合面包围着一个电偶极子,则通过此闭合面的电场强度通量 _________________。
答案:
题号:30232015
分值:2分
难度系数等级:2
一点电荷 处在球形高斯面的中心,当将另一个点电荷置于高斯球面外附近时,穿过此高斯面的 通量是否会发生变化?_________________。
如图所示,真空中有两个点电荷,带电量分别为 和 ,相距 。若以负电荷所在处 点为中心,以 为半径作高斯球面 ,则通过该球面的电场强度通量 。
答案:
题号:30233005
分值:2分
难度系数等级:3
一均匀静电场,电场强度 ,则电场通过阴影表面的电场强度通量是______(正方体边长为 )。
答案:
题号:30233006
答案:
题号:30233020
分值:2分
难度系数等级:3
一均匀带电球面,半径是 ,电荷面密度为 。球面上面元 带有 的电荷,该电荷在球心处产生的电场强度为____________。
答案:
四计算题
题号:30242001
分值:10分
难度系数等级:2
一边长为 的立方体置于直角坐标系中,如图所示。现空间中有一非均匀电场 , 、 为常量,求:电场对立方体各表面的电场强度通量。
; ; ; 。〔〕
答案:
题号:30211011
分值:3分
难度系数等级:1
一点电荷,放在球形高斯面的中心处。下列哪一种情况,通过高斯面的电场强度通量发生变化:
将另一点电荷放在高斯面外; 将另一点电荷放进高斯面内;
将球心处的点电荷移开,但仍在高斯面内; 将高斯面半径缩小。
静电场-3-2高斯定理
20
0, Q ( r 3 − R 13 ) , E = 2 3 3 4 πε 0 r ( R 2 − R 1 ) Q 4 πε r 2 , 0
r < R1 R1 < r < R 2 r > R2
∴ E组合柱面
0 , 内,外 = − λ / 2πε0 r , 中间
28
强调: 强调: 1.利用高斯定理求场强的条件: 1.利用高斯定理求场强的条件: 利用高斯定理求场强的条件 电荷分布必须具有一定的对称性. 电荷分布必须具有一定的对称性. 2.利用高斯定理求场强步骤∶ 2.利用高斯定理求场强步骤∶ 利用高斯定理求场强步骤 (1)分析场强分布的对称性。 (1)分析场强分布的对称性。 分析场强分布的对称性 (2)合理选取高斯面。 (2)合理选取高斯面。 合理选取高斯面 (3)计算高斯面包围的电荷电量。 (3)计算高斯面包围的电荷电量。 计算高斯面包围的电荷电量 (4)用高斯定理求场强。 (4)用高斯定理求场强。 用高斯定理求场强
∵
∫
EdS cos θ = E
∫ dS
=
1
ε 0 曲面内
∑
qi
∑q E= ε ∫ dS
0
注意:这样求得的是高斯面处的场强! 注意:这样求得的是高斯面处的场强!
11
均匀带电球面的电场,球面半径为R,带电为 带电为q 例1. 均匀带电球面的电场,球面半径为 带电为 。 解: 电场分布也应有球对称性,方向沿径向。 电场分布也应有球对称性,方向沿径向。 作同心且半径为r的高斯面 作同心且半径为 的高斯面. 的高斯面
高斯定理的表述: 高斯定理的表述: 穿过任一闭合曲面 的电通量 等于该曲面所包围的电荷的代 数和除以 ε 0 数学表达式: 数学表达式:
静电场复习题(包含答案)
______________________________________________________________________________________________________________精品资料练习一 库仑定律 电场强度σ,球面内电场强度处处为零(原因是场强叠加原理),球面上面元d S 的一个电量为σd S 的电荷元在球面内各点产生的电场强度(C)(面元相当于点电荷)(A) 电荷电量大,受的电场力可能小; (B) 电荷电量小,受的电场力可能大;(C) 电场为零的点,任何点电荷在此受的电场力为零; (D) 电荷在某点受的电场力与该点电场方向一致.边长为a 的正方形的四个顶点上放置如图2.1所示的点电荷,则中心O 处场强(C) (用点电荷的场强叠加原理计算,注意是矢量叠加,有方向性)(A) 大小为零.(B) 大小为q/(2πε0a 2), 方向沿x 轴正向.图2.12(C) 大小为()2022a q πε, 方向沿y 轴正向. (D) 大小为()2022a q πε, 方向沿y 轴负向.二、填空题1.4所示,带电量均为+q 的两个点电荷,分别位于x的+a 和-a 位置.则y 轴上各点场强表达式 为E = ,场强最大值的位置在y = .( 2qy j /[4πε0 (a 2+y 2)3/2] , ±a/21/2.) (也是用点电荷的场强叠加原理计算)三、计算题1.用绝缘细线弯成的半圆环,半径为R ,其上均匀地带有正点荷Q , 试求圆心O 处的电场强度. (此题的计算尽量掌握,涉及连续带电体的电场强度计算,可与书上总结部分的例子进行比较对应)解. 