云南省昆明市2017届高考数学模拟试卷(理科)Word版含解析
2017年高考理科数学全国卷2(含答案解析)

绝密★启用前2017年普通高等学校招生全国统一考试理科数学本试卷共23题,共150分,共6页。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答卷前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的.1.3i 1i +=+ ( )A .12i +B .12i -C .2i +D .2i -2.设集合{}1,2,4A =,{}240B x x x m =-+=.若{}1AB =,则B =( )A .{}1,3-B .{}1,0C .{}1,3D .{}1,53.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )A .1盏B .3盏C .5盏D .9盏4.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A .90πB .63πC .42πD .36π5.设x ,y 满足约束条件2330,2330,30.x y x y y +-⎧⎪-+⎨⎪+⎩≤≥≥则2z x y =+的最小值是( )A .15-B .9-C .1D .9 6.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )A .12种B .18种C .24种D .36种7.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则( )A .乙可以知道四人的成绩B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩D .乙、丁可以知道自己的成绩8.执行右面的程序框图,如果输入的1a =-,则输出的S =( )A .2B .3C .4D .59.若双曲线2222:1x y C a b-=(0a >,0b >)的一条渐近线被圆22(2)4x y -+=所截得的弦长为2,则C 的离心率为 ( )A .2B .3C .2D .23310.已知直三棱柱111ABC A B C -中,120ABC ∠=︒,2AB =,11BC CC ==,则异面直线1AB 与1BC 所成角的余弦值为( )A .32B .155C .105D .3311.若2x =-是函数21()(1)e x f x x ax -=+-的极值点,则()f x 的极小值为 ( ) A .1-B .32e --C .35e -D .112.已知ABC △是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+的-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________最小是( ) A .2-B .32-C . 43-D .1-二、填空题:本题共4小题,每小题5分,共20分.13.一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X 表示抽到的二等品件数,则DX = .14.函数23()sin 4f x x x =+-([0,])2x π∈的最大值是 . 15.等差数列{}n a 的前n 项和为n S ,33a =,410S =,则11nk kS ==∑. 16.已知F 是抛物线2:8C y x =的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,则FN = .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(12分)ABC △的内角A ,B ,C 的对边分别为a ,b ,c 已知2sin()8sin 2B AC +=. (1)求cos B ;(2)若6a c +=,ABC △的面积为2,求b .18.(12分)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg ).其频率分布直方图如下:(1)设两种养殖方法的箱产量相互独立,记A 表示事件:“旧养殖法的箱产量低于50 kg ,新养殖法的箱产量不低于50 kg ”,估计A 的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01).附:22()()()()()n ad bc K a b c d a c b d -=++++19.(12分)如图,四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,12AB BC AD ==,o90BAD ABC ∠=∠=,E 是PD 的中点.(1)证明:直线CE ∥平面PAB ;(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成角为o 45,求二面角M AB D --的余弦值.20.(12分)设O 为坐标原点,动点M 在椭圆22:12xC y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =. (1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .21.(12分)已知函数2()ln f ax a x x x x =--,且()0f x ≥. (1)求a ;(2)证明:()f x 存在唯一的极大值点0x ,且220e ()2f x --<<.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4―4:坐标系与参数方程](10分)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为cos 4ρθ=.(1)M 为曲线1C 上的动点,点P 在线段OM 上,且满足||||16OM OP ⋅=,求点P 的轨迹2C 的直角坐标方程;(2)设点A 的极坐标为(2,)3π,点B 在曲线2C 上,求OAB △面积的最大值.23.[选修4—5:不等式选讲](10分)已知0a >,0b >,332a b +=.证明:(1)55()()4a b a b ++≥;(2)2a b +≤.姓名________________ 准考证号_____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------2017年普通高等学校招生全国统一考试理科数学答案解析一、选择题 1.【答案】D【解析】试题分析:由复数除法的运算法则有:3i (3i)(1i)2i 1i 2++-==-+,故选D . 名师点睛:复数的代数形式的运算主要有加、减、乘、除.除法实际上是分母实数化的过程.在做复数的除法时,要注意利用共轭复数的性质:若1z ,2z 互为共轭复数,则221212||||z z z z ⋅=⋅,通过分子、分母同乘以分母的共轭复数将分母实数化.【考点】复数的除法 2.【答案】C【解析】试题分析:由{1}AB =得1B ∈,即1x =是方程240x x m -+=的根,所以140m -+=,3m =,{1,3}B =,故选C .名师点睛:集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.两个防范:①不要忽视元素的互异性;②保证运算的准确性. 【考点】交集运算,元素与集合的关系 3.【答案】B【解析】试题分析:设塔的顶层共有灯x 盏,则各层的灯数构成一个首项为x ,公比为2的等比数列,结合等比数列的求和公式有:7(12)38112x -=-,解得3x =,即塔的顶层共有灯3盏,故选B .名师点睛:用数列知识解相关的实际问题,关键是列出相关信息,合理建立数学模型——数列模型,判断是等差数列还是等比数列模型;求解时要明确目标,即搞清是求和、求通项、还是解递推关系问题,所求结论对应的是解方程问题、解不等式问题、还是最值问题,然后将经过数学推理与计算得出的结果放回到实际问题中,进行检验,最终得出结论.【考点】等比数列的应用,等比数列的求和公式4.【答案】B【解析】试题分析:由题意,该几何体是一个组合体,下半部分是一个底面半径为3,高为4的圆柱,其体积213436V =π⨯⨯=π,上半部分是一个底面半径为3,高为6的圆柱的一半,其体积221(36)272V =⨯π⨯⨯=π,故该组合体的体积12362763V V V =+=π+π=π.故选B .名师点睛:在由三视图还原为空间几何体的实际形状时,要从三个视图综合考虑,根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线.在还原空间几何体实际形状时,一般是以正视图和俯视图为主,结合侧视图进行综合考虑.求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解.【考点】三视图,组合体的体积 5.【答案】A【解析】试题分析:画出不等式组表示的平面区域如下图中阴影部分所示,目标函数即:2y x z =-+,其中z 表示斜率为2k =-的直线系与可行域有交点时直线的纵截距,数形结合可得目标函数在点(6,3)B --处取得最小值,min 2(6)(3)15Z =⨯-+-=-,故选A .名师点睛:求线性目标函数(0)z ax by ab =+≠的最值,当0b >时,直线过可行域且在y 轴上截距最大时,z 值最大,在y 轴截距最小时,z 值最小;当0b <时,直线过可行域且在y 轴上截距最大时,z 值最小,在y 轴上截距最小时,z 值最大.【考点】应用线性规划求最值 6.【答案】D【解析】试题分析:由题意可得,一人完成两项工作,其余两人每人完成一项工作,据此可得,只要把工作分成三份:有24C 种方法,然后进行全排列,由乘法原理,不同的安排方式共有2343C A 36⨯=种.故选D .名师点睛:(1)解排列组合问题要遵循两个原则:①按元素(或位置)的性质进行分类;②按事情发生的过程进行分步.具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).(2)不同元素的分配问题,往往是先分组再分配.在分组时,通常有三种类型:①不均匀分组;②均匀分组;③部分均匀分组.注意各种分组类型中,不同分组方法的求解. 【考点】排列与组合,分步乘法计数原理 7.【答案】D【解析】试题分析:由甲的说法可知乙、丙一人优秀一人良好,则甲、丁两人一人优秀一人良好,乙看到丙的成绩则知道自己的成绩,丁看到甲的成绩则知道自己的成绩,即乙、丁可以知道自己的成绩.故选D .名师点睛:合情推理主要包括归纳推理和类比推理.数学研究中,在得到一个新结论前,合情推理能帮助猜测和发现结论,在证明一个数学结论之前,合情推理常常能为证明提供思路与方向.合情推理仅是“合乎情理”的推理,它得到的结论不一定正确.而演绎推理得到的结论一定正确(前提和推理形式都正确的前提下) 【考点】合情推理 8.【答案】B【解析】试题分析:阅读程序框图,初始化数值1a =-,1K =,0S =. 循环结果执行如下:第一次:011S =-=-,1a =,2K =; 第二次:121S =-+=,1a =-,3K =; 第三次:132S =-=-,1a =,4K =;第四次:242S =-+=,1a =-,5K =; 第五次:253S =-=-,1a =,6K =; 第六次:363S =-+=,1a =-,7K =. 结束循环,输出3S =.故选B .名师点睛:识别、运行程序框图和完善程序框图的思路:①要明确程序框图的顺序结构、条件结构和循环结构;②要识别、运行程序框图,理解框图所解决的实际问题;③按照题目的要求完成解答并验证. 【考点】程序框图 9.【答案】A【解析】试题分析:由几何关系可得,双曲线22221x y a b -=(00)a b >>,的渐近线方程为0bx ay ±=,圆心(2,0)到渐近线距离为d ==则点(2,0)到直线0bx ay +=的距离为2bd c=== 即2224()3c a c -=,整理可得224c a =,双曲线的离心率2e =.故选A . 名师点睛:双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a ,c ,代入公式ce a=;②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合222b c a =-转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或2a 转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).【考点】双曲线的离心率,直线与圆的位置关系,点到直线的距离公式 10.【答案】C【解析】试题分析:如图所示,补成直四棱柱1111ABCD A B C D -,则所求角为1BC D ∠,1=2BC 60=3BD,11=C D AB易得22211=C D BD BC +,因此111cos =5BC BC D C D ∠,故选C .名师点睛:平移法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面问题化归为共面问题来解决,具体步骤如下:①平移:平移异面直线中的一条或两条,作出异面直线所成的角; ②认定:证明作出的角就是所求异面直线所成的角; ③计算:求该角的值,常利用解三角形;④取舍:由异面直线所成的角的取值范围是π(0]2,,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.求异面直线所成的角要特别注意异面直线之间所成角的范围.【考点】异面直线所成的角,余弦定理,补形的应用 11.【答案】A 【解析】试题分析:由题可得12121()(2)e (1)e [(2)1]e x x x f x x a x ax x a x a ---'=+++-=+++-,因为(2)0f '-=,所以1a =-,21()(1)ex f x x x -=--,故21()(2)ex f x x x -'=+-,令()0f x '>,解得2x <-或1x >,所以()f x 在(,2),(1,)-∞-+∞上单调递增,在(2,1)-上单调递减,所以()f x 的极小值为11()(111)e 11f -=--=-,故选A .名师点睛:(1)可导函数()y f x =在点0x 处取得极值的充要条件是0()0f x '=,且在0x 左侧与右侧()f x '的符号不相同;(2)若()f x 在()a b ,内有极值,那么()f x 在()a b ,内绝不是单调函数,即在某区间上单调增或减的函数没有极值.【考点】函数的极值,函数的单调性 12.【答案】B【解析】试题分析:如图,以BC 为x 轴,BC 的垂直平分线DA 为y 轴,D 为坐标原点建立平面直角坐标系,则A ,(1,0)B -,(1,0)C ,设(,)P x y ,所以()PA x y =-,(1,)PB x y =---,(1,)PC x y =--,所以(2,2)PB PC x y +=--,22233()22)22(22PA PB PC x y y x y ⋅+=-=+--≥,当(0P 时,所求最小值为32-,故选B .【名师点睛】平面向量中有关最值问题的求解通常有两种思路:①“形化”,即利用平面向量的几何意义将问题转化为平面几何中的最值或范围问题,然后根据平面图形的特征直接进行判断;②“数化”,即利用平面向量的坐标运算,把问题转化为代数中的函数最值与值域、不等式的解集、方程有解等问题,然后利用函数、不等式、方程的有关知识来解决.【考点】平面向量的坐标运算,函数的最值二、填空题 13.【答案】1.96【解析】试题分析:由题意可得,抽到二等品的件数符合二项分布,即()~100,0.02X B ,由二项分布的期望公式可得(1)1000.020.98 1.96DX np p =-=⨯⨯=.【名师点睛】判断一个随机变量是否服从二项分布,要看两点:①是否为n 次独立重复试验,在每次试验中事件A 发生的概率是否均为p ;②随机变量是否为在这n 次独立重复试验中某事件发生的次数,且()()C 1n kkk n p X k p p -==-表示在独立重复试验中,事件A 恰好发生k 次的概率.【考点】二项分布的期望与方差14.【答案】1【解析】试题分析:化简三角函数的解析式,则22231()1cos cos(cos144f x x x x x x=--=-+=-+由π[0,]2x∈可得cos[0,1]x∈,当cos x=()f x取得最大值1.名师点睛:本题经三角函数式的化简将三角函数的问题转化为二次函数的问题,二次函数、二次方程与二次不等式统称“三个二次”,它们常结合在一起,有关二次函数的问题,数形结合、密切联系图象是探求解题思路的有效方法.一般从:①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面进行分析.【考点】三角变换,复合型二次函数的最值15.【答案】21nn+【解析】试题分析:设等差数列的首项为1a,公差为d,由题意有113,4102432,adda+⨯=+=⎧⎪⎨⎪⎩解得11,1,da=⎧⎨=⎩数列的前n项和1(1)(1)(1)11222nn n n n nSnn da n--+++⨯==⨯=,裂项可得12112()(1)1kS k k k k==-++,所以1111111122[(1)()()]2(1)223111nk knS n n n n==-+-++-=-=+++∑.名师点睛:等差数列的通项公式及前n项和公式,共涉及五个量1a,n a,d,n,n S,知其中三个就能求另外两个,体现了用方程的思想解决问题.数列的通项公式和前n项和公式在解题中起到变量代换作用,而1a和d是等差数列的两个基本量,用它们表示已知和未知是常用得方法.使用裂项法求和时,要注意正、负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点.【考点】等差数列前n项和公式,裂项求和.16.【答案】6【解析】试题分析:如图所示,不妨设点M位于第一象限,设抛物线的准线与x轴交于点F',作MB l⊥与点B,NA l⊥与点A,由抛物线的解析式可得准线方程为2x=-,则2AN=,4FF'=在直角梯形ANFF'中,中位线32AN FFBM'+==,由抛物线的定义有:3MF MB==,结合题意,有3MN MF==,故336FN FM NM=+=+=.【考点】抛物线的定义,梯形中位线在解析几何中的应用.【名师点睛】抛物线的定义是解决抛物线问题的基础,它能将两种距离(抛物线上的点到焦点的距离、抛物线上的点到准线的距离)进行等量转化.如果问题中涉及抛物线的焦点和准线,又能与距离联系起来,那么用抛物线定义就能解决问题.因此,涉及抛物线的焦半径、焦点弦问题,可以优先考虑利用抛物线的定义转化为点到准线的距离,这样就可以使问题简单化.三、解答题17.【答案】(1)15cos17B=;(2)2b=.