八年级数学分式的混合运算练习题(附答案)
人教版初中八年级数学上册第十五章《分式》经典测试(含答案解析)

一、选择题1.若整数a 使得关于x 的方程3222a x x-=--的解为非负数,且使得关于y 的一元一次不等式组322222010y y y a --⎧+>⎪⎪⎨-⎪≤⎪⎩至少有3个整数解,则所有符合条件的整数a 的和为( )A .23B .25C .27D .28B解析:B【分析】表示出不等式组的解集,由不等式至少有3个整数解确定出a 的值,再由分式方程的解为非负数以及分式有意义的条件求出满足题意整数a 的值,进而求出之和.【详解】 解:322222010y y y a --⎧+>⎪⎪⎨-⎪≤⎪⎩, 不等式组整理得:2y y a -⎧⎨≤⎩>, 由不等式组至少有3个整数解,得到-2<y≤a ,解得:a≥1,即整数a=1,2,3,4,5,6,…,3222a x x-=--, 去分母得:2(x-2)-3=-a ,解得:x=72a -, ∵72a -≥0,且72a -≠2, ∴a≤7,且a≠3,由分式方程的解为非负数以及分式有意义的条件,得到a 为1,2,4,5,6,7, 之和为1+2+4+5+6+7=25.故选:B .【点睛】此题考查了解分式方程,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键. 2.2020年新冠肺炎疫情影响全球,某企业临时增加甲、乙两个厂房生产口罩,甲厂房每天生产的数量是乙厂房每天生产数量的2倍,两厂房各加工6000箱口罩,甲厂房比乙厂房少用5天.则甲、乙两厂房每天各生产的口罩箱数为( )A .1200,600B .600,1200C .1600,800D .800,1600A解析:A【分析】 先设乙厂房每天生产x 箱口罩,则甲厂房每天生产2x 箱口罩,根据工作时间=工作总量÷工作效率且两厂房各加工6000箱口罩时甲厂房比乙厂房少用5天,可得出关于x 的分式方程,解方程即可得出结论.【详解】解:设乙厂房每天生产x 箱口罩,则甲厂房每天生产2x 箱口罩, 依题意得:6000600052x x-=, 解得:x =600, 经检验,x =600是原分式方程的解,且符合题意,∴2x =1200.故答案选:A .【点睛】该题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键. 3.已知2,1x y xy +==,则y x x y +的值是( ) A .0B .1C .-1D .2D 解析:D【分析】 将y x x y+进行通分化简,整理出含已知条件形式的分式,即可得出答案. 【详解】 解:2222()2221=21y x y x x y xy x y xy xy ++--⨯+=== 故选D .【点睛】本题考查了分式的混合运算,熟练运用完全平方公式是解题的关键.4.若方程21224k x x -=--有增根,则k =( ) A .4-B .14-C .4D .14B 解析:B【分析】先根据题意对原分式方程去分母,化为整式方程,然后根据增根的情况代入整式方程求解即可.【详解】去分母得:()()22421x k x --+=, 整理得:22290x kx k ---=,∵原分式方程有增根,∴240x -=,解得增根即为:2x =±,当2x =时,代入整式方程得:82290k k ---=,解得: 14k =-, 当2x =-时,代入整式方程无意义,∴14k =-故选:B【点睛】本题考查分式方程的增根,熟记增根是使最简公分母为零的数同时是对应整式方程的解,两者缺一不可.5.如图,若a 为负整数,则表示2a 111a a 1⎛⎫÷- ⎪-+⎝⎭的值的点落在( )A .段①B .段②C .段③D .段④C 解析:C【分析】将所给式子化简,根据a 为负整数,确定化简结果的范围,再从所给图中可得正确答案.【详解】 解:2a 111a a 1⎛⎫÷- ⎪-+⎝⎭=()()a a 111a 1a a 1a 1+⎛⎫÷- ⎪+-++⎝⎭=()()aa 1a 1a a 1÷+-+ =()()a a 11a 1a a+⋅+- =11a -; ∵a 为负整数,且a 1≠-,∴1a -是大于1的正整数,则1101a 2<<-.故选C .【点睛】本题考查了分式的化简及分式加减运算,同时考查了分式值的估算,总体难度中等. 6.下列各式计算正确的是( )A .()23233412ab a b -=- B .()222(2)2224x xy y x y xy x --++=+-C .()2422842a ba b b -÷=- D .()325339a b a b -=- A解析:A【分析】根据单项式乘单项式,幂的乘方,单项式除单项式,单项式乘多项式运算法则判断即可.【详解】 A 、()23233412a b a b -=-,故这个选项正确;B 、()222(2)2224x xy y x y xy x --++=--,故这个选项错误;C 、()24222842a b a b b -÷=-,故这个选项错误;D 、()3263327a b a b -=-,故这个选项错误; 故选:A .