取园弧微元 d q=λd l=[Q/(πR )]R d θ=Q d θ/πd E =d q/(4πε0r 2)=Q d θ/(4π2ε0R 2) d E x =d E cos(θ+π)=-d E cos θ d E y =d E sin(θ+π)=-d E sin θ E x =()⎰⎰-=2/32/2024d cos d ππεπθθR Q E x =Q/(2π2ε0R 2)E y =⎰d E y ()⎰-2/32/2024d sin ππεπθθR Q =0图1.4______________________________________________________________________________________________________________精品资料故 E=E x =()2022R Q επ方向沿x 轴正向.练习二 高斯定理一、选择题如图3.1所示.有一电场强度E 平行于x 轴正向的均匀电场,则通过图中一半径为R 的半球面的电场强度通量为(D)(此题注意场强的方向,联系场线穿入与穿出)(A) πR 2E . (B) πR 2E /2 . (C) 2πR2E . (D) 0 . 关于高斯定理,以下说法正确的是:(A)(A) 高斯定理是普遍适用的,但用它计算电场强度时要求电荷分布具有某种对称性;(实际是要求场具有对称性)(B) 高斯定理对非对称性的电场是不正确的;(C) 高斯定理一定可以用于计算电荷分布具有对称性的电场的电场强度;(D) 高斯定理一定不可以用于计算非对称性电荷分布的电场的电场强度.3.3所示为一球对称性静电场的E ~ r 关系曲线,请指出该电场是由哪种带电体产生的(E 表示电场强度的大小,r 表示离对称中心的距离) . (C) (如果是均匀带电球体,其E ~ r 又该如何画)图3.1图3.34(A) 点电荷.(B) 半径为R 的均匀带电球体. (C) 半径为R 的均匀带电球面.(D) 内外半径分别为r 和R 的同心均匀带球壳.如图3.4所示,一个带电量为q 的点电荷位于一边长为l 的 正方形abcd 的中心线上,q 距正方形l/2(这一点很关键),则 通过该正方形的电场强度通量大小等于: (B) (要学会如何化解,考查对高斯定理通量的理解 (A)02εq . (B) 06εq .(C) 012εq .(D) 024εq .3.5, 两块“无限大”的带电平行平板,其电荷面密度分别为-σ (σ > 0 )及2σ.试写出各区域的电场强度.Ⅰ区E 的大小 ,方向 . Ⅱ区E 的大小 ,方向 . Ⅲ区E 的大小 ,方向 .σ/(2ε0),向左;3σ/(2ε0),向左;σ/(2ε0),向右.(考查对连续带电体场强叠加原理的理解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
-选择题
1.关于高斯定理的理解有下面几种说法,其中正确的是:
()A 如果高斯面上E
处处为零,则该面内必无电荷;
()B 如果高斯面内无电荷,则高斯面上E
处处为零;
()C 如果高斯面上E
处处不为零,则高斯面内必有电荷;
()D 如果高斯面内有净电荷,则通过高斯面的电场强度通量必不为零。
〔〕 答案:()D
2.如在边长为a 的正立方体中心有一个电量为q 的点电荷,则通过该立方体任一面的电场强度通量为
()A 0/q ε
答案:(
3.柱,取通量
为1φ,2φ,则
()A 1φ=()B 1φ=()C 1φ=()D 1φ=答案:(4.∑
()A ()
B ()
C ()
D 〔〕答案:(
5.今以左边的点电荷所相强则
(A 120120()C 120,/q φφφε==;()D 120,/q φφφε<=。
〔〕
答案:()D
6.一点电荷,放在球形高斯面的中心处。
下列哪一种情况,通过高斯面的电场强度通量发生变化: ()A 将另一点电荷放在高斯面外;()B 将另一点电荷放进高斯面内; ()C 将球心处的点电荷移开,但仍在高斯面内;()D 将高斯面半径缩小。
答案:()B
7.A 和B 为两个均匀带电球体,A 带电荷q +,B 带电荷q -,作
一与A 同心的球面S 为高斯面,如图所示。
则
()A 通过S 面的电场强度通量为零,S 面上各点的场强为零; S
()B 通过S 面的电场强度通量为0/q ε,S 面上场强的大小为2
0π4r
q
E ε=
;
()C 通过S 面的电场强度通量为0()/q ε-,S 面上场强的大小为2
0π4r
q
E ε=; ()D 通过S 面的电场强度通量为0/q ε,但S 面上各点的场强不能直接由高斯定理求出。
〔〕
答案:()D
8.若穿过球形高斯面的电场强度通量为零,则
()A 高斯面内一定无电荷; ()B 高斯面内无电荷或正负电荷的代数和为零; ()C 高斯面上场强一定处处为零; ()D 以上说法均不正确。
〔〕 答案:(
9. ()A
()C 〔〕
答案:(10.()A ()B ()C ()D 答案:(11.