【解析】试题分析:(1)利用三角形内角和定理可知A B C+=,再利用诱导公式化简sin()A C+,利用降幂公式化简21cossin22B B-=,结合22sin cos1B B+=即可求出cos B;(2)利用(1)中结论15cos17B=,结合三角形面积公式可求出ac的值,根据6a c+=,进而利用余弦定理可求出b的值.试题解析:(1)由题设及πA B C ++=,可得2sin 8sin 2BB =,故sin 4(1cos B B =-. 上式两边平方,整理得217cos 32cos 150B B -+=,解得cos 1B =(舍去),15cos 17B =.(2)由15cos 17B =得8sin 17B =,故14=sin 217ABC S ac B ac =△.又=2ABC S △,则172ac =.由余弦定理及6a c +=得:222217152cos ()2(1cos )362(1)4217b ac ac B a c ac B =+-=+-+=-⨯⨯+=,所以2b =.【考点】余弦定理,三角形面积公式【名师点睛】解三角形问题是高考的高频考点,命题大多放在解答题的第一题,主要利用三角形的内角和定理,正余弦定理、三角形面积公式等知识进行求解.解题时要灵活利用三角形的边角关系进行“边转角”“角转边”,另外要注意a c +,ac ,22a c +三者之间的关系,这样的题目小而活,备受命题者的青睐. 18.【答案】(1)0.4092;(2)有99%的把握认为箱产量与养殖方法有关; (3)52.35 kg .【解析】试题分析:(1)利用相互独立事件概率公式即可求得事件A 的概率估计值; (2)写出列联表计算的2K 观测值,即可确定有99%的把握认为箱产量与养殖方法有关; (3)结合频率分布直方图估计中位数为52.35 kg .试题解析:(1)记B 表示事件“旧养殖法的箱产量低于50 kg ”,C 表示事件“新养殖法的箱产量不低于50 kg ”,由题意知()()()()P A P BC P B P C ==,旧养殖法的箱产量低于50 kg 的频率为0.0120.0140.0240.0340.0()4050.62⨯++++=, 故()P B 的估计值为0.62.新养殖法的箱产量不低于50 kg 的频率为0.0680.0460.0100.00850.6)6(+++=⨯, 故()P C 的估计值为0.66.因此,事件A 的概率估计值为0.620.660.4092⨯=. (2)根据箱产量的频率分布直方图得列联表:2K 的观测值22200(62663438)15.70510010096104K ⨯⨯-⨯=⨯⨯⨯≈. 由于15.705 6.635>,故有99%的把握认为箱产量与养殖方法有关.(3)因为新养殖法的箱产量频率分布直方图中,箱产量低于50 kg 的直方图面积为0.0040.0200.04450(.)340.5++⨯=<,箱产量低于55 kg 的直方图面积为0.0040.0200.0440.0685(0.680.)5+++⨯=>, 故新养殖法箱产量的中位数的估计值为0.50.345052.38(kg)0.068-+≈.名师点睛:(1)利用独立性检验,能够帮助我们对日常生活中的实际问题作出合理的推断和预测.独立性检验就是考察两个分类变量是否有关系,并能较为准确地给出这种判断的可信度,随机变量的观测值值越大,说明“两个变量有关系”的可能性越大. (2)利用频率分布直方图求众数、中位数和平均数时,应注意三点:①最高的小长方形底边中点的横坐标即众数;②中位数左边和右边的小长方形的面积和是相等的;③平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.【考点】独立事件概率公式,独立性检验原理,频率分布直方图估计中位数 19.【答案】(1)证明:取PA 的中点F ,连结EF ,BF . 因为E 是PD 的中点,所以EF AD ∥,1=2EF AD ,由=90BAD ABC =∠∠得BC AD ∥, 又1=2BC AD ,所以EF BC ∥,四边形BCEF 是平行四边形,CE BF ∥. 又BF ⊂平面PAD ,BCE ∉平面PAB ,故CE ∥平面PAB .(2)由已知得BA AD ⊥,以A 为坐标原点,AB 的方向为x 轴正方向,||AB 为单位长,建立如图所示的空间直角坐标系A xyz -,则(0,0,0)A ,(1,0,0)B ,(1,1,0)C,P,(1,0,PC ,(1,0,0)AB , 设(,,)M x y z ,则(1,,)BM x y z =-,(,1,PM x y z =-,因为BM 与底面ABCD 所成的角为45°,而=(0,0,1)n 是底面ABCD 的法向量, 所以cos ,sin 45BM 〈〉=n2=,即222(1)0x y z -+-=.① 又M 在棱PC 上,设PM PC λ=,则x λ=,1y =,z =.②由①②解得,11,x y z ⎧=+⎪⎪⎪=⎨⎪⎪=⎪⎩(舍去),11,x y z ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩所以(1M -,从而(1AM =. 设000(,,)x y z =m 是平面ABM 的法向量,则0,0,AM AB ⎧⋅=⎪⎨⋅=⎪⎩m m即0000(220,0,x y x ⎧++=⎪⎨=⎪⎩所以可取(0,m .于是cos ,||||⋅〈〉==m n m n m n ,因此二面角M AB D --. 【解析】试题分析:(1)取PA 的中点F ,连结EF ,BF ,由题意证得CE BF ∥,利用线面平行的判断定理即可证得结论;(2)建立空间直角坐标系,求得半平面的法向量:(0,m ,(0,0,1)n ,然后利用空间向量的相关结论可求得二面角M AB D --. 名师点睛:(1)求解本题要注意两点:①两平面的法向量的夹角不一定是所求的二面角,②利用方程思想进行向量运算,要认真细心、准确计算.(2)设m ,n 分别为平面α,β的法向量,则二面角θ与,〈〉m n 互补或相等,故有|cos ,|||o |s |c θ⋅〈〉==m nm n m n .求解时一定要注意结合实际图形判断所求角是锐角还是钝角.【考点】判定线面平行,面面角的向量求法20.【答案】(1)设(,)P x y =,00(,)M x y ,则0(,0)N x ,0(,)NP x x y -,0(0,)NM y .由2NP NM =得0x x =,0y y . 因为00(,)M x y 在C 上,所以22122x y +=.因此点P 的轨迹方程为222x y +=.(2)由题意知(1,0)F =-.设(3,)Q t =-,(,)P m n =,则,(3,)OQ t =-,(1,)PF m n =---,33OQ PF m tn ⋅=+-,(,)OP m n =,(3,)PQ m t n =---.由1OP PQ ⋅=得2231m m tn n --+-=,又由(1)知222m n +=,故330m tn +-=.所以0OQ PF ⋅=,即OQ PF ⊥.又过点P 存在唯一直线垂直于OQ ,所以过点P 且垂直于OQ 的直线l 过C 的左焦点F .【解析】试题分析:(1)设出点P 、M 的坐标,利用2NP NM =得到点P 与点M 坐标之间的关系即可求得轨迹方程为222xy +=;(2)利用1OP PQ ⋅=可得坐标之间的关系:2231m m tn n --+-=,结合(1)中的结论整理可得0OQ PF ⋅=,即OQ PF ⊥,据此即可得出结论. 名师点睛:求轨迹方程的常用方法:(1)直接法:直接利用条件建立x ,y 之间的关系(,)0F x y ==. (2)待定系数法:已知所求曲线的类型,求曲线方程.(3)定义法:先根据条件得出动点的轨迹是某种已知曲线,再由曲线的定义直接写出动点的轨迹方程.(4)代入(相关点)法:动点(,)P x y =依赖于另一动点00(,)Q x y 的变化而运动,常利用代入法求动点(,)P x y =的轨迹方程. 【考点】轨迹方程的求解,直线过定点问题 21.【答案】(1)()f x 的定义域为(0,)+∞.设()ln g x ax a x =--,则()()f x xg x =,()0f x ≥等价于()0g x ≥. 因为(1)=0g ,()0g x ≥,故(1)=0g ',而1()g x a x'=-,(1)1g a '=-,得1a -. 若1a -,则1()1g x x'=-.当01x <<时,()0g x '<,()g x 单调递咸; 当1x >时,()0g x '>,()g x 单调递增.所以1x =是()g x 的极小值点,故()(1)0g x g =≥. 综上,1a =.(2)由(1)知2()ln f x x x x x =--,()22ln f x x x '=--.设()22ln h x x x =--,则1()2'x h x=-.当1(0,)2x ∈ 时,()0h'x <;当1(,)2x ∈+∞时,()0h'x >,所以()h x 在1(0,)2上单调递减,在1(,)2+∞上单调递增.又2(e )0h ->,1()02h <,(1)0h =,所以()h x 在1(0,)2有唯一零点0x ,在1[,)2+∞有唯一零点1,且当0(0,)x x ∈时,()0h x >;当0(,1)x x ∈时,()0h x <,当(1,)x ∈+∞时,()0h x >. 因为()()f 'x h x =,所以0x x =是()f x 的唯一极大值点. 由0()0f 'x =得00ln 2(1)x x =-,故000()(1)f x x x =-. 由0(0,1)x ∈得01()4f x <. 因为0x x =是()f x 在(0,1)的最大值点,由1(1)e 0,-∈,1(e )0f '-≠得120()(e )e f x f -->=. 所以220e ()2f x --<<.【解析】试题分析:(1)根据题意结合导函数与原函数的关系可求得1a =,注意验证结果的正确性;(2)结合(1)的结论构造函数()22ln h x x x =--,结合()h x 的单调性和()f x 的解析式即可证得题中的不等式成立.名师点睛:导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出.导数专题在高考中的命题方向及命题角度:从高考来看,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系;(2)利用导数求函数的单调区间,判断单调性;已知单调性求参数;(3)利用导数求函数的最值(极值),解决生活中的优化问题;(4)考查数形结合思想的应用. 【考点】利用导数研究函数的单调性,利用导数研究函数的极值 22.【答案】(1)()()22240x y x -+=≠ (2)2【解析】试题分析:(1)设出P 的极坐标,然后利用题意得出极坐标方程,最后转化为直角坐标方程;(2)利用(1)中的结论,设出点的极坐标,然后结合面积公式得到面积的三角函数,结合三角函数的性质可得OAB △面积的最大值.理科数学试卷 第21页(共22页) 理科数学试卷 第22页(共22页) 试题解析:(1)设P 的极坐标为()()0ρθρ,>,M 的极坐标为11()()0ρθρ,>. 由题设知OP ρ=,14cos OM ρθ==. 由16OM OP ⋅=得2C 的极坐标方程为0)4cos (ρθρ=>,因此2C 的直角坐标方程为22(240)()x y x -+=≠.(2)设点B 的极坐标为()(0)B B ραρ,>,由题设知2OA =,4cos B ρα=,于是OAB △的面积1ππsin 4cos sin 2sin 22233B S OA AOB ρααα⎛⎫⎛⎫=⋅⋅∠=⋅-=-+ ⎪ ⎪⎝⎭⎝⎭ 当π12α=-时,S取得最大值2+OAB △面积的最大值为2.名师点睛:本题考查了极坐标方程的求法及应用。
(word完整版)2017年高考理科数学新课标全国3卷逐题解析

2017年普通高等学校招生全国统一考试(全国)理科数学(试题及答案解析)一、选择题:(本题共12小题,每小题5分,共60分)1.已知集合{}22(,)1A x y x y =+=,{}(,)B x y y x ==,则A B I 中元素的个数为()A .3B .2C .1D .0 【答案】B【解析】A 表示圆221x y +=上所有点的集合,B 表示直线y x =上所有点的集合,故A B I 表示两直线与圆的交点,由图可知交点的个数为2,即A B I 元素的个数为2,故选B.2.设复数z 满足(1i)2i z +=,则z =() A .12B 2C 2D .2【答案】C【解析】由题,()()()2i 1i 2i 2i 2i 11i 1i 1i 2z -+====+++-,则22112z =+ C.3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.2014年 2015年 2016年根据该折线图,下列结论错误的是() A .月接待游客量逐月增加 B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月D .各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳 【答案】A【解析】由题图可知,2014年8月到9月的月接待游客量在减少,则A 选项错误,故选A.4.5()(2)x y x y +-的展开式中33x y 的系数为()A .-80B .-40C .40D .80 【答案】C【解析】由二项式定理可得,原式展开中含33x y 的项为()()()()2332233355C 2C 240x x y y x y x y ⋅-+⋅-=,则33x y 的系数为40,故选C.5.已知双曲线22221x y C a b -=:(0a >,0b >)的一条渐近线方程为5y ,且与椭圆221123x y +=有公共焦点.则C 的方程为() A .221810x y -= B .22145x y -= C .22154x y -= D .22143x y -=【答案】B【解析】∵双曲线的一条渐近线方程为5y x =,则5b a =又∵椭圆221123x y +=与双曲线有公共焦点,易知3c =,则2229a b c +==② 由①②解得2,5a b ==,则双曲线C 的方程为22145x y -=,故选B.6.设函数π()cos()3f x x =+,则下列结论错误的是()A .()f x 的一个周期为2π-B .()y f x =的图像关于直线8π3x =对称 C .()f x π+的一个零点为π6x =D .()f x 在π(,π)2单调递减【答案】D【解析】函数()πcos 3f x x ⎛⎫=+ ⎪⎝⎭的图象可由cos y x =向左平移π3个单位得到,如图可知,()f x 在π,π2⎛⎫⎪⎝⎭上先递减后递增,D 选项错误,故选D.π23π53-π36πg x y O 7.执行右图的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为()A .5B .4C .3D .2 【答案】D【解析】程序运行过程如下表所示:S M初始状态0 100 1 第1次循环结束100 10- 2 第2次循环结束90 1 3 此时9091S =<首次满足条件,程序需在3t =时跳出循环,即2N =为满足条件的最小值,故选D.8.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A .πB .3π4C .π2D .π4【答案】B【解析】由题可知球心在圆柱体中心,圆柱体上下底面圆半径221312r ⎛⎫=-= ⎪⎝⎭,则圆柱体体积23ππ4V r h ==,故选B.9.等差数列{}n a 的首项为1,公差不为0.若2a ,3a ,6a 成等比数列,则{}n a 前6项的和为()A .24-B .3-C .3D .8 【答案】A【解析】∵{}n a 为等差数列,且236,,a a a 成等比数列,设公差为. 则2326a a a =⋅,即()()()211125a d a d a d +=++ 又∵11a =,代入上式可得220d d += 又∵0d ≠,则2d =-∴()61656561622422S a d ⨯⨯=+=⨯+⨯-=-,故选A.10.已知椭圆2222:1x y C a b+=(0a b >>)的左、右顶点分别为1A ,2A ,且以线段1A 2A 为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为() ABCD .13【答案】A【解析】∵以12A A 为直径为圆与直线20bx ay ab -+=相切,∴圆心到直线距离等于半径,∴d a== 又∵0,0a b >>,则上式可化简为223a b =∵222b ac =-,可得()2223a a c =-,即2223c a =∴c e a == A11.已知函数211()2(e e )x x f x x x a --+=-++有唯一零点,则a =()A .1-2B .13C .12D .1【答案】C【解析】由条件,211()2(e e )x x f x x x a --+=-++,得:221(2)1211211(2)(2)2(2)(e e )4442(e e )2(e e )x x x x x x f x x x a x x x a x x a ----+----+-=---++=-+-+++=-++∴(2)()f x f x -=,即1x =为()f x 的对称轴, 由题意,()f x 有唯一零点, ∴()f x 的零点只能为1x =,即21111(1)121(e e )0f a --+=-⋅++=,解得12a =.12.在矩形ABCD 中,1AB =,2AD =,动点P 在以点C 为圆心且与BD 相切的圆上.若AP AB AD λμ=+u u u r u u u r u u u r,则λμ+的最大值为() A .3 B. CD .2【答案】A【解析】由题意,画出右图.设BD 与C e 切于点E ,连接CE . 以A 为原点,AD 为轴正半轴, AB 为轴正半轴建立直角坐标系, 则C 点坐标为(2,1). ∵||1CD =,||2BC =.∴BD = ∵BD 切C e 于点E . ∴CE ⊥BD .∴CE 是Rt BCD △中斜边BD 上的高.12||||22||||||BCD BC CD S EC BD BD ⋅⋅⋅====△即C e. ∵P 在C e 上.∴P 点的轨迹方程为224(2)(1)5x y -+-=. 设P 点坐标00(,)x y ,可以设出P 点坐标满足的参数方程如下:0021x y θθ⎧=+⎪⎪⎨⎪=+⎪⎩ 而00(,)AP x y =u u u r ,(0,1)AB =u u u r ,(2,0)AD =u u u r. ∵(0,1)(2,0)(2,)AP AB AD λμλμμλ=+=+=u u u r u u u r u u u r∴0112x μθ==+,01y λθ==. 两式相加得:112)2sin()3λμθθθϕθϕ+=+=+=++≤(其中sin ϕ=,cos ϕ=) 当且仅当π2π2k θϕ=+-,k ∈Z 时,λμ+取得最大值3.()A O Dxy BP gCE二、填空题:(本题共4小题,每小题5分,共20分)13.