【点睛】本题考查了单项式乘单项式,幂的乘方,单项式除单项式,单项式乘多项式,重点是掌握相关的运算法则.7.若实数a 使关于x 的不等式组313212x x a xx +⎧+≥⎪⎪⎨+⎪-≥⎪⎩有解且最多有4个整数解,且使关于y 的方程3233y a y y --++ 1=的解是整数,则符合条件的所有整数a 的个数是( ) A .4B .3C .2D .1D 解析:D【分析】解不等式组得到a+2≤x ≤﹣3,利用不等式组有解且最多有4个整数解得到﹣7<a+2≤﹣3,解关于a 的不等式组得到整数a 为﹣8,﹣7,﹣6,﹣5,再解分式方程得到y =12a +且y ≠﹣3,利用分式方程的解为整数且12a +≠﹣3即可确定符合条件的所有整数a 的值. 【详解】解:313212x x a x x +⎧+≥⎪⎪⎨+⎪-≥⎪⎩①②, 由①得:x ≤﹣3,由②得:x ≥a+2,∴a+2≤x ≤﹣3,因为不等式组有解且最多有4个整数解,所以﹣7<a+2≤﹣3,解得﹣9<a ≤﹣5,整数a 为﹣8,﹣7,﹣6,﹣5, 方程3233y a y y --++ 1=去分母得3y ﹣a +2=y +3, 解得y =12a +且y ≠﹣3, ∴12a +≠﹣3, 解得a ≠﹣7,当a =﹣8时,y =﹣3.5(不是整数,舍去),当a =﹣6时,y =﹣2.5(不是整数,舍去),当a =﹣5时,y =﹣2(是整数,符合题意),所以符合条件的所有整数a 为﹣5.故选:D .【点睛】本题考查了分式方程的解:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.也考查了解一元一次不等式组的整数解.8.2a ab b a++-的结果是( ). A .2a- B .4a C .2b a b -- D .b a- C 解析:C【分析】根据分式的加减运算的法则计算即可.【详解】 222()()a a b a b a b a b b a a b a b a b+-++=-=-----. 故选:C【点睛】本题考查了分式加减运算的法则,熟记法则是解题的关键.9.如果关于x 的不等式组0243(2)x m x x -⎧>⎪⎨⎪-<-⎩的解集为1x >,且关于x 的分式方程1322x m x x -+=--有非负整数解,则符合条件的所有m 的取值之和为( ) A .8-B .7-C .15D .15- B解析:B【分析】解出不等式组,求出不等式组的解集,确定m 的取值范围,再解出分式方程,找到分式方程的非负整数解,进而求出m 的值即可.【详解】 解:0243(2)x m x x -⎧>⎪⎨⎪-<-⎩①②,解不等式①得:x m >,解不等式②得:1x >,不等式组的解集为1x >,∴1m ;1322x m x x -+=-- 方程两边同时乘以()2x -得:()132x m x --=-; 解得:52m x +=, ∴25m x =-,1m ,∴251x -≤,∴3x ≤,分式方程有非负整数解且20x -≠,∴x 的值为:0,1,3,此时对应的m 的值为:5-,3-,1,∴符合条件的所有m 的取值之和为:()5317-+-+=-.故选:B .【点睛】本题考查了分式方程的解以及不等式的解集,求得m 的取值范围以及求出分式方程的解是解题的关键.10.使分式2221x x x ---的值为0的所有x 的值为( ) A .2或1- B .2-或1 C .2 D .1C解析:C【分析】先根据分式为零的条件列出不等式组,然后再求解即可.【详解】解:∵2221x x x ---=0 ∴222=010x x x ⎧--⎨-≠⎩,解得x=2. 故答案为C .【点睛】本题主要考查了分式为零的条件,根据分式为零的条件列出不等式组是解答本题的关键.二、填空题11.规定一种新的运算“ JX x A B →+∞”,其中A 和B 是关于x 的多项式,当A 的次数小于B 的次数时. 0JX x A B →+∞=;当A 的次数等于B 的次数时, JX x A B→+∞的值为A 、B 的最高次项的系数的商,当A 的次数大于B 的次数时, JX x A B →+∞不存在,例如: 201JX x x →+∞=-,2 2212312JXx x x x →+∞+=+-,若223410211A x x B x x -⎛⎫=-÷ ⎪--⎝⎭,则 JX x A B →+∞的值为__________.【分析】根据已知条件化简分式即可求出答案【详解】解:∵的次数等于的次数故答案为:【点睛】本题考查了分式的混合运算熟练分解因式是解题的关键 解析:12【分析】根据已知条件,化简分式即可求出答案.