()A 0εσ
答案:(12.的E ()A 1Φ>()C 12Φ=211221答案:()D
13.在静电场中,一闭合曲面外的电荷的代数和为q ,则下列等式
不成立的是: 〔〕
答案:()C
二填空题
1.如图所示,在场强为E 的均匀电场中取一半球面,其半径为R ,电场强度
的方向与半球面的对称轴平行。
则通过这个半球面的电通量为。
2.如图所示,在场强为E的均匀电场中取一半球面,其半径为R,电场强度的方向与半球面的对称轴垂直。
则通过这个半球面的电通量为。
答案:0
3.反映静电场性质的高斯定理表明静电场是______场。
答案:有源场
4.
2
R。
若
该球面5.径为R ⎰⎰S E
6.法线的
e
Φ=
7.
掠过的点(该点与球中心距离为
8.
9.E中,取一半径为与E成所示的任意曲面S的电通量=
⋅
=⎰⎰S
e
S
E
Φd。
答案:2
1
2
E R
π
-
10.均匀电场E垂直于以R为半径的的圆面,以该圆周为
边线作两个曲面
1
S和
2
S,
1
S和
2
S构成闭合曲面,如图所
示。
则通过
1
S、
2
S的电通量
1
Φ和
2
Φ分别为和。
答案:22
E R E R
ππ
-
11.一点电荷q处在球形高斯面的中心,当将另一个点电荷置于高斯球面外附近时,穿过此高斯面的E通量是否会发生变化?_________________。
3
4
12.一点电荷q 处在球形高斯面的中心,当将另一个点电荷置于高斯球面外附近时,此高斯面上任意点的电场强度是否会发生变化?________________。
答案:变化
13.把一个均匀带有电荷Q +的球形肥皂泡由半径1r 吹胀到2r ,则半径为R (12r R r <<)的高斯球面上任一点的场强大小E 是否变化:________________。
答案:变化
14.一均匀带电球面,半径是R ,电荷面密度为σ。
球面上面元d S 带有d S σ的电荷,该电荷在球心处产生的电场强度为____________。
答案:2
0d 4S
R σπε 三
1.答案:得到
得到2E 2.电荷Q E
的大小与半径r 答案:在而V ⎰⎰⎰ρ故:E =即:E =要使E
3.有两个同心的均匀带电球面,半径分别为1R 、2R )(21R R <,若大球面的面电荷密度为σ,且大球面外的电场强度为零,求:(1)小球面上的面电荷密度;(2)大球面内各点的电场强度。
答案:(1)设小球面上的电荷密度为σ',在大球面外作同心的球面为高斯面,
由高斯定理:0
'
12
20int 4'4d επσπσεR R q S E S
⋅+⋅=
=⋅⎰⎰
∵大球面外0=E ∴2221440R R σπσπ'⋅+⋅=
解得:221
(R
R σσ'=-
(2)大球面内各点的场强两个均匀带电球面场强的迭加:内部场强为零,外部相当点电荷 在1r R <区域:00021=+=+=E E E
在12R r R <<区域:21122
04'04R E E E r πσπε=+=+=2
20⎪⎭⎫
⎝⎛-r R εσ
4.如图所示,一个均匀分布带电球层,电荷体密度为ρ,球层内表面半径为R ,外表面为2R ,求:电场分布。
答案:本题的电荷分布具有球对称性,因而电场分布也具有对称性,作
同心
5.心1r =-2
m )。
答案:
当r =故:8r =∴E =
12r =∴()3
32142
03 4.10104πR R E r ρε-=
≈⨯1C N -⋅沿半径向外. 6.两个均匀带电的同心球面,半径分别为1R 和2R ,带电量分别为1q 和2q 。
求
(1)场强的分布;(2)当12q q q =-=时,场强的分布。
答案:(1)选择高斯面:选与带电球面同心的球面作为高斯面。
由高斯定理:0
int
d ε∑⎰⎰=
⋅q
S E S
,得:int
20
4πq
E r ε=
∑
当2r R >时,int 12q q q =+∑ 解得122
04q q E r πε+=
当12R r R <<时,int 1q q =∑
解出E 当1r R <解得E =(2)当。