若x ,y 满足约束条件0,20,0,-⎧⎪+-⎨⎪⎩x y x y y ≥≤≥则34z x y =-的最小值为________.【答案】1-【解析】由题,画出可行域如图:目标函数为34z x y =-,则直线344zy x =-纵截距越大,值越小. 由图可知:在()1,1A 处取最小值,故min 31411z =⨯-⨯=-.14.设等比数列{}n a 满足121a a +=-,133a a -=-,则4a =________. 【答案】8-【解析】{}n a Q 为等比数列,设公比为.121313a a a a +=-⎧⎨-=-⎩,即1121113a a q a a q +=-⎧⎪⎨-=-⎪⎩①②, 显然1q ≠,10a ≠,②①得13q -=,即2q =-,代入①式可得11a =, ()3341128a a q ∴==⨯-=-.15.设函数1,0,()2,0,+⎧=⎨>⎩xx x f x x ≤则满足1()()12f x f x +->的x 的取值范围是________. 【答案】1,4⎛⎫-+∞ ⎪⎝⎭【解析】()1,02 ,0+⎧=⎨>⎩Q x x x f x x ≤,()112f x f x ⎛⎫+-> ⎪⎝⎭,即()112f x f x ⎛⎫->- ⎪⎝⎭由图象变换可画出12y f x ⎛⎫=- ⎪⎝⎭与()1y f x =-的图象如下:1)2-)由图可知,满足()112f x f x ⎛⎫->- ⎪⎝⎭的解为1,4⎛⎫-+∞ ⎪⎝⎭.16.,为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与,都垂直,斜边AB 以直线AC 为旋转轴旋转,有下列结论: ①当直线AB 与成60︒角时,AB 与成30︒角; ②当直线AB 与成60︒角时,AB 与成60︒角; ③直线AB 与所成角的最小值为45︒; ④直线AB 与所成角的最大值为60︒.其中正确的是________(填写所有正确结论的编号) 【答案】②③【解析】由题意知,a b AC 、、三条直线两两相互垂直,画出图形如图.不妨设图中所示正方体边长为1, 故||1AC =,2AB =,斜边AB 以直线AC 为旋转轴旋转,则A 点保持不变, B 点的运动轨迹是以C 为圆心,1为半径的圆.以C 为坐标原点,以CD u u u r 为轴正方向,CB u u u r为轴正方向, CA u u u r为轴正方向建立空间直角坐标系. 则(1,0,0)D ,(0,0,1)A ,直线的方向单位向量(0,1,0)a =r ,||1a =r. B 点起始坐标为(0,1,0),直线的方向单位向量(1,0,0)b =r,||1b =r . 设B 点在运动过程中的坐标(cos ,sin ,0)B θθ', 其中为B C '与CD 的夹角,[0,2π)θ∈.那么'AB 在运动过程中的向量(cos ,sin ,1)AB θθ'=--u u u r ,||2AB '=u u u r. 设AB 'u u u r 与所成夹角为π[0,]2α∈,则(cos ,sin ,1)(0,1,0)22cos |sin |[0,]a AB θθαθ--⋅==∈'r u u u r. 故ππ[,]42α∈,所以③正确,④错误.设AB 'u u u r 与所成夹角为π[0,]2β∈,cos (cos ,sin ,1)(1,0,0)2|cos |AB bb AB b AB βθθθ'⋅='-⋅='=u u u r r r u u u rr u u u r .当AB 'u u u r 与夹角为60︒时,即π3α=,12sin 2cos 2cos 2322πθα====. ∵22cos sin 1θθ+=,∴|cos |θ.∴1cos |cos |2βθ=.∵π[0,]2β∈.∴π=3β,此时AB 'u u u r 与夹角为60︒.∴②正确,①错误.三、解答题:(共70分.第17-20题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答) (一)必考题:共60分. 17.(12分)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin 0A A =,a =,2b =.(1)求c ;(2)设D 为BC 边上一点,且AD AC ⊥,求ABD △的面积.【解析】(1)由sin 0A A =得π2sin 03A ⎛⎫+= ⎪⎝⎭,即()ππ3A k k +=∈Z ,又()0,πA ∈,∴ππ3A +=,得2π3A =.由余弦定理2222cos a b c bc A =+-⋅.又∵12,cos 2a b A ===-代入并整理得()2125c +=,故4c =.(2)∵2,4AC BC AB ===,由余弦定理222cos 2a b c C ab +-=∵AC AD ⊥,即ACD △为直角三角形,则cos AC CD C =⋅,得CD =由勾股定理AD =又2π3A =,则2πππ326DAB ∠=-=, 1πsin 26ABDS AD AB =⋅⋅△18.(12分)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[)2025,,需求量为300瓶;如果最高气温低于20,需求量为200瓶,为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数(1)求六月份这种酸奶一天的需求量X (单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为Y (单位:元).当六月份这种酸奶一天的进货量(单位:瓶)为多少时,Y 的数学期望达到最大值? 【解析】⑴易知需求量可取200,300,500()21612003035P X +===⨯()3623003035P X ===⨯()257425003035P X ++===⨯.⑵①当200n ≤时:,此时max 400Y =,当200n =时取到.②当200300n <≤时:()()4122002200255Y n n =⋅+⨯+-⋅-⎡⎤⎣⎦ 880026800555n n n -+=+= 此时max 520Y =,当300n =时取到. ③当300500n <≤时,()()()()12220022002300230022555Y n n n =⨯+-⋅-+⨯+-⋅-+⋅⋅⎡⎤⎡⎤⎣⎦⎣⎦ 320025n -=此时520Y <.④当500n ≥时,易知一定小于③的情况. 综上所述:当300n =时,取到最大值为520.19.(12分)如图,四面体ABCD 中,△ABC 是正三角形,△ACD 是直角三角形.ABD CBD ??,AB BD =.(1)证明:平面ACD ^平面ABC ;(2)过AC 的平面交BD 于点E ,若平面AEC 把四面体ABCD 分成体积相等的两部分.求二面角D AE C --的余弦值.【解析】⑴取AC 中点为O ,连接BO ,DO ; ABC ∆Q 为等边三角形 ∴BO AC ⊥ ∴AB BC =AB BC BD BDABD DBC=⎧⎪=⎨⎪∠=∠⎩ABD CBD ∴∆≅∆. ∴AD CD =,即ACD ∆为等腰直角三角形,ADC ∠ 为直角又O 为底边AC 中点DA B C ED A B C EO∴DO AC ⊥令AB a =,则AB AC BC BD a ====易得:2OD =,OB = ∴222OD OB BD +=由勾股定理的逆定理可得2DOB π∠=即OD OB ⊥ OD AC OD OB AC OB O AC ABC OB ABC⊥⎧⎪⊥⎪⎪=⎨⎪⊂⎪⊂⎪⎩I 平面平面OD ABC ∴⊥平面 又∵OD ADC ⊂平面由面面垂直的判定定理可得ADC ABC ⊥平面平面 ⑵由题意可知V V D ACE B ACE --= 即B ,D 到平面ACE 的距离相等 即E 为BD 中点以O 为原点,OA u u u r 为轴正方向,OB u u u r为轴正方向,OD u u u r为轴正方向,设AC a =,建立空间直角坐标系,则()0,0,0O ,,0,02a A ⎛⎫ ⎪⎝⎭,0,0,2a D ⎛⎫ ⎪⎝⎭,,0B ⎛⎫ ⎪ ⎪⎝⎭,,4a E ⎛⎫ ⎪ ⎪⎝⎭易得:,24a a AE ⎛⎫=- ⎪ ⎪⎝⎭u u u r ,,0,22a a AD ⎛⎫=- ⎪⎝⎭u u u r ,,0,02a OA ⎛⎫= ⎪⎝⎭u u u r 设平面AED 的法向量为1n u u r ,平面AEC 的法向量为2n u u r,则1100AE n AD n ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u r u u u r u u r,解得1n =u u r 2200AE n OA n ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u r u u u r u u r,解得(20,1,n =u u r 若二面角D AE C --为,易知为锐角,则1212cos n n n n θ⋅==⋅u u r u u r uu r u u r20.(12分)已知抛物线2:2C y x =,过点(2,0)的直线交C 于A ,B 两点,圆M 是以线段AB 为直径的圆.(1)证明:坐标原点O 在圆M 上;(2)设圆M 过点P (4,2-),求直线与圆M 的方程.【解析】⑴显然,当直线斜率为时,直线与抛物线交于一点,不符合题意.设:2l x my =+,11(,)A x y ,22(,)B x y ,联立:222y xx my ⎧=⎨=+⎩得2240y my --=,2416m ∆=+恒大于,122y y m +=,124y y =-. 1212OA OB x x y y ⋅=+uu r uu u r12(2)(2)my my =++21212(1)2()4m y y m y y =++++24(1)2(2)4m m m =-+++0= ∴OA OB ⊥u u r u u u r,即O 在圆M 上.⑵若圆M 过点P ,则0AP BP ⋅=uu u r uu r1212(4)(4)(2)(2)0x x y y --+++= 1212(2)(2)(2)(2)0my my y y --+++=21212(1)(22)()80m y y m y y +--++=化简得2210m m --=解得12m =-或①当12m =-时,:240l x y +-=圆心为00(,)Q x y ,120122y y y +==-,0019224x y =-+=,半径||r OQ =则圆229185:()()4216M x y -++=②当1m =时,:20l x y --=圆心为00(,)Q x y ,12012y y y +==,0023x y =+=,半径||r OQ ==则圆22:(3)(1)10M x y -+-=21.(12分)已知函数()1ln f x x a x =--.(1)若()0f x ≥,求的值;(2)设m 为整数,且对于任意正整数,2111(1)(1)(1)222nm ++鬃?<,求m 的最小值. 【解析】⑴ ()1ln f x x a x =--,0x >则()1a x af x x x-'=-=,且(1)0f =当0a ≤时,()0f x '>,()f x 在()0+∞,上单调增,所以01x <<时,()0f x <,不满足题意; 当0a >时,当0x a <<时,()0f x '<,则()f x 在(0,)a 上单调递减; 当x a >时,()0f x '>,则()f x 在(,)a +∞上单调递增.①若1a <,()f x 在(,1)a 上单调递增∴当(,1)x a ∈时()(1)0f x f <=矛盾 ②若1a >,()f x 在(1,)a 上单调递减∴当(1,)x a ∈时()(1)0f x f <=矛盾 ③若1a =,()f x 在(0,1)上单调递减,在(1,)+∞上单调递增∴()(1)0f x f =≥满足题意综上所述1a =.⑵ 当1a =时()1ln 0f x x x =--≥即ln 1x x -≤则有ln(1)x x +≤当且仅当0x =时等号成立∴11ln(1)22k k+<,*k ∈N 一方面:221111111ln(1)ln(1)...ln(1) (112222222)n n n ++++++<+++=-<,即2111(1)(1)...(1)e 222n +++<.另一方面:223111111135(1)(1)...(1)(1)(1)(1)222222264n +++>+++=>当3n ≥时,2111(1)(1)...(1)(2,e)222n +++∈∵*m ∈N ,2111(1)(1)...(1)222n m +++<,∴m 的最小值为.22.选修4-4:坐标系与参数方程](10分)在直角坐标系xOy 中,直线的参数方程为,,x t y kt =2+⎧⎨=⎩(t 为参数),直线l 2的参数方程为,,x m my k =-2+⎧⎪⎨=⎪⎩(m 为参数),设与l 2的交点为P ,当k 变化时,P 的轨迹为曲线C . (1)写出C 的普通方程:(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设:(cos sin )l ρθθ3+0,M 为与C 的交点,求M 的极径. 【解析】⑴将参数方程转化为一般方程()1:2l y k x =- ……①()21:2l y x k=+ ……②①②消可得:224x y -=即P 的轨迹方程为224x y -=; ⑵将参数方程转化为一般方程3:0l x y +-= ……③ 联立曲线C和224x y x y ⎧+⎪⎨-=⎪⎩解得x y ⎧=⎪⎪⎨⎪=⎪⎩ 由cos sin x y ρθρθ=⎧⎨=⎩解得ρ=即M.23.选修4-5:不等式选讲](10分)已知函数()||||f x x x =+1--2. (1)求不等式()f x ≥1的解集;(2)若不等式()f x x x m 2≥-+的解集非空,求m 的取值范围.【解析】⑴()|1||2|f x x x =+--可等价为()3,121,123,2--⎧⎪=--<<⎨⎪⎩x f x x x x ≤≥.由()1f x ≥可得:①当1-x ≤时显然不满足题意;②当12x -<<时,211-x ≥,解得1x ≥;③当2x ≥时,()31=f x ≥恒成立.综上,()1f x ≥的解集为{}|1x x ≥.⑵不等式()2-+f x x x m ≥等价为()2-+f x x x m ≥,令()()2g x f x x x =-+,则()g x m ≥解集非空只需要()max ⎡⎤⎣⎦g x m ≥.而()2223,131,123,2⎧-+--⎪=-+--<<⎨⎪-++⎩x x x g x x x x x x x ≤≥.①当1-x ≤时,()()max 13115g x g =-=---=-⎡⎤⎣⎦;②当12x -<<时,()2max3335312224g x g ⎛⎫⎛⎫==-+⋅-=⎡⎤ ⎪ ⎪⎣⎦⎝⎭⎝⎭; ③当2x ≥时,()()2max 22231g x g ==-++=⎡⎤⎣⎦. 综上,()max 54g x =⎡⎤⎣⎦,故54m ≤.。
2017高考全国1卷理科数学试题及答案解析[精校解析版]
![2017高考全国1卷理科数学试题及答案解析[精校解析版]](https://img.taocdn.com/s3/m/d9632f3d763231126edb11e7.png)
WORD 格式整理2016 年普通高等学校招生全国统一考试(全国卷Ⅰ)理科数学注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置 . 用 2B 铅笔将答题卡上试卷类型 A 后的方框涂黑 .2、选择题的作答: 每小题选出答案后, 用 2B 铅笔把答题卡上对应题目的答案标号涂黑 . 写在试题卷、草稿纸和答题卡上的非答题区域内均无效 .3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内 . 写在试题卷、草稿纸和答题卡上的非答题区域均无效 .4、选考题的作答: 先把所选题目的题号在答题卡上指定的位置用 2B 铅笔涂黑 . 答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效 .5、 考试结束后,请将本试题卷和答题卡一并上交 .第 Ⅰ 卷一 . 选择题:本大题共 12 小题 ,每小题 5 分 ,在每小题给出的四个选项中,只有一项是符合题目要求 的 .1.设集合 A x x 2 4x 3 0 , x 2x 3 0 ,则 A B( A )3, 3 ( B ) 3, 3 ( C ) 1, 3 ( D ) 3,3 2 2 2 2设i ) x 1 yi ,其中 x, y 是实数,则 x yi 2. (1 ( A ) 1( B ) 2(C )3 (D) 23.已知等差数列 a n 前 9 项的和为 27,a 108 ,则 a 100( A ) 100 ( B ) 99 (C ) 98 ( D ) 974.某公司的班车在7:00,8:00,8:30 发车,小明在7:50 至8:30 之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10 分钟的概率是( A )1( B)1(C)2( D)33234x2y21 表示双曲线,且该双曲线两焦点间的距离为4,则 n 的取值范围是5.已知方程n 3m2m2n专业技术参考资料WORD 格式整理( A )1,3 ( B) 1, 3 ( C) 0,3( D )0, 36.如图 ,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径 .若该几何体的体积是28,则它的表面积是3( A )17 ( B)18( C)20( D)287.函数 y 2x2e x在2,2 的图像大致为y y( A )1( B)12 O 2 x 2 O2xy y1 1( C)2O 2 x(D) 2 O 2 x8.若 a b 10, c 1,则( A )a cbc ( B)ab c ba c( C ) alog b cb log ac ( D) logac9.执行右面的程序框图 ,如果输入的 x 0, y 1,n1 ,则输出 x,y 的值满足( A ) y 2x ( B) y 3x ( C) y 4x ( D) y 5x10.以抛物线 C 的顶点为圆心的圆交 C 于 A、B 两点,交 C 的准线于D 、E 两点 .已知 |AB|= 4 2 ,|DE|= 2 5 ,则 C 的焦点到准线的距离为n=n+ 1(A)2 (B)4 (C)6 (D)8 11.平面过正方体ABCD顶点 A I平面ABCD=m, I 平面 ABB1A1=n,则 m、n所成角的正弦值为3 2(A) (B)2 2log b c开始输入x,y,nn-1x=x+ 2,y=nyx2+y2≥36?否是输出x,y结束专业技术参考资料WORD 格式整理12.已知函数 f (x)sin( x+ )(0,), x 为 f (x) 的零点 , x 为 y f ( x) 图像2 4 4的对称轴,且 f (x) 在5单调,则的最大值为18,36( A ) 11 ( B)9(C) 7( D)5二、填空题:本大题共3 小题 ,每小题 5 分13.设向量 a=(m,1), b=(1,2) ,且|a+b|2=|a|2+|b|2,则 m= .14. (2 xx)5的展开式中, x3的系数是.(用数字填写答案)15.设等比数列a n满足 a1+a3=10, a2+a4=5,则 a1a2 ⋯an的最大值为.16.某高科技企业生产产品A 和产品 B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5kg,乙材料 1kg,用 5 个工时;生产一件产品B 需要甲材料 0.5kg,乙材料 0.3kg ,用 3 个工时.生产一件产品 A 的利润为2100 元,生产一件产品B 的利润为 900 元.该企业现有甲材料150kg,乙材料 90kg,则在不超过600 个工时的条件下,生产产品 A、产品 B 的利润之和的最大值为元.三.解答题:解答应写出文字说明 ,证明过程或演算步骤 .17.(本小题满分为 12 分)ABC 的内角A,B,C的对边分别为a b c2cos C (a cos B+b cos A)c.,,,已知( I)求 C;( II )若 c 7 ,ABC 的面积为 3 3,求ABC 的周长.218.(本小题满分为12 分)如图,在以A,B,C,D,E, F 为顶点的五面体中,面ABEF 为正方形, AF =2FD ,AFD 90 ,且二面角 D -AF -E 与二面角 C-BE-F 都是 60 .( I)证明:平面ABEF 平面 EFDC ;D C( II )求二面角E-BC- A 的余弦值.F专业技术参考资料WORD 格式整理19.(本小题满分12 分)某公司计划购买 2 台机器 ,该种机器使用三年后即被淘汰.机器有一易损零件 ,在购进机器时,可以额外购买这种零件作为备件,每个 200 元 .在机器使用期间 ,如果备件不足再购买 ,则每个500 元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了 100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:频数40200 8 9 10 11 更换的易损零件数以这 100 台机器更换的易损零件数的频率代替 1 台机器更换的易损零件数发生的概率,记 X 表示 2台机器三年内共需更换的易损零件数, n 表示购买 2 台机器的同时购买的易损零件数.( I)求 X 的分布列;( II )若要求 P( X n) 0.5 ,确定 n 的最小值;( III )以购买易损零件所需费用的期望值为决策依据,在 n 19 与 n 20 之中选其一 ,应选用哪个?20.(本小题满分12 分)设圆x2y22x 15 0 的圆心为 A,直线 l 过点 B ( 1,0)且与 x 轴不重合, l 交圆 A 于 C,D 两点,过 B 作 AC 的平行线交A D 于点 E.( I)证明EA EB 为定值,并写出点 E 的轨迹方程;( II )设点 E 的轨迹为曲线C1,直线 l 交 C1于 M ,N 两点,过 B 且与 l 垂直的直线与圆 A 交于 P,Q两点,求四边形MPNQ 面积的取值范围 .21.(本小题满分 12 分)已知函数 f x x 2 e x2有两个零点 .a x 1(I ) 求a的取值范围;(II)设12是fx 的两个零点 ,证明:x1x2 2 .x ,x专业技术参考资料WORD 格式整理请考生在22、 23、 24 题中任选一题作答 ,如果多做 ,则按所做的第一题计分.22.(本小题满分 10 分)选修 4-1:几何证明选讲如图,△ OAB 是等腰三角形,∠ AOB=120°.以 O 为圆心, 1OA 为半径作圆 . 2(I) 证明:直线 AB 与⊙ O 相切;(II) 点 C ,D 在⊙ O 上,且 A , B , C , D 四点共圆,证明: AB ∥ CD. DCOA B23.(本小题满分 10 分)选修 4— 4:坐标系与参数方程在直角坐标系 x y 中,曲线 C 1 的参数方程为 x a cost ( t 为参数, a > 0).y 1 a sin t 在以坐标原点为极点, x 轴正半轴为极轴的极坐标系中,曲线C 2: ρ= 4 cos . ( I )说明 C 1 是哪一种曲线,并将 C 1 的方程化为极坐标方程;( II )直线 C 3 的极坐标方程为 0 ,其中 0 满足 tan 0 =2 ,若曲线 C1 与 C2 的公共点都在 C3 上,求 a .24.(本小题满分 10 分)选修 4— 5:不等式选讲已知函数 fx x 1 2x 3 .( I )画出 y f x 的图像;( II )求不等式 f x 1 的解集.专业技术参考资料WORD 格式整理2016 年高考全国1 卷理科数学参考答案 题号 1 2 3 45 6 7 8 9 10 11 12 答案D BCBAADCCBA B1. A x x 2 4x 3 0 x 1 x 3 , B x 2 x 3 0 x x 3 .2 故 A Bx 3x 3 . 2故选D .2. 由 1 i x 1 yi 可知: x xi 1 yi ,故 x 1 ,解得: x 1 . x y y 1 所以,xyi x 2y 22 .故选 B .3. 由等差数列性质可知: S 99 a 1 a992a 5 9a 5 27 ,故a 5 3 ,2 2而 a 10 8 ,因此公差 d a10 a 51 10 5∴a100 a10 90d 98 .故选C .4. 如图所示,画出时间轴:7:30 7:40 7:50 8:008:10 8:20 8:30ACDB小明到达的时间会随机的落在图中线段AB 中,而当他的到达时间落在线段AC 或 DB时,才能保证他等车的时间不超过10 分钟根据几何概型,所求概率 P 10 10 1 .40 2 故选 B.专业技术参考资料WORD 格式整理5. x2y21 表示双曲线,则m2n 3m2n 0m2n 3m2n∴m2 n 3m2由双曲线性质知:c2m2n 3m2n 4m2,其中 c 是半焦距∴焦距 2c 2 2 m 4 ,解得 m 1∴1 n 3故选 A.6.原立体图如图所示:是一个球被切掉左上角的1 后的三视图8表面积是7 的球面面积和三个扇形面积之和8S= 7 4 22 +3 1 22 =178 4故选A.7. f 2 8 e 2822.8 0 ,排除Af 2 8 e28 2.721 ,排除 Bx 0 时, fx 2x2e x f x 4x e x,当 x 0, 1时, f x 1 4 e004 4因此f x 在 0, 1 单调递减,排除 C4 故选D.8. 对 A :由于 0 c 1 ,∴函数 y x c在 R 上单调递增,因此 a b 1 a c b c, A 错误对 B :由于 1 c 1 0 ,∴函数 yx c1在 1, 上单调递减,∴ a b 1 a c 1bc 1 ba cab c , B 错误专业技术参考资料WORD 格式整理对 C :要比较 a log b c 和 blog a c ,只需比较 a ln c和 b ln c ,只需比较 ln c 和 ln c,只需 b lnbln b ln abln b aln a 和 a ln a构造函数 fx x ln xx 1 ,则 f ' x ln x 1 1 0 , f x 在1, 上单调递增,因此 f a f b 0a ln ab ln b 0 1 1a ln ab ln b又由 0 c 1 得 ln c0 ,∴ ln ca ln a对 D : 要比较 log a c 和 log b c ,只需比较ln c blog a c a log b c , C 正确b ln b lnc 和 ln cln a ln b而函数 y ln x 在 1, 上单调递增,故 a b 1 ln a 1 1ln b 0 ln b ln a又由 0 c 1 得 ln c0 ,∴ ln c ln c log a c log b c , D 错误 ln a ln b故选 C .9. 如下表:循环节运 n 1 判断是否x x ny n n n 1 x y y行次数2 2 2 36 输出 x y 运行前 0 1 / / 1 第一次 0 1 否 否 2 第二次 1 2 否 否3 2第三次36是是2输出x 3,y 6,满足y 4x 2故选 C.10.以开口向右的抛物线为例来解答,其他开口同理设抛物线为y22px p 0,设圆的方程为 x2y2r2,题目条件翻译如图:设 A x0 ,2 2 ,D p,, 5 2专业技术参考资料WORD 格式整理点 Ax 0 ,2 2 在抛物线 y 2 2 px 上,∴ 8 2 px 0 ⋯⋯ ① p p 2 , 5 在圆x 2 2 2 r 2⋯⋯ ② 点 D y r 上,∴ 52 2点 A x 0 ,22 2 2 2 2 8 r 2在圆 x y r 上,∴x0 ⋯⋯ ③ 联立①②③解得: p 4 ,焦点到准线的距离为p 4 . 故选B .D Cα B A11. 如图所示:∵ ∥平面 CB1D1 ,∴若设平面 CB1 D1 平面 ABCD m1 ,C 1D 1则 m 1∥ mA 1 B1又∵平面 ABCD ∥平面 A 1 B 1C 1 D 1 ,结合平面 B 1D 1C 平面 A 1 B 1 C 1D 1 B 1 D 1∴B 1D 1∥m 1 ,故 B 1D 1∥m 同理可得: CD 1∥n故 m 、 n 的所成角的大小与 B1D1 、 CD1 所成角的大小相等,即 CD1B1 的大小.而 B 1C B 1 D 1 CD 1 (均为面对交线) ,因此CD 1 B 1 ,即 sin CD 1B 1 3 . 3 2故选A .12. 由题意知:π + k 1 π4π +k2π+ π4 2则 2 k 1,其中 k Zf (x)在π, 5π单调, 518 π T ,1218 36 3612 2接下来用排除法若11, πsin 11xππ 3π3π 5π递减,不满,此时 f( x) , f (x) 在, 递增,在,364 4 18 44 44足 f ( x) 在π 5π单调18,36专业技术参考资料WORD 格式整理若πsin 9 xπ,满足f ( x)在π 5π单调递减9, ,此时 f( x)4 18,4 36故选 B.13.-2 14.10 15 . 64 16 . 21600013. 由已知得: a b m 1, 32 2 2232m2121222,解得m∴ a b a b m 1 2 .14.设展开式的第k 1 项为Tk1,k0,1,2,3,4,5∴ Tk 1k5k k k5k 5 kC5 2 x xC5 2 x2.k C54 255 4当 53 时,k4 ,即T5 4 x210x3 2故答案为10.15. 由于a n 是等比数列,设a na1q n 1,其中 a1是首项, q是公比.2 a18∴ a1 a310 a1 a1q 3 10,解得: 1 .a2a4 5a1q a1q5 q2 1n 4 32 ...n4故 a n,∴a1a2 ... a n1 12 2 21nn72121n 7 2 4922421当 n 3 或 4 时,n 7 49 取到最小值 6 ,此12 2 4取到最大值 26.1n 7 2 49224所以 a1 a2 ... an 的最大值为64.16.设生产 A 产品 x 件, B 产品 y 件,根据所耗费的材料要求、工时要求等其他限制条件,构造线性规则约束为专业技术参考资料WORD 格式整理目标函数 z 2100 x 900 y作出可行域为图中的四边形,包括边界,顶点为(60,100) (0,200) (0,0)(90,0)在 (60,100) 处取得最大值,z 2100 60 900 100 216000 17. 解:⑴2cosC a cosB bcosA c 由正弦定理得:2cosC sin A cosB sin BcosA sinC 2cosC sin A B sinC∵A B C , A 、B 、C 0,ππ ∴sin A B sinC 0∴ 2cos C 1 , cosC 12∵ C 0 ,π∴ C π 3⑵ 由余弦定理得: c 2 a 2 b 22ab cosC 7 a 2 b 22ab 12 a b 2 3ab 7S 1 ab sinC 3 ab 3 32 42∴ab 6∴ a b 218 7a b 5∴ △ ABC 周长为 a b c 5 7专业技术参考资料WORD 格式整理18.解: (1) ∵ ABEF 为正方形∴ A F E F ∵AFD 90∴AF DF∵ DF EF =F∴AF 面 EFDCAF 面 ABEF∴平面 ABEF 平面 EFDC⑵ 由⑴知DFE CEF 60∵AB ∥ EFAB 平面 EFDCEF 平面 EFDC∴AB ∥平面 ABCDAB 平面 ABCD∵面 ABCD 面 EFDC CD∴AB ∥ CD∴CD ∥ EF∴四边形 EFDC 为等腰梯形以 E 为原点,如图建立坐标系,设FD aE 0 ,0,0 B 0,2a ,0 C a,0 ,3 a A 2a , 2a ,2 2EB 0 ,2a ,0 ,BC a, 2a ,3 a ,AB2a ,0 ,0 2 2设面 BEC 法向量为 m x, y,z .2a y10m EB 0 ,即ax1 2ay1 3 az1x1 3 , y10,z1 1m BC 0202 m3 ,0 , 1设面 ABC 法向量为 n x2,y2,z2n BC=a 3.即 2 x22ay22 az20x2 0 , y23,z2 4n AB 02ax20专业技术参考资料WORD 格式整理n0 ,3 ,4设二面角 E BC A 的大小为 .cosm n 4 2 19m n 3 1 3 16 19∴二面角E BC A 的余弦值为2 191919 解:⑴每台机器更换的易损零件数为8, 9, 10,11记事件A i 为第一台机器3 年内换掉 i 7个零件i 1,2,3,4记事件B i 为第二台机器3 年内换掉 i 7个零件i 1,2,3,4由题知P A1P A3P A4P B1P B3P B40.2, PA2P B20.4设 2 台机器共需更换的易损零件数的随机变量为X ,则 X 的可能的取值为16, 17,18,19, 20,21, 22PX 16 P A1PB1 0.2 0.2 0.04PX 17 P A1 PB2P A2 PB1 0.2 0.40.4 0.2 0.16PX 18 P A1 PB3P A2 PB2 P A3 P B1 0.2 0.2 0.2 0.2 0.4 0.4 0.24PX 19 P A1PB4PA2 P B3PA3 P B2P A4 PB1 0.2 0.2 0.20.2 0.40.20.2 0.4 0.24PX 20 P A2PB4P A3 P B3P A4 P B20.4 0.2 0.2 0.4 0.2 0.2 0.2P x 21 P A3 P B4P A4 P B30.2 0.2 0.2 0.2 0.08 P x 22 P A4P B40.2 0.2 0.04X 16 17 18 19 20 21 22P 0.04 0.160.240.24 0.2 0.0 80.04⑵ 要令, 0.04 0.16 0.24 0.5 ,0.04 0.16 0.24 0.24 ≥ 0.5P x ≤ n ≥0.5则 n 的最小值为 19⑶ 购买零件所需费用含两部分,一部分为购买机器时购买零件的费用,另一部分为备件不足时额外购买的费用当 n 19时,费用的期望为 19 200 500 0.2 1000 0.08 1500 0.04 当 n 20 时,费用的期望为 20 200 500 0.08 1000 0.04 4080 所以应选用 n19 20. (1) 圆 A 整理为 x 2 y 2 16 , A 坐标 1,0 ,如图,1BE ∥AC ,则 ∠C ∠ EBD ,由 AC A D ,则∠ D ∠C ,∠ EBD ∠D ,E D 则 EBA E EB AE ED A D 4 4 2 2 所以 E 的轨迹为一个椭圆,方程为 x y 1 , ( y 0 );4 3 D 404043 2 C 1 A x2B 2 4 E 1 234专业技术参考资料WORD 格式整理⑵C1 : x2y2my1,41 ;设l : x3因为 PQ⊥ l ,设PQ : y m x 1 ,联立 l与椭圆 C1x my 1x2y2得 3m24 y26my 9 0 ;4 31则| MN | 1 m2 | y M y N | 1m236m236 3m2 4 12 m23m2 4 3m2圆心 A 到 PQ 距离 d | m1 1| | 2m| ,1 m2 1 m2所以 | PQ | 2| AQ |2 d 2 2 16 4m22 4 3m2 4 ,1 m 1 m2S MP NQ 1 1 12 m2 14 3m2 4 24 m2124 | MN | |PQ |3m2 1 m23m22 2 4 4 321. (Ⅰ) f '(x) ( x 1)e x2a( x 1) (x 1)(e x2a) .( i)设a 0 ,则 f(x) (x 2)e x, f (x) 只有一个零点.( ii)设a 0 ,则当x (,1)时, f'(x)0 ;当x (1,) 时, f'(x)上单调递减,在 (1, ) 上单调递增.又 f(1) e , f (2) a ,取 b 满足 b 0 且 b ln a,则a (b 2) a(b 3 2f (b) 1)2a(b2b) 0,2故 f (x) 存在两个零点.( iii)设 a 0 ,由 f '(x) 0 得 x若 ae,则ln( 2a)1 ,故当x2P 4321NA x4 2 B 2 41QM 2341;4112,8 312m 10 .所以 f ( x) 在 ( ,1)在 (1, ) 上单调递增.又专业技术参考资料WORD 格式整理当x 1f (x) 0,所以f( x)不存在两个零点.时,若 a e1 ,故当x (1,ln( 2a)) 时, f '(x)0 ;当 x(ln( 2a), ) 时,,则ln( 2a)2f '(x) 0 .因此f (x) 在 (1,ln( 2a)) 单调递减,在(ln( 2a),) 单调递增.又当x 1时,f (x) 0,所以 f ( x) 不存在两个零点.综上, a 的取值范围为(0, ) .()不妨设x1x2,由(Ⅰ)知x1 (,1) ,x2(1,) ,2 x2 (,1) , f ( x) 在(,1)上单调递减,所以x1x22 等价于 f( x1 ) f (2x2 ) ,即 f(2 x2 ) 0 .由于 f(2 x2 ) x2e2x2a( x2 1)2,而 f(x2 )( x22)e x2a( x21)20,所以f (2 x2 ) x2e2 x2( x22)e x2 .设 g( x) xe2x ( x 2)e x,则 g(x) ( x 1)(e2 x e x ) .所以当x 1 时, g(x) 0 ,而 g (1)0 ,故当x1时, g( x) 0.从而 g(x2 ) f (2 x2 ) 0 ,故x1x2 2 .22.⑴设圆的半径为 r ,作 OK AB 于 K ∵OA OB , AOB 120∴OK AB , A 30 ,OK OAsin30OAr2∴ AB 与⊙O 相切⑵方法一:假设 CD 与 AB不平行 CD 与AB 交于 F2FK FC FD ①∵ A 、B 、C 、D 四点共圆∴ FC FD FA FB FK AK FK BK ∵ AK BK专业技术参考资料WORD 格式整理∴ FC FD FK AK FK AK FK 2 AK 2②由①②可知矛盾∴AB ∥ CD方法二:因为 A, B, C, D四点共圆,不妨设圆心为T ,因为O A OB ,TA TB,O,T为 AB 的中垂线上,所以同理OC OD ,TCTD ,所以 OT 为 CD 的中垂线,所以AB∥CD .xacost( t均为参数)23.⑴ 1 a sinty∴x2y2a2①1∴ C1为以0,1 为圆心, a 为半径的圆.方程为x2y2 2 y 1 a20∵x 2y 22,y sin ∴2 2 sin1a20即为C1的极坐标方程⑵ C2:4cos两边同乘得2 4 cos 2x2y2, cos xx2y24x 即 x224②y2C3:化为普通方程为y 2 x由题意:C1和 C2 的公共方程所在直线即为 C3①—②得: 4 x2y 1 a20 ,即为 C3∴ 1 a20 ∴ a 124.⑴如图所示:x 4 ,x ≤1⑵ f x 3x 2 , 1 x 324 x,x ≥32f x 1当 x ≤ 1 , x 4 1 ,解得 x 5 或 x 3 ∴ x ≤ 1专业技术参考资料WORD 格式整理当 1 x 32 1,解得x 11 , 3x 或 x2 3∴ 1 x 1x3 或12 3当 x ≥3, 4 x 1 ,解得 x 5 或 x 32∴3≤x 3或x 52综上, x 1或1 x 3 或 x 5 3∴ f x 1 ,解集为,11 3 5,每项建议案实施完毕,实施部门应根据结果写出总结报告,实事求是的说明产生的经济,3效益或者其他积极效果,呈报总经办。
2017年全国统一高考数学试卷(理科)(新课标ⅰ)(含解析版)

2017年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题1.(5分)已知集合A={x|x<1},B={x|3x<1},则()A.A∩B={x|x<0}B.A∪B=R C.A∪B={x|x>1}D.A∩B=∅2.(5分)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()A.B.C.D.3.(5分)设有下面四个命题p1:若复数z满足∈R,则z∈R p2:若复数z满足z2∈R,则z∈R;p 3:若复数z1,z2满足z1z2∈R,则z1=p4:若复数z∈R,则∈R.其中的真命题为()A.p1,p3B.p1,p4C.p2,p3D.p2,p44.(5分)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为()A.1B.2C.4D.85.(5分)函数f(x)在(﹣∞,+∞)单调递减,且为奇函数.若f(1)=﹣1,则满足﹣1≤f(x﹣2)≤1的x的取值范围是()A.[﹣2,2]B.[﹣1,1]C.[0,4]D.[1,3]6.(5分)(1+)(1+x)6展开式中x2的系数为()A.15B.20C.30D.357.(5分)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A.10B.12C.14D.168.(5分)如图程序框图是为了求出满足3n﹣2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入()A.A>1000和n=n+1B.A>1000和n=n+2C.A≤1000和n=n+1D.A≤1000和n=n+29.(5分)已知曲线C1:y=cosx,C2:y=sin(2x+),则下面结论正确的是()A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C210.(5分)已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为()A.16B.14C.12D.1011.(5分)设x、y、z为正数,且2x=3y=5z,则()A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z 12.(5分)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是()A.440B.330C.220D.110二、填空题:本题共4小题,每小题5分,共20分.13.(5分)已知向量,的夹角为60°,||=2,||=1,则|+2|=.14.(5分)设x,y满足约束条件,则z=3x﹣2y的最小值为.15.(5分)已知双曲线C:﹣=1(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,则C的离心率为.16.(5分)如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积(单位:cm3)的最大值为.三、解答题17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sinBsinC;(2)若6cosBcosC=1,a=3,求△ABC的周长.18.(12分)如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值.19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ﹣3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ﹣3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:9.9510.129.969.9610.019.929.9810.0410.269.9110.1310.029.2210.0410.059.95经计算得==9.97,s==≈0.212,其中x i为抽取的第i个零件的尺寸,i=1,2, (16)用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除(﹣3+3)之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z服从正态分布N(μ,σ2),则P(μ﹣3σ<Z<μ+3σ)=0.9974,0.997416≈0.9592,≈0.09.20.(12分)已知椭圆C:+=1(a>b>0),四点P1(1,1),P2(0,1),P3(﹣1,),P4(1,)中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为﹣1,证明:l过定点.21.(12分)已知函数f(x)=ae2x+(a﹣2)e x﹣x.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.[选修4-4,坐标系与参数方程]22.(10分)在直角坐标系xOy中,曲线C的参数方程为,(θ为参数),直线l的参数方程为,(t为参数).(1)若a=﹣1,求C与l的交点坐标;(2)若C上的点到l距离的最大值为,求a.1.解:∵集合A={x|x<1},B={x|3x<1}={x|x<0},∴A∩B={x|x<0},故A正确,D错误;A∪B={x|x<1},故B和C都错误.2解:根据图象的对称性知,黑色部分为圆面积的一半,设圆的半径为1,则正方形的边长为2,则黑色部分的面积S=,则对应概率P==,故选:B.3.解:若复数z满足∈R,则z∈R,故命题p1为真命题;p2:复数z=i满足z2=﹣1∈R,则z∉R,故命题p2为假命题;p 3:若复数z1=i,z2=2i满足z1z2∈R,但z1≠,故命题p3为假命题;p4:若复数z∈R,则=z∈R,故命题p4为真命题.故选:B.4.解:∵S n为等差数列{a n}的前n项和,a4+a5=24,S6=48,∴,解得a1=﹣2,d=4,∴{a n}的公差为4.故选:C.5.解:∵函数f(x)为奇函数.若f(1)=﹣1,则f(﹣1)=1,又∵函数f(x)在(﹣∞,+∞)单调递减,﹣1≤f(x﹣2)≤1,∴f(1)≤f(x﹣2)≤f(﹣1),∴﹣1≤x﹣2≤1,解得:x∈[1,3],故选:D.6.解:(1+)(1+x)6展开式中:若(1+)=(1+x﹣2)提供常数项1,则(1+x)6提供含有x2的项,可得展开式中x2的系数:若(1+)提供x﹣2项,则(1+x)6提供含有x4的项,可得展开式中x2的系数:由(1+x)6通项公式可得.可知r=2时,可得展开式中x2的系数为.可知r=4时,可得展开式中x2的系数为.(1+)(1+x)6展开式中x2的系数为:15+15=30.故选:C.7.解:由三视图可画出直观图,=×2×(2+4)=6,该立体图中只有两个相同的梯形的面S梯形∴这些梯形的面积之和为6×2=12,故选:B.8.解:因为要求A>1000时输出,且框图中在“否”时输出,所以“”内不能输入“A>1000”,又要求n为偶数,且n的初始值为0,所以“”中n依次加2可保证其为偶数,所以D选项满足要求,9.解:把C1上各点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=cos2x 图象,再把得到的曲线向左平移个单位长度,得到函数y=cos2(x+)=cos (2x+)=sin(2x+)的图象,即曲线C2,故选:D.10.解:如图,l1⊥l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,要使|AB|+|DE|最小,则A与D,B,E关于x轴对称,即直线DE的斜率为1,又直线l2过点(1,0),则直线l2的方程为y=x﹣1,联立方程组,则y2﹣4y﹣4=0,∴y1+y2=4,y1y2=﹣4,∴|DE|=•|y1﹣y2|=×=8,∴|AB|+|DE|的最小值为2|DE|=16,方法二:设直线l1的倾斜角为θ,则l2的倾斜角为+θ,根据焦点弦长公式可得|AB|==|DE|===∴|AB|+|DE|=+==,∵0<sin22θ≤1,∴当θ=45°时,|AB|+|DE|的最小,最小为16,故选:A.11.解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0 则x=,y=,z=.∴3y=,2x=,5z=.∵==,>=.∴>lg>>0.∴3y<2x<5z.另解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.则x=,y=,z=.∴==>1,可得2x>3y,==>1.可得5z>2x.综上可得:5z>2x>3y.解法三:对k取特殊值,也可以比较出大小关系.故选:D.12.解:设该数列为{a n},设b n=+…+=2n+1﹣1,(n∈N+),则=a i,由题意可设数列{a n}的前N项和为S N,数列{b n}的前n项和为T n,则T n=21﹣1+22﹣1+…+2n+1﹣1=2n+1﹣n﹣2,),数列{a n}的前N项和为数列{b n}的前n项和,可知当N为时(n∈N+即为2n+1﹣n﹣2,容易得到N>100时,n≥14,A项,由=435,440=435+5,可知S440=T29+b5=230﹣29﹣2+25﹣1=230,故A 项符合题意.B项,仿上可知=325,可知S330=T25+b5=226﹣25﹣2+25﹣1=226+4,显然不为2的整数幂,故B项不符合题意.C项,仿上可知=210,可知S220=T20+b10=221﹣20﹣2+210﹣1=221+210﹣23,显然不为2的整数幂,故C项不符合题意.D项,仿上可知=105,可知S110=T14+b5=215﹣14﹣2+25﹣1=215+15,显然不为2的整数幂,故D项不符合题意.故选A.方法二:由题意可知:,,,…,根据等比数列前n项和公式,求得每项和分别为:21﹣1,22﹣1,23﹣1, (2)﹣1,每项含有的项数为:1,2,3,…,n,总共的项数为N=1+2+3+…+n=,所有项数的和为S n:21﹣1+22﹣1+23﹣1+…+2n﹣1=(21+22+23+…+2n)﹣n=﹣n=2n+1﹣2﹣n,由题意可知:2n+1为2的整数幂.只需将﹣2﹣n消去即可,则①1+2+(﹣2﹣n)=0,解得:n=1,总共有+2=3,不满足N>100,②1+2+4+(﹣2﹣n)=0,解得:n=5,总共有+3=18,不满足N>100,③1+2+4+8+(﹣2﹣n)=0,解得:n=13,总共有+4=95,不满足N>100,④1+2+4+8+16+(﹣2﹣n)=0,解得:n=29,总共有+5=440,满足N>100,∴该款软件的激活码440.二、填空题:本题共4小题,每小题5分,共20分.13.解:【解法一】向量,的夹角为60°,且||=2,||=1,∴=+4•+4=22+4×2×1×cos60°+4×12=12,∴|+2|=2.【解法二】根据题意画出图形,如图所示结合图形=+=+2;在△OAC中,由余弦定理得||==2,即|+2|=2.故答案为:2.14.解:由x,y满足约束条件作出可行域如图,由图可知,目标函数的最优解为A,联立,解得A(﹣1,1).∴z=3x﹣2y的最小值为﹣3×1﹣2×1=﹣5.故答案为:﹣5.15.解:双曲线C:﹣=1(a>0,b>0)的右顶点为A(a,0),以A为圆心,b为半径做圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,可得A到渐近线bx+ay=0的距离为:bcos30°=,可得:=,即,可得离心率为:e=.16.解法一:由题意,连接OD,交BC于点G,由题意得OD⊥BC,OG=BC,即OG的长度与BC的长度成正比,设OG=x,则BC=2x,DG=5﹣x,三棱锥的高h===,=3,则V===,令f(x)=25x4﹣10x5,x∈(0,),f′(x)=100x3﹣50x4,令f′(x)≥0,即x4﹣2x3≤0,解得x≤2,则f(x)≤f(2)=80,∴V≤=4cm3,∴体积最大值为4cm3.故答案为:4cm3.解法二:如图,设正三角形的边长为x,则OG=,∴FG=SG=5﹣,SO=h===,∴三棱锥的体积V===,令b(x)=5x4﹣,则,令b'(x)=0,则4x3﹣=0,解得x=4,∴(cm3).故答案为:4cm3.17.解:(1)由三角形的面积公式可得S△ABC=acsinB=,∴3csinBsinA=2a,由正弦定理可得3sinCsinBsinA=2sinA,∵sinA≠0 ∴sinBsinC=;(2)∵6cosBcosC=1,∴cosBcosC=,∴cosBcosC﹣sinBsinC=﹣=﹣,∴cos(B+C)=﹣,∴cosA=,∵0<A<π,∴A=,∵===2R==2,∴sinBsinC=•===,∴bc=8,∵a2=b2+c2﹣2bccosA,∴b2+c2﹣bc=9,∴(b+c)2=9+3cb=9+24=33,∴b+c=∴周长a+b+c=3+.18.(1)证明:∵∠BAP=∠CDP=90°,∴PA⊥AB,PD⊥CD,∵AB∥CD,∴AB⊥PD,又∵PA∩PD=P,且PA⊂平面PAD,PD⊂平面PAD,∴AB⊥平面PAD,又AB⊂平面PAB,∴平面PAB⊥平面PAD;(2)解:∵AB∥CD,AB=CD,∴四边形ABCD为平行四边形,由(1)知AB⊥平面PAD,∴AB⊥AD,则四边形ABCD为矩形,在△APD中,由PA=PD,∠APD=90°,可得△PAD为等腰直角三角形,设PA=AB=2a,则AD=.取AD中点O,BC中点E,连接PO、OE,以O为坐标原点,分别以OA、OE、OP所在直线为x、y、z轴建立空间直角坐标系,则:D(),B(),P(0,0,),C().,,.设平面PBC的一个法向量为,由,得,取y=1,得.∵AB⊥平面PAD,AD⊂平面PAD,∴AB⊥PD,又PD⊥PA,PA∩AB=A,∴PD⊥平面PAB,则为平面PAB的一个法向量,.∴cos<>==.由图可知,二面角A﹣PB﹣C为钝角,∴二面角A﹣PB﹣C的余弦值为.19.解:(1)由题可知尺寸落在(μ﹣3σ,μ+3σ)之内的概率为0.9974,则落在(μ﹣3σ,μ+3σ)之外的概率为1﹣0.9974=0.0026,因为P(X=0)=×(1﹣0.9974)0×0.997416≈0.9592,所以P(X≥1)=1﹣P(X=0)=0.0408,又因为X~B(16,0.0026),所以E(X)=16×0.0026=0.0416;(2)(ⅰ)如果生产状态正常,一个零件尺寸在(﹣3+3)之外的概率只有0.0026,一天内抽取的16个零件中,出现尺寸在(﹣3+3)之外的零件的概率只有0.0408,发生的概率很小.因此一旦发生这种状况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的.(ⅱ)由=9.97,s≈0.212,得μ的估计值为=9.97,σ的估计值为=0.212,由样本数据可以看出一个零件的尺寸在(﹣3+3)之外,因此需对当天的生产过程进行检查.剔除(﹣3+3)之外的数据9.22,剩下的数据的平均数为(16×9.97﹣9.22)=10.02,因此μ的估计值为10.02.2=16×0.2122+16×9.972≈1591.134,剔除(﹣3+3)之外的数据9.22,剩下的数据的样本方差为(1591.134﹣9.222﹣15×10.022)≈0.008,因此σ的估计值为≈0.09.20解:(1)根据椭圆的对称性,P3(﹣1,),P4(1,)两点必在椭圆上,又P4的横坐标为1,∴椭圆必不过P1(1,1),∴P2(0,1),P3(﹣1,),P4(1,)三点在椭圆C上.把P2(0,1),P3(﹣1,)代入椭圆C,得:,解得a2=4,b2=1,∴椭圆C的方程为=1.证明:(2)①当斜率不存在时,设l:x=m,A(m,y A),B(m,﹣y A),∵直线P2A与直线P2B的斜率的和为﹣1,∴===﹣1,解得m=2,此时l过椭圆右顶点,不存在两个交点,故不满足.②当斜率存在时,设l:y=kx+t,(t≠1),A(x1,y1),B(x2,y2),联立,整理,得(1+4k2)x2+8ktx+4t2﹣4=0,,x1x2=,则=====﹣1,又t≠1,∴t=﹣2k﹣1,此时△=﹣64k,存在k,使得△>0成立,∴直线l的方程为y=kx﹣2k﹣1,当x=2时,y=﹣1,∴l过定点(2,﹣1).21.解:(1)由f(x)=ae2x+(a﹣2)e x﹣x,求导f′(x)=2ae2x+(a﹣2)e x﹣1,当a=0时,f′(x)=﹣2e x﹣1<0,∴当x∈R,f(x)单调递减,当a>0时,f′(x)=(2e x+1)(ae x﹣1)=2a(e x+)(e x﹣),令f′(x)=0,解得:x=ln,当f′(x)>0,解得:x>ln,当f′(x)<0,解得:x<ln,∴x∈(﹣∞,ln)时,f(x)单调递减,x∈(ln,+∞)单调递增;当a<0时,f′(x)=2a(e x+)(e x﹣)<0,恒成立,∴当x∈R,f(x)单调递减,综上可知:当a≤0时,f(x)在R单调减函数,当a>0时,f(x)在(﹣∞,ln)是减函数,在(ln,+∞)是增函数;(2)①若a≤0时,由(1)可知:f(x)最多有一个零点,当a>0时,f(x)=ae2x+(a﹣2)e x﹣x,当x→﹣∞时,e2x→0,e x→0,∴当x→﹣∞时,f(x)→+∞,当x→∞,e2x→+∞,且远远大于e x和x,∴当x→∞,f(x)→+∞,∴函数有两个零点,f(x)的最小值小于0即可,由f(x)在(﹣∞,ln)是减函数,在(ln,+∞)是增函数,∴f(x)min=f(ln)=a×()+(a﹣2)×﹣ln<0,∴1﹣﹣ln<0,即ln+﹣1>0,设t=,则g(t)=lnt+t﹣1,(t>0),求导g′(t)=+1,由g(1)=0,∴t=>1,解得:0<a<1,∴a的取值范围(0,1).方法二:(1)由f(x)=ae2x+(a﹣2)e x﹣x,求导f′(x)=2ae2x+(a﹣2)e x﹣1,当a=0时,f′(x)=﹣2e x﹣1<0,∴当x∈R,f(x)单调递减,当a>0时,f′(x)=(2e x+1)(ae x﹣1)=2a(e x+)(e x﹣),令f′(x)=0,解得:x=﹣lna,当f′(x)>0,解得:x>﹣lna,当f′(x)<0,解得:x<﹣lna,∴x∈(﹣∞,﹣lna)时,f(x)单调递减,x∈(﹣lna,+∞)单调递增;当a<0时,f′(x)=2a(e x+)(e x﹣)<0,恒成立,∴当x∈R,f(x)单调递减,综上可知:当a≤0时,f(x)在R单调减函数,当a>0时,f(x)在(﹣∞,﹣lna)是减函数,在(﹣lna,+∞)是增函数;(2)①若a≤0时,由(1)可知:f(x)最多有一个零点,②当a>0时,由(1)可知:当x=﹣lna时,f(x)取得最小值,f(x)min=f(﹣lna)=1﹣﹣ln,当a=1,时,f(﹣lna)=0,故f(x)只有一个零点,当a∈(1,+∞)时,由1﹣﹣ln>0,即f(﹣lna)>0,故f(x)没有零点,当a∈(0,1)时,1﹣﹣ln<0,f(﹣lna)<0,由f(﹣2)=ae﹣4+(a﹣2)e﹣2+2>﹣2e﹣2+2>0,故f(x)在(﹣∞,﹣lna)有一个零点,假设存在正整数n0,满足n0>ln(﹣1),则f(n0)=(a+a﹣2)﹣n0>﹣n0>﹣n0>0,由ln(﹣1)>﹣lna,因此在(﹣lna,+∞)有一个零点.∴a的取值范围(0,1).22.解:(1)曲线C的参数方程为(θ为参数),化为标准方程是:+y2=1;a=﹣1时,直线l的参数方程化为一般方程是:x+4y﹣3=0;联立方程,解得或,所以椭圆C和直线l的交点为(3,0)和(﹣,).(2)l的参数方程(t为参数)化为一般方程是:x+4y﹣a﹣4=0,椭圆C上的任一点P可以表示成P(3cosθ,sinθ),θ∈[0,2π),所以点P到直线l的距离d为:d==,φ满足tanφ=,且的d的最大值为.①当﹣a﹣4≤0时,即a≥﹣4时,|5sin(θ+4)﹣a﹣4|≤|﹣5﹣a﹣4|=5+a+4=17解得a=8≥﹣4,符合题意.②当﹣a﹣4>0时,即a<﹣4时|5sin(θ+4)﹣a﹣4|≤|5﹣a﹣4|=5﹣a﹣4=1﹣a=17解得a=﹣16<﹣4,符合题意.。
高三数学仿真试卷 理(含解析)(2021年整理)

云南省昆明市2017届高三数学仿真试卷理(含解析)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(云南省昆明市2017届高三数学仿真试卷理(含解析))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为云南省昆明市2017届高三数学仿真试卷理(含解析)的全部内容。
云南省昆明市2017届高三数学仿真试卷理一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|x>1},B={y|y=x2,x∈R},则( )A.A=B B.B⊊A C.A⊊B D.A∩B=∅2.cos70°sin50°﹣cos200°sin40°的值为( )A.B. C.D.3.命题p:∀x>2,2x﹣3>0的否定是()A.∃x0>2,B.∀x≤2,2x﹣3>0C.∀x>2,2x﹣3≤0 D.∃x0>2,4.设随机变量ξ服从正态分布N(0,1),P(ξ>1)=p,则P(﹣1<ξ<0)等于( )A. p B.1﹣p C.1﹣2p D.﹣p5.若双曲线M:(a>0,b>0)的左、右焦点分别是F1,F2,以F1F2为直径的圆与双曲线M相交于点P,且|PF1|=16,|PF2|=12,则双曲线M的离心率为()A.B.C.D.56.设m、n是两条不同的直线,α、β是两个不同的平面,则m⊥β的一个充分条件是()A.α⊥β且m⊂αB.m∥n且n⊥βC.α⊥β且m∥αD.m⊥n且n∥β7.函数(ω>0,)的部分图象如图所示,则φ的值为()A.B.C.D.8.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的表面积为()A.B.C.D.9.如果执行如图所示的程序框图,则输出的结果是()A.﹣4 B.﹣3 C.2 D.010.(x2+xy+2y)5的展开式中x6y2的系数为()A.20 B.40 C.60 D.8011.在△ABC所在平面上有一点P,满足,,则x+y=()A.B.C. D.12.设函数f(x)=x(lnx﹣ax)(a∈R)在区间(0,2)上有两个极值点,则a的取值范围是()A.B.C.D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.实数x,y满足则的最小值为.14.已知函数则f(x)≤2的解集为.15.已知抛物线C:y2=2px(p>0)的焦点为F,过点F的直线l与抛物线C及其准线分别交于P,Q两点,,则直线l的斜率为.16.已知△ABC中,AB=2,AC+BC=6,D为AB的中点,当CD取最小值时,△ABC面积为.三、解答题(本大题共5小题,共70分。
2017年全国统一高考数学试卷(理科)(新课标ⅲ)(含解析版)

2017 年全国统一高考数学试卷(理科)(新课标Ⅲ)一、选择题:本题共12 小题,每小题5 分,共60 分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={(x,y)|x2+y2=1},B={(x,y)|y=x},则A∩B 中元素的个数为()A.3 B.2 C.1 D.02.(5分)设复数z 满足(1+i)z=2i,则|z|=()A.B.C.D.23.(5 分)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014 年1 月至2016 年12 月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是()A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8 月D.各年1 月至6 月的月接待游客量相对于7 月至12 月,波动性更小,变化比较平稳4.(5 分)(x+y)(2x﹣y)5的展开式中的x3y3系数为()A.﹣80 B.﹣40 C.40 D.805.(5 分)已知双曲线C:﹣=1 (a>0,b>0)的一条渐近线方程为y= x,且与椭圆+ =1 有公共焦点,则C 的方程为()A.﹣=1 B.﹣=1 C.﹣=1 D.﹣=1 6.(5分)设函数f(x)=cos(x+),则下列结论错误的是()A.f(x)的一个周期为﹣2πB.y=f(x)的图象关于直线x=对称C.f(x+π)的一个零点为x=D.f(x)在(,π)单调递减7.(5分)执行如图的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为()A.5 B.4 C.3 D.28.(5 分)已知圆柱的高为1,它的两个底面的圆周在直径为2 的同一个球的球面上,则该圆柱的体积为()A.πB.C.D.9.(5 分)等差数列{a n}的首项为1,公差不为0.若a2,a3,a6 成等比数列,则{a n}前6 项的和为()A.﹣24 B.﹣3 C.3 D.810.(5 分)已知椭圆C:=1(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2 为直径的圆与直线bx﹣ay+2ab=0 相切,则C 的离心率为()A.B.C.D.11.(5 分)已知函数f(x)=x2﹣2x+a(e x﹣1+e﹣x+1)有唯一零点,则a=()A.﹣B.C.D.112.(5 分)在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆心且与BD 相切的圆上.若=λ+μ,则λ+μ 的最大值为()A.3 B.2C.D.2二、填空题:本题共4 小题,每小题5 分,共20 分。
2017年高考真题——理科数学(全国II卷)+Word版含解析
绝密★启用前2017年普通高等学校招生全国统一考试一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.31ii+=+( ) A .12i + B .12i - C .2i + D .2i - 2.设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1AB =,则B =( )A .{}1,3-B .{}1,0C .{}1,3D .{}1,5 3.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )A .1盏B .3盏C .5盏D .9盏4.如图,网格纸上小正方形的边长为1,学 科粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分所得,则该几何体的体积为( )A . 90πB .63πC .42πD .36π5.设,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是( )A .15-B .9-C .D .6.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )A .12种B .18种C .24种D .36种 7.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,学 科给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则( )A .乙可以知道四人的成绩B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩D .乙、丁可以知道自己的成绩 8.执行右面的程序框图,如果输入的1a =-,则输出的S =( )A .2B .3C .4D .59.若双曲线C:22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的离心率为( )A .2B .3C .2D .3310.已知直三棱柱111C C AB -A B 中,C 120∠AB =,2AB =,1C CC 1B ==,则异面直线1AB 与1C B 所成角的余弦值为( )A 3B 15C 10D 311.若2x =-是函数21`()(1)x f x x ax e-=+-的极值点,则()f x 的极小值为( )A.1-B.32e -- C.35e - D.1 12.已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+的最小值是( )A.2-B.32-C. 43- D.1- 二、填空题:本题共4小题,每小题5分,共20分。
云南省昆明市2024年数学(高考)部编版第二次模拟(备考卷)模拟试卷
云南省昆明市2024年数学(高考)部编版第二次模拟(备考卷)模拟试卷一、单项选择题(本题包含8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的)(共8题)第(1)题给出下列关于互不相同的直线m,l,n和平面α,β的四个命题:①若,,点,则l与m不共面;②若m,l是异面直线,,,且,,则;③若,,,则;④若,,,,,则.其中为假命题的是()A.①B.②C.③D.④第(2)题已知集合,则()A.B.C.D.第(3)题若复数满足,则的虚部为()A.B.3C.D.4第(4)题如图,四边形为正方形,平面,,,记三棱锥,,的体积分别为,,,,则().A.B.C.D.第(5)题设不等式表示的平面区域为D,在区域D内随机取一个点,则此点到坐标原点的距离大于2的概率是A.B.C.D.第(6)题的展开式中的系数为40,则实数a的值为()A.4B.2C.1D.第(7)题已知集合,集合,则集合的真子集个数为()A.B.C.D.第(8)题对于实数,,,下列结论中正确的是()A.若,则B.若,则C.若,则D.若,,则二、多项选择题(本题包含3小题,每小题6分,共18分。
在每小题给出的四个选项中,至少有两个选项正确。
全部选对的得6分,选对但不全的得3分,有选错或不答的得0分) (共3题)第(1)题在平面直角坐标系xOy中,已知定点,,动点P满足,记动点P的轨迹为曲线C,直线l:,则下列结论中正确的是()A.曲线C的方程为B.直线l与曲线C相交C.若直线l被曲线C截得的弦长为,则D.的最大值为3第(2)题已知圆,恒过点的直线与圆交于两点.下列说法正确的是()A.的最小值为B.C .的最大值为D.过点作直线的垂线,垂足为点,则点的运动轨迹在某个定圆上第(3)题在平面直角坐标系中,,B为坐标原点,点P在圆上,若对于,存在数列,,使得,则下列说法正确的是()A.为公差为2的等差数列B.为公比为的等比数列C.D.前n项和三、填空(本题包含3个小题,每小题5分,共15分。
2017届高考押题金卷(全国卷Ⅰ)数学(理)试卷(含答案)
绝密★启封前2017高考押题金卷(全国卷Ⅰ)理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分.考试时间为120分钟 注意事项: 1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上。
考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。
第Ⅱ卷必须用0.5毫米黑色签字笔书写作答.若在试题卷上作答,答案无效。
3.考试结束,监考员将试题卷、答题卡一并收回。
第Ⅰ卷一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
) 1.若集合2{|0},{|(0,1)},xM x x x N y y a a a R =-<==>≠表示实数集,则下列选项错误的是 A .M N M =I B .M N R =U C .R M C N ϕ=I D .R C M N R =U 2.复数12,z z 在复平面内对应的点关于直线y x =对称,且132z i =+,则12z z =() A .1251313i + B .1251313i -+ C .1251313i -- D .1251313i - 3.将三颗骰子各掷一次,记事件A=“三个点数都不同”,B=“至少出现一个6点”,则条件概率P (A|B )是( )A. B. C. D.4.曲线y =sin x ,y =cos x 与直线x =0,x =π2所围成的平面区域的面积为( )A .⎠⎜⎛0π2 (sin x -cos x )d x B .2⎠⎜⎛0π4 (sin x -cos x )d xC .⎠⎜⎛0π2 (cos x -sin x)d x D .2⎠⎜⎛0π4 (cos x -sin x)d x5.按右图所示的程序框图,若输入110011a =,则输出的b =( )A. 45B. 47C. 49D. 516.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高二丈,问:积几何?”其意思为:“今有底面为矩形的屋脊状的锲体,下底面宽3丈,长4丈,上棱长2丈,高2丈,问:它的体积是多少?”已知l 丈为10尺,该锲体的三视图如图所示,则该锲体的体积为 A .10000立方尺 B .1 1000立方尺 C .12000立方尺D .13000立方尺7.设n S 是等差数列{a n }的前n 项和,若3184=S S ,则168S S 等于A.91B.103 C.31 D.81 8.已知O 是ABC △所在平面内一点,D 为BC 边中点,且02=++OC OB OA ,那么(A ) AO OD =u u u r u u u r (B ) 2AO OD =u u u r u u u r (C ) 3AO OD =u u u r u u u r D 2AO OD =u u u r u u u r把a 的右数第i 位数字赋给t是 否输入6?i >1i i =+输出b0b =1i =12i b b t -=+⋅9.已知点P (x,y)满足41x y y xx +≤⎧⎪≥⎨⎪≥⎩,过点P 的直线与圆2214x y +=相交于A 、B 两点,则||AB 的最小值为( )A .2B .26C .25D .410.已知12,F F 是双曲线2222:1(0,0)x y C a b a b-=>>的两个焦点,P 是C 上一点,若212||||8PF PF a ⋅=,且12PF F ∆的最小内角为30o ,则双曲线C 的离心率是A.2B.2C.3D. 311数列{a n }的通项公式为an=11(1)n n++,关于{a n }有如下命题:P1:{a n }为先减后增数列;P2:{a n }为递减数列; P3:*,n n N a e ∀∈>P4:*,n n N a e ∃∈<其中正确的是A. P1,P3B. P1,P4C. P2,P3D. P2,P412.底面是正多边形,顶点在底面的射影是底面中心的棱锥叫正棱锥. 已知同底的两个正三棱锥内接于同一个球. 已知两个正三棱锥的底面边长为a ,球的半径为R . 设两个正三棱锥的侧面与底面所成的角分别为α、β,则tan()αβ+的值是()AB.C.D.第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分,第13题—21题为必考题,每个试题考生都必须作答,第22题—23题为选考题,考生根据要求作答.二、填空题(本大题包括4小题,每小题5分,共20分,把正确答案填在答题卡中的横线上) 13. (4y x的展开式中33x y 的系数为。
2017年全国各地高考数学真题试卷(含答案和解析)
!!!!! !"!已知双曲线 %+#$$ 02-$$ '!+&#的 右 顶 点 为 "以 " 为
圆心2为半径作圆"圆 " 与双曲线% 的 一 条 渐 近 线 交 于 3 1 两点!若.3"1'	则 % 的离心率为!!!!! !&!如图圆形 纸 片 的 圆 心 为 4半 径 为"4:该 纸 片上的等边三角形 "$% 的中心为4!&0 . 为圆4 上 的 点/&$%/0%"/."$ 分 别是以$%%""$ 为底 边 的 等 腰 三 角 形!沿 虚线剪开后分别以 $%%""$ 为 折 痕 折 起
复
数
(
满
足
! (
(#则
(('
'$&若复数( 满足($(#则(('
'(&若 复 数(!#($ 满 足(!($(#则(!'($'
'- &若 复 数((#则((! 其 中 的 真 命 题 为 $! ! %
)%'!#'(! !
*%'! #'-
+%'$#'(! !
,%'$ #'-
-!记 )* 为 等 差 数 列 !+*"的 前 * 项 和 !若 +- /+" '$-#)& '-.#则
出 的 四 个 选 项 中 只 有 一 项 是 符 合 题 目 要 求 的
!!已知集合 "'!#"##!"#$'!#"(# #!"#则$!!%
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
云南省昆明市2017届高考模拟试卷(理科数学)一、选择题(本题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设P、Q是两个集合,定义集合P﹣Q={x|x∈P且x∉Q}为P、Q的“差集”,已知P={x|1﹣<0},Q={x||x﹣2|<1},那么P﹣Q等于()A.{x|0<x<1} B.{x|0<x≤1} C.{x|1≤x<2} D.{x|2≤x<3}2.已知(a﹣i)2=﹣2i,其中i是虚数单位,a是实数,则|ai|=()A.2 B.1 C.﹣1 D.﹣23.同时具有性质:①图象的相邻两条对称轴间的距离是;②在[﹣,]上是增函数的一个函数为()A.y=sin(+)B.y=cos(2x+)C.y=sin(2x﹣)D.y=cos(﹣)4.若向量=(1,﹣2),=(2,1),=(﹣4,﹣2),则下列说法中正确的个数是()①⊥;②向量与向量的夹角为90°;③对同一平面内的任意向量,都存在一对实数k1,k 2,使得=k1+k2.A.3 B.2 C.1 D.05.已知函数f(x)=f(log23)的值为()A.B.C.D.6.直线l:y=k(x+)与曲线C:x2﹣y2=1(x<0)相交于P,Q两点,则直线l的倾斜角的取值范围是()A.(,)∪(,)B.(,)C.(0,)∪(,π)D.[0,π)7.执行如图所示的程序框图,若输入的a,b分别为36,28,则输出的a=()A.4 B.8 C.12 D.208.某几何体的三视图如图所示,且其侧视图是一个等边三角形,则这个几何体的表面积为()A.B.C. +4+D.π+8+9.图所示的阴影部分由坐标轴、直线x=1及曲线y=e x﹣lne围成,现向矩形区域OABC内随机投掷一点,则该点落在非阴影区域的概率是()A.B.C.1﹣D.1﹣10.设△ABC的三个内角A,B,C所对的边分别为a,b,c,若(a+b+c)(b+c﹣a)=3bc,且sinA=2sinBcosC,那么△ABC的外接圆面积与内切圆面积的比值为()A.4 B.2 C.D.111.已知A是抛物线M:y2=2px(p>0)与圆C在第一象限的公共点,其中圆心C(0,4),点A到M的焦点F的距离与C的半径相等,M上一动点到其准线与到点C的距离之和的最小值等于C的直径,O为坐标原点,则直线OA被圆C所截得的弦长为()A.2 B.2C.D.12.已知函数f(x)=x2﹣tcosx.若其导函数f′(x)在R上单调递增,则实数t的取值范围为()A.[﹣1,﹣] B.[﹣,] C.[﹣1,1] D.[﹣1,]二、填空题(本大题共4小题,每小题5分,共20分)13.若(1﹣2x)2017=a0+a1x+…a2017x2017(x∈R),则++…+的值为.14.已知等差数列{an }满足:a1+a5=4,则数列{2}的前5项之积为(用数字作答)15.设实数x,y满足约束条件若目标函数z=ax+by(a>0,b>0)的最大值为2,记m为+的最小值,则y=sin(mx+)的最小正周期为.16.已知三棱锥O﹣ABC中,A,B,C三点均在球心O的球面上,且AB=BC=1,∠ABC=120°,若球O的体积为,则三棱锥O﹣ABC的体积是.三、解答题(共70分)17.(12分)已知函数f(x)=,函数y=f(x)﹣在(0,+∞)上的零点按从小到大的顺序构成数列{an}(n∈N*)(Ⅰ)求数列{an}的通项公式;(Ⅱ)设bn =,求数列{bn}的前n项和Sn.18.(12分)拖延症总是表现在各种小事上,但日积月累,特别影响个人发展,某校的一个社会实践调查小组,在对该校学生进行“是否有明显拖延症”的调查中,随机发放了110份问卷.对收回的100份有效问卷进行统计,得到如下2×2列联表:有明显拖延症无明显拖延症合计男352560女301040总计6535100(Ⅰ)按女生是否有明显拖延症进行分层,已经从40份女生问卷中抽取了8份问卷,现从这8份问卷中再随机抽取3份,并记其中无明显拖延症的问卷的份数为X,试求随机变量X的分布列和数学期望;(2)若在犯错误的概率不超过P的前提下认为无明显拖延症与性别有关,那么根据临界值表,最精确的P的值应为多少?请说明理由附:独立性检验统计量K2=,n=a+b+c+dP(K2≥k)0.250.150.100.050.025k1.3232.072 2.7063.841 5.02419.(12分)如图,在多面体ABCDE中,DB⊥平面ABC,AE⊥平面ABC,且△ABC是的边长为4的等边三角形,AE=2,CD与平面ABDE 所成角的余弦值为,F是线段CD上一点.(Ⅰ)若F是线段CD的中点,证明:平面CDE⊥面DBC;(Ⅱ)求二面角B﹣EC﹣D的平面角的正弦值.20.(12分)已知椭圆C: +=1(a>b>0)的离心率为,P是椭圆C上任意一点,且点P到椭圆C的一个焦点的最大距离等于+1(Ⅰ)求椭圆C的方程;(Ⅱ)若过点M(2,0)的直线与椭圆C相交于不同两点A,B,设N为椭圆上一点,是否存在整数t,使得t•=+(其中O为坐标原点)?若存在,试求整数t的所有取值;若不存在,请说明理由.21.(12分)设函数f(x)=e x﹣ax2﹣ex+b,其中e为自然对数的底数.(Ⅰ)若曲线f(x)在y轴上的截距为﹣1,且在点x=1处的切线垂直于直线y=x,求实数a,b的值;(Ⅱ)记f(x)的导函数为g(x),g(x)在区间[0,1]上的最小值为h(a),求h(a)的最大值.[选修4-4:坐标系与参数方程]22.(10分)在平面直角坐标系xOy中,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.已知曲线C的极坐标方程ρ=2sin(θ+).倾斜角为,且经过定点P(0,1)的直线l与曲线C交于M,N两点(Ⅰ)写出直线l的参数方程的标准形式,并求曲线C的直角坐标方程;(Ⅱ)求+的值.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣a|+|x﹣2|,x∈R(Ⅰ)若关于x的不等式f(x)≤a在R上有解,求实数a的最小值M;(Ⅱ)在(Ⅰ)的条件下,已知正实数m,n,p满足m+2n+3p=M,求++的最小值.云南省昆明市2017届高考模拟试卷(理科数学)参考答案与试题解析一、选择题(本题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设P、Q是两个集合,定义集合P﹣Q={x|x∈P且x∉Q}为P、Q的“差集”,已知P={x|1﹣<0},Q={x||x﹣2|<1},那么P﹣Q等于()A.{x|0<x<1} B.{x|0<x≤1} C.{x|1≤x<2} D.{x|2≤x<3}【考点】元素与集合关系的判断;绝对值不等式的解法.【分析】首先分别对P,Q两个集合进行化简,然后按照P﹣Q={x|x∈P,且x∉Q},求出P﹣Q 即可.【解答】解:∵化简得:P={x|0<x<2}而Q={x||x﹣2|<1}化简得:Q={x|1<x<3}∵定义集合P﹣Q={x|x∈P,且x∉Q},∴P﹣Q={x|0<x≤1}故选B【点评】本题考查元素与集合关系的判断,以及绝对值不等式的解法,考查对集合知识的熟练掌握,属于基础题.2.已知(a﹣i)2=﹣2i,其中i是虚数单位,a是实数,则|ai|=()A.2 B.1 C.﹣1 D.﹣2【考点】复数求模.【分析】利用复数的运算法则、复数相等、模的计算公式即可得出.【解答】解:(a﹣i)2=﹣2i,其中i是虚数单位,a是实数,∴a2﹣1﹣2ai=﹣2i,∴a2﹣1=0,﹣2a=﹣2,∴a=1.则|ai|=|i|=1.故选:B.【点评】本题考查了复数的运算法则、复数相等、模的计算公式,考查了推理能力与计算能力,属于基础题.3.同时具有性质:①图象的相邻两条对称轴间的距离是;②在[﹣,]上是增函数的一个函数为()A.y=sin(+)B.y=cos(2x+)C.y=sin(2x﹣)D.y=cos(﹣)【考点】三角函数的周期性及其求法.【分析】由题意求出函数周期,可知满足条件的函数是选项B或C,再由在[﹣,]上是增函数进一步判断只有C符合.【解答】解:由图象的相邻两条对称轴间的距离是,可知,T=π,选项B、C满足.由x∈[﹣,],得2x∈[0,π],函数y=cos(2x+)为减函数,不合题意.由x∈[﹣,],得2x﹣∈[,],函数y=sin(2x﹣)为增函数,符合合题意.故选:C.【点评】本题考查三角函数的周期性及其求法,考查y=Asin(ωx+φ)型函数的图象和性质,是基础题.4.若向量=(1,﹣2),=(2,1),=(﹣4,﹣2),则下列说法中正确的个数是()①⊥;②向量与向量的夹角为90°;③对同一平面内的任意向量,都存在一对实数k1,k 2,使得=k1+k2.A.3 B.2 C.1 D.0【考点】向量在几何中的应用.【分析】运用向量垂直的条件:数量积为0,计算即可判断①②;由向量共线定理,可得,共线,由平面向量基本定理,即可判断③.【解答】解:向量=(1,﹣2),=(2,1),=(﹣4,﹣2),由•=1×2+(﹣2)×1=0,可得⊥,故①正确;由•=1×(﹣4)+(﹣2)×(﹣2)=0,可得⊥,故②正确;由=﹣2可得,共线,由平面向量基本定理,可得对同一平面内的任意向量,不都存在一对实数k1,k2,使得=k1+k2.故③错误.综上可得,正确的个数为2.故选:B.【点评】本题考查向量的数量积的性质,主要是向量垂直的条件:数量积为0,考查平面向量基本定理的运用以及向量共线的坐标表示,考查运算能力,属于基础题.5.已知函数f(x)=f(log23)的值为()A.B.C.D.【考点】分段函数的应用.【分析】根据log23的范围循环代入分段函数的下段,当满足自变量的值大于等于3时代入f (x)的解析式求值.【解答】解:由f(x)=,∵log23<3,∴f(log23)=f(log23+1)=f(log26),由log26<3,∴f(log26)=f(log26+1)=f(log212),∵log212>3,∴f(log23)=f(log212)==.故选:C.【点评】本题考查了对数的运算性质,考查了分段函数的函数值的求法,关键是注意适用范围,是基础题.6.直线l:y=k(x+)与曲线C:x2﹣y2=1(x<0)相交于P,Q两点,则直线l的倾斜角的取值范围是()A.(,)∪(,)B.(,)C.(0,)∪(,π)D.[0,π)【考点】直线与双曲线的位置关系.【分析】首先根据题意直线l:y=k(x+)与曲线x2﹣y2=1(x<0)相交于A、B两点,进一步判断直线的斜率和渐近线的斜率的关系求出结果.【解答】解:曲线x2﹣y2=1(x<0)的渐近线方程为:y=±x直线l:y=k(x+)与相交于A、B两点所以:直线的斜率k>1或k<﹣1α∈(,)由于直线的斜率存在:倾斜角a≠,故直线l的倾斜角的取值范围是(,)∪(,)故选:A.【点评】本题考查的知识要点:直线与双曲线的关系,直线的斜率和渐近线的斜率的关系.7.执行如图所示的程序框图,若输入的a,b分别为36,28,则输出的a=()A.4 B.8 C.12 D.20【考点】程序框图.【分析】模拟执行程序框图,依次写出每次循环得到的a,b的值,当a=4,b=4时,不满足条件a≠b,退出循环,输出a的值.【解答】解:第一次循环,a=36,b=28,a>b,a=8;第二次循环,a=8,b=28,a<b,b=20;第三次循环,a=8,b=20,a<b,b=12;第四次循环,a=8,b=12,a<b,b=4,第五次循环,a=8,b=4,a>b,a=4,第六次循环,a=4,b=4,a=b,不满足条件a≠b,退出循环,输出a=4,故选:A.【点评】本题主要考查了循环结构的程序框图,正确依次写出每次循环得到的a,b的值是解题的关键,属于基本知识的考查.8.某几何体的三视图如图所示,且其侧视图是一个等边三角形,则这个几何体的表面积为()A.B.C. +4+D.π+8+【考点】棱柱、棱锥、棱台的体积;由三视图求面积、体积.【分析】由已知的三视图可得:该几何体是一个半圆锥与一个四棱锥组合而成的几何体,进而可得答案.【解答】解:由已知的三视图可得:该几何体是一个半圆锥与一个四棱锥组合而成的几何体,其表面积由半圆锥的曲面,底面及四棱锥的底面,前,后,右侧面组成,∵其侧视图是一个等边三角形,∴半圆锥的底面半径为1,高为,故圆锥的母线长为:2,故半圆锥的底面面积为:,曲侧面面积为:π,四棱锥的底面面积为:4,前后侧面均为腰长为2的等腰直角三角形,面积均为:2,右侧面是腰为2,底为2的等腰三角形,面积为:,故组合体的表面积为:π+8+,故选:D【点评】本题考查的知识点是棱锥的体积和表面积,圆锥的体积和表面积,简单几何体的三视图,难度中档.9.图所示的阴影部分由坐标轴、直线x=1及曲线y=e x﹣lne围成,现向矩形区域OABC内随机投掷一点,则该点落在非阴影区域的概率是()A.B.C.1﹣D.1﹣【考点】定积分;几何概型.【分析】求出阴影部分的面积,以面积为测度,即可得出结论.【解答】解:由题意,阴影部分的面积为(e x﹣1)dx=(e x﹣x)|=e﹣2,∵矩形区域OABC的面积为e﹣1,∴该点落在阴影部分的概率是=1﹣.故选D.【点评】本题考查概率的计算,考查定积分知识的运用,属于中档题.10.设△ABC的三个内角A,B,C所对的边分别为a,b,c,若(a+b+c)(b+c﹣a)=3bc,且sinA=2sinBcosC,那么△ABC的外接圆面积与内切圆面积的比值为()A.4 B.2 C.D.1【考点】余弦定理.【分析】(a+b+c)(b+c﹣a)=3bc,(b+c)2﹣a2=3bc,化为:b2+c2﹣a2=bc.再利用余弦定理可得A=.sinA=2sinBcosC,利用正弦定理与余弦定理可得:b=c.因此△ABC是等边三角形.即可得出.【解答】解:∵(a+b+c)(b+c﹣a)=3bc,∴(b+c)2﹣a2=3bc,化为:b2+c2﹣a2=bc.∴cosA==,A∈(0,π),∴A=.∵sinA=2sinBcosC,∴a=2b×,化为:b=c.∴△ABC是等边三角形.那么△ABC的外接圆面积与内切圆面积的比值==4.故选:A.【点评】本题考查了正弦定理余弦定理、等边三角形的性质,考查了推理能力与计算能力,属于中档题.11.已知A是抛物线M:y2=2px(p>0)与圆C在第一象限的公共点,其中圆心C(0,4),点A到M的焦点F的距离与C的半径相等,M上一动点到其准线与到点C的距离之和的最小值等于C的直径,O为坐标原点,则直线OA被圆C所截得的弦长为()A.2 B.2C.D.【考点】直线与抛物线的位置关系.【分析】求得圆的圆心和半径,运用抛物线的定义可得A,C,F三点共线时取得最小值,且有A为CF的中点,设出A,C,F的坐标,代入抛物线的方程可得p,由抛物线的定义可得a,求得C到直线OA的距离,运用圆的弦长公式计算即可得到所求值.【解答】解:圆C:x2+(y﹣4)2=a2的圆心C(0,4),半径为a,则|AC|+|AF|=2a,由抛物线M上一动点到其准线与到点C的距离之和的最小值为2a,由抛物线的定义可得动点到焦点与到点C的距离之和的最小值为2a,可得A,C,F三点共线时取得最小值,且有A为CF的中点,由C(0,4),F(,0),可得A(,2),代入抛物线的方程可得,4=2p•,解得p=2,即有a=+=,A(,2),可得C到直线OA:y=2x的距离为d==,可得直线OA被圆C所截得的弦长为2=,直线OA被圆C所截得的弦长为,故选D【点评】本题考查圆的弦长的求法,注意运用抛物线的定义和三点共线和最小,同时考查弦长公式和点到直线的距离公式的运用,属于中档题.12.已知函数f(x)=x2﹣tcosx.若其导函数f′(x)在R上单调递增,则实数t的取值范围为()A.[﹣1,﹣] B.[﹣,] C.[﹣1,1] D.[﹣1,]【考点】利用导数研究函数的单调性.【分析】求导数f′(x)=x+tsinx,并设g(x)=f′(x),并求出g′(x)=1+tcosx,由f′(x)在R上单调递增即可得出tcosx≥﹣1恒成立,这样即可求出t的取值范围.【解答】解:f′(x)=x+tsinx,设g(x)=f′(x);∵f′(x)在R上单调递增;∴g′(x)=1+tcosx≥0恒成立;∴tcosx≥﹣1恒成立;∵cosx∈[﹣1,1];∴;∴﹣1≤t≤1;∴实数t的取值范围为[﹣1,1].故选:C.【点评】考查基本初等函数的求导公式,函数的单调性和函数导数符号的关系.二、填空题(本大题共4小题,每小题5分,共20分)13.若(1﹣2x)2017=a0+a1x+…a2017x2017(x∈R),则++…+的值为﹣1 .【考点】二项式定理的应用.【分析】由(1﹣2x)2017=a0+a1x+…a2017x2017(x∈R),令x=0,可得1=a.令x=,可得0=1+++…+,即可得出.【解答】解:由(1﹣2x)2017=a0+a1x+…a2017x2017(x∈R),令x=0,可得1=a.令x=,可得0=1+++…+,∴++…+=﹣1,故答案为:﹣1.【点评】本题考查了二项式定理的应用、方程的应用,考查了推理能力与计算能力,属于基础题.14.已知等差数列{an }满足:a1+a5=4,则数列{2}的前5项之积为1024 (用数字作答)【考点】数列的求和.【分析】根据等差数列的性质可得a1+a5=a2+a4=2a3=4,即可求出前5项和,再根据指数幂的运算性质即可求出答案.【解答】解:∵等差数列{an }满足:a1+a5=4,∴a1+a5=a2+a4=2a3=4,∴a1+a5+a2+a4+a3=4+4+2=10,∴数列{2}的前5项之积为2=210=1024,故答案为:1024【点评】本题考查了等差数列的性质和指数幂的运算性质,属于中档题15.设实数x,y满足约束条件若目标函数z=ax+by(a>0,b>0)的最大值为2,记m为+的最小值,则y=sin(mx+)的最小正周期为π.【考点】简单线性规划.【分析】首先根据线性规划问题和基本不等式求出函数的最值,再利用正弦型函数的最小正周期,求出结果.【解答】解:设x、y的线性约束条件,如图所示:解得A(1,1)目标函数z=ax+by(a>0,b>0)的最大值为2,即:a+b=2,所以: +=≥2,则y=sin(2x+)的最小正周期为π,故答案为:π.【点评】本题考查的知识要点:线性规划问题,基本不等式的应用,正弦型函数的最小正周期,属于基础题型.16.已知三棱锥O﹣ABC中,A,B,C三点均在球心O的球面上,且AB=BC=1,∠ABC=120°,若球O的体积为,则三棱锥O﹣ABC的体积是.【考点】棱柱、棱锥、棱台的体积;球内接多面体.【分析】由已知条件可求出AC,求出△ABC的面积,设球半径为R,由球的体积可解得R,再设△ABC的外接圆的圆心为G,进一步求出OG,则三棱锥O﹣ABC的体积可求.【解答】解:三棱锥O﹣ABC中,A,B,C三点均在球心O的球面上,且AB=BC=1,∠ABC=120°,则AC=,∴,设球半径为R,由球的体积,解得R=4.设△ABC的外接圆的圆心为G,∴外接圆的半径为GA=,∴OG=.∴三棱锥O﹣ABC的体积是=.故答案为:.【点评】本题考查球的有关计算问题,考查棱锥的体积,考查学生空间想象能力,逻辑思维能力,是中档题.三、解答题(共70分)17.(12分)(2017•曲靖模拟)已知函数f(x)=,函数y=f(x)﹣在(0,+∞)上的零点按从小到大的顺序构成数列{an}(n∈N*)(Ⅰ)求数列{an}的通项公式;(Ⅱ)设bn =,求数列{bn}的前n项和Sn.【考点】数列的求和;数列递推式.【分析】(1)根据二倍角公式先化简得到f(x)=tanx,再根据函数零点定理可得x=+kπ,k∈Z,即可得到数列的通项公式,(Ⅱ)化简bn=(﹣),再裂项求和即可.【解答】解:(Ⅰ)f(x)===tanx,∵y=f(x)﹣=0,∴tanx=,∴x=+kπ,k∈Z,∵函数y=f(x)﹣在(0,+∞)上的零点按从小到大的顺序构成数列{an},∴an=+(n﹣1)π,(Ⅱ)bn====(﹣),∴数列{bn }的前n项和Sn=(1﹣+﹣+…+﹣)=(1﹣)=【点评】本题考查了三角函数的化简和函数零点定理以及数列的通项公式和裂项法求前n项和,属于中档题18.(12分)(2017•曲靖模拟)拖延症总是表现在各种小事上,但日积月累,特别影响个人发展,某校的一个社会实践调查小组,在对该校学生进行“是否有明显拖延症”的调查中,随机发放了110份问卷.对收回的100份有效问卷进行统计,得到如下2×2列联表:有明显拖延症无明显拖延症合计男352560女301040总计6535100(Ⅰ)按女生是否有明显拖延症进行分层,已经从40份女生问卷中抽取了8份问卷,现从这8份问卷中再随机抽取3份,并记其中无明显拖延症的问卷的份数为X,试求随机变量X的分布列和数学期望;(2)若在犯错误的概率不超过P的前提下认为无明显拖延症与性别有关,那么根据临界值表,最精确的P的值应为多少?请说明理由附:独立性检验统计量K2=,n=a+b+c+dP(K2≥k)0.250.150.100.050.025k1.3232.072 2.7063.841 5.024【考点】离散型随机变量的期望与方差;独立性检验.【分析】(1)分层从40份女生问卷中抽取了8份问卷,有明显拖延症6人,“无明显拖延症2人,若从这8份问卷中随机抽取3份,随机变量X=0,1,2.利用“超几何分布”即可得出分布列及其数学期望;(2)根据“独立性检验的基本思想的应用”计算公式可得K2的观测值k,即可得出.【解答】解:(1)从40份女生问卷中抽取了8份问卷,有明显拖延症6人,“无明显拖延症2人.…(2分)则随机变量X=0,1,2,…(3分)∴P(X=0)==;P(X=1)==,P(X=2)==…(6分)分布列为X012P…(7分)E(X)=0×+1×+2×=.…(8分)(2)K2=≈2.930 …(10分)由表可知2.706<2.93<3.840;∴P=0.10.…(12分)【点评】本题考查了组合数的计算公式、古典概率计算公式、“超几何分布”分布列及其数学期望公式、“独立性检验的基本思想的应用”计算公式,考查了推理能力与计算能力,属于中档题.19.(12分)(2017•曲靖模拟)如图,在多面体ABCDE中,DB⊥平面ABC,AE⊥平面ABC,且△ABC是的边长为4的等边三角形,AE=2,CD与平面ABDE所成角的余弦值为,F是线段CD上一点.(Ⅰ)若F是线段CD的中点,证明:平面CDE⊥面DBC;(Ⅱ)求二面角B﹣EC﹣D的平面角的正弦值.【考点】二面角的平面角及求法;平面与平面垂直的判定.【分析】(Ⅰ)取AB中点O,连结OC,OD,取ED的中点为M,以O为原点,OC为x轴,OB 为y轴,OM为z轴,建立空间直角坐标系,利用向量法能证明平面CDE⊥平面DBC.(Ⅱ)求出平面DEC 的一个法向量和平面BCE的一个法向量,利用向量法能求出二面角B﹣EC ﹣D的平面角的正弦值.【解答】证明:(Ⅰ)取AB中点O,连结OC,OD,∵DB⊥平面ABC,DB⊂平面ABDE,∴平面ABDE⊥平面ABC,∵△ABC是等边三角形,∴OC⊥AB,又OC⊂平面ABC,平面ABDE∩平面ABC=AB,∴OC⊥平面ABD,∴OD是CD在平面ABDE上的射影,∠CDO是CD与平面ABDE所成角,∵CD与平面ABDE所成角的余弦值为,∴CD与平面ABDE所成角的正弦值为,∴sin,∵OC=2,∴CD=4,BD=4,取ED的中点为M,以O为原点,OC为x轴,OB为y轴,OM为z轴,建立空间直角坐标系,则A(0,﹣2,0),B(0,2,0),C(2,0,0),D(0,2,4),E(0,﹣2,2),F (,1,2),∴=(),=(2,﹣2,0),=(0,0,4),∴,,∴EF⊥BC,EF⊥BD,∵DB,BC⊂平面DBC,且DB∩BC=B,∴∴EF⊥平面DBC,又EF⊂平面BDF,∴平面CDE⊥平面DBC.解:(Ⅱ)由(Ⅰ)知,当F是线段CD的中点时,得BF⊥平面DEC,又=(),则可取平面DEC 的一个法向量==(),设平面BCE的一个法向量=(x,y,z),=(2,﹣2,0),=(2,2,﹣2),则,取x=1,得=(1,),则cos<>===,sin<>=,∴二面角B﹣EC﹣D的平面角的正弦值为.【点评】本题考查面面垂直的证明,考查二面角的正弦值的求法,考查推理论证能力、运算求解能力、空间想象能力,考查等价转化思想、数形结合思想,是中档题.20.(12分)(2017•曲靖模拟)已知椭圆C: +=1(a>b>0)的离心率为,P是椭圆C上任意一点,且点P到椭圆C的一个焦点的最大距离等于+1(Ⅰ)求椭圆C的方程;(Ⅱ)若过点M(2,0)的直线与椭圆C相交于不同两点A,B,设N为椭圆上一点,是否存在整数t,使得t•=+(其中O为坐标原点)?若存在,试求整数t的所有取值;若不存在,请说明理由.【考点】直线与圆锥曲线的综合问题;椭圆的定义.【分析】(Ⅰ)由离心率为,可得a2=2b2,代入点(0,﹣1),可求解a,b的值,则椭圆方程可求;(Ⅱ)设出直线方程,和椭圆联立后化为关于x的一元二次方程,由判别式大于0求出k的范围,利用根与系数关系得到A,B两点的横坐标的和与积,代入t•=+后得到P点的坐标,把P点坐标代入椭圆方程后得到t与k的关系,由k的范围确定t的范围,可得结论.【解答】解:(Ⅰ)由题知离心率为,所以a2=2b2.又因为点P到椭圆C的一个焦点的最大距离等于+1,所以a+c=+1,所以b2=1,a2=2.故C的方程为=1…(3分)(Ⅱ)由题意知直线直线AB的斜率存在.设AB方程为y=k(x﹣2),A(x1,y1),B(x2,y2),P(x,y),由y=k(x﹣2)代入=1,得(1+2k2)x2﹣8k2x+8k2﹣2=0.△=64k2﹣4(2k2+1)(8k2﹣2)>0,∴k2<.…x 1+x2=,x1x2=,∵t•=+,∴(x1+x2,y1+y2)=t(x,y).∴x=,y=﹣.…(8分)∵点N在椭圆上,∴[]2+2•[﹣]=2,∴16k2=t2(1+2k2),∴t2=<4,∴﹣2<t<2.∴整数t值为﹣1,0,1.…(12分)【点评】本题考查了椭圆的简单几何性质,考查了直线与圆锥曲线的关系,考查了平面向量的坐标运算,训练了利用代入法求解变量的取值范围.属中档题.21.(12分)(2017•曲靖模拟)设函数f(x)=e x﹣ax2﹣ex+b,其中e为自然对数的底数.(Ⅰ)若曲线f(x)在y轴上的截距为﹣1,且在点x=1处的切线垂直于直线y=x,求实数a,b的值;(Ⅱ)记f(x)的导函数为g(x),g(x)在区间[0,1]上的最小值为h(a),求h(a)的最大值.【考点】利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.【分析】(Ⅰ)将(0,﹣1),代入f(x),即可求得b的值,求导,由f′(1)=﹣2,即可求得a的值;(Ⅱ)求导,g′(x)=e x﹣2a,分类分别取得g(x)在区间[0,1]上的最小值h(a)解析式,根据函数的单调性即可求得h(a)的最大值.【解答】解:(Ⅰ)曲线f(x)在y轴上的截距为﹣1,则过点(0,﹣1),代入f(x)=e x ﹣ax2﹣ex+b,则1+b=﹣1,则b=﹣2,求导f′(x)=e x﹣2ax﹣e,由f′(1)=﹣2,即e﹣2a﹣e=﹣2,则a=1,∴实数a,b的值分别为1,﹣2;(Ⅱ)f(x)=e x﹣ax2﹣ex+b,g(x)=f′(x)=e x﹣2ax﹣e,g′(x)=e x﹣2a,(1)当a≤时,∵x∈[0,1],1≤e x≤e,∴2a≤e x恒成立,即g′(x)=e x﹣2a≥0,g(x)在[0,1]上单调递增,∴g(x)≥g(0)=1﹣e.(2)当a>时,∵x∈[0,1],1≤e x≤e,∴2a>e x恒成立,即g′(x)=e x﹣2a<0,g(x)在[0,1]上单调递减,∴g(x)≥g(1)=﹣2a(3)当<a≤时,g′(x)=e x﹣2a=0,得x=ln(2a),g(x)在[0,ln2a]上单调递减,在[ln2a,1]上单调递增,所以g(x)≥g(ln2a)=2a﹣2aln2a﹣e,∴h(a)=,∴当a≤时,h(a)=1﹣e,当<a≤时,h(a)=2a﹣2aln2a﹣e,求导,h′(a)=2﹣2ln2a﹣2=2ln2a,由<a≤时,h′(a)<0,∴h(a)单调递减,h(a)∈(1﹣e,﹣e],当a>时,h(a)=﹣2a,单调递减,h(a)∈(﹣∞,﹣e),h(a)的最大值1﹣e.【点评】本题考查导数的综合应用,考查导数与函数单调性的关系,函数的最值的求法,考查计算能力,属于中档题.[选修4-4:坐标系与参数方程]22.(10分)(2017•曲靖模拟)在平面直角坐标系xOy中,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.已知曲线C的极坐标方程ρ=2sin(θ+).倾斜角为,且经过定点P(0,1)的直线l与曲线C交于M,N两点(Ⅰ)写出直线l的参数方程的标准形式,并求曲线C的直角坐标方程;(Ⅱ)求+的值.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(I)由倾斜角为,且经过定点P(0,1)的直线l的参数方程为:.曲线C的极坐标方程ρ=2sin(θ+),展开:ρ2=2×(sinθ+cosθ),利用互化公式可得直角坐标方程.(II)把直线l的参数方程代入圆C的方程为:t2﹣t﹣1=0,可得+=+==即可得出.【解答】解:(I)由倾斜角为,且经过定点P(0,1)的直线l的参数方程为:,化为:.曲线C的极坐标方程ρ=2sin(θ+),展开:ρ2=2×(sinθ+cosθ),可得直角坐标方程:x2+y2=2x+2y.(II)把直线l的参数方程代入圆C的方程为:t2﹣t﹣1=0,t 1+t2=1,t1t2=﹣1.∴+=+====.【点评】本题考查了极坐标方程化为直角坐标方程、参数方程化为普通方程、直线与圆相交弦长问题,考查了推理能力与计算能力,属于中档题.[选修4-5:不等式选讲]23.(2017•曲靖模拟)已知函数f(x)=|x﹣a|+|x﹣2|,x∈R(Ⅰ)若关于x的不等式f(x)≤a在R上有解,求实数a的最小值M;(Ⅱ)在(Ⅰ)的条件下,已知正实数m,n,p满足m+2n+3p=M,求++的最小值.【考点】柯西不等式在函数极值中的应用;绝对值不等式的解法.【分析】(Ⅰ)关于x的不等式f(x)≤a在R上有解,求出f(x)的最小值,即可求实数a 的最小值M;(Ⅱ)利用柯西不等式,即可求++的最小值.【解答】解:(Ⅰ)f(x)=|x﹣a|+|x﹣2|≥|a﹣2|,∵关于x的不等式f(x)≤a在R上有解,∴|a﹣2|≤a,∴a≥1,∴实数a的最小值M=1;(Ⅱ)m+2n+3p=1, ++=(++)(m+2n+3p)≥(+2+)2=16+8,∴++的最小值为16+8.【点评】本题考查绝对值不等式的运用,考查柯西不等式在最值中的应用,考查计算能力.。