【详解】 解:223410(2)11A x xB x x -=-÷-- ()()()225223111x x x x x x ---⎛⎫=÷ ⎪-+-⎝⎭ ()()()1125112252x x x x x x x x +--+⎛⎫=⨯= ⎪--⎝⎭ 12x x+=, ∵A 的次数等于B 的次数,∴12x A JX B →+∞=, 故答案为:12. 【点睛】 本题考查了分式的混合运算,熟练分解因式是解题的关键.12.已知关于x 的分式方程239133x mx x x ---=--无解,则m 的值为______.1或4【分析】先去分母将原方程化为整式方程根据一元一次方程无解的条件得出一个m 值再根据分式方程无解的条件得出一个m 值即可【详解】解:去分母得:2x-3-mx+9=x-3整理得:(m-1)x=9∴当m解析:1或4【分析】先去分母,将原方程化为整式方程,根据一元一次方程无解的条件得出一个m 值,再根据分式方程无解的条件得出一个m 值即可.【详解】解:去分母得:2x-3- mx+9 =x-3,整理得:(m-1)x=9,∴当m-1=0,即m=1时,方程无解;当m-1≠0时,由分式方程无解,可得x-3=0,即x=3,把x=3代入(m-1)x=9,解得:m=4,综上,m 的值为1或4.故答案为:1或4.【点睛】本题考查了分式方程的解,熟练掌握分式方程及整式方程无解的条件是解题的关键. 13.若分式方程13322a x x x--=--有增根,则a 的值是________.【分析】分式方程去分母转化为整式方程由分式方程有增根求出x 的值代入整式方程计算即可求出a 的值【详解】去分母得:1-3x+6=-3a+x 由分式方程有增根得到x−2=0即x =2把x =2代入得:1-6+6 解析:13【分析】分式方程去分母转化为整式方程,由分式方程有增根求出x 的值,代入整式方程计算即可求出a 的值.【详解】去分母得:1-3x+6=-3a+x ,由分式方程有增根,得到x−2=0,即x =2,把x =2代入得:1-6+6=-3a+2,解得:a =13, 故答案为:13. 【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.14.A B 两地相距36千米,一艘轮船从A 地顺流行至B 地,又立即从B 地逆流返回A 地,共用9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米时,则可列方程为__________.【分析】设该轮船在静水中的速度为x 千米/时则一艘轮船从A 地顺流航行至B 地已知水流速度为4千米/时所花时间为;从B 地逆流返回A 地水流速度为4千米/时所花时间为根据题意列方程即可【详解】解:设该轮船在静 解析:3636944x x +=+- 【分析】设该轮船在静水中的速度为x 千米/时,则一艘轮船从A 地顺流航行至B 地,已知水流速度为4千米/时,所花时间为364x +;从B 地逆流返回A 地,水流速度为4千米/时,所花时间为364x -根据题意列方程3636944x x +=+-即可. 【详解】解:设该轮船在静水中的速度为x 千米时,根据题意列方程得:3636944x x +=+- 【点睛】本题考查列分式方程解应用题,关键是正确列出分式方程,找出题干中等量关系式即可. 15.分式2222,39a b b c ac的最简公分母是______.【分析】常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母这样的公分母叫做最简公分母【详解】分式的分母分别是3b2c9ac2故最简公分母是9ab2c2故答案为:9ab2c2【点睛】本题考查了解析:229ab c【分析】常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.【详解】分式222239a b b c ac、的分母分别是3b 2c 、9ac 2,故最简公分母是9ab 2c 2. 故答案为:9ab 2c 2.【点睛】 本题考查了最简公分母的定义及求法.通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母. 一般方法:①如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里. ②如果各分母都是多项式,就可以将各个分母因式分解,取各分母数字系数的最小公倍数,凡出现的字母(或含字母的整式)为底数的幂的因式都要取最高次幂. 16.计算:()222333a b a b --⋅=_______________.【分析】根据单项式乘单项式计算法则以及幂的乘方与积的乘方负整数指数幂计算即可【详解】原式=故答案为:【点睛】本题主要考查了单项式乘单项式幂的乘方与积的乘方负整数指数幂属于基础计算题 解析:3a b【分析】根据单项式乘单项式计算法则以及幂的乘方与积的乘方,负整数指数幂,计算即可.【详解】原式=44334343113333a a b a b a b a b b----+-=== 故答案为:3a b. 【点睛】 本题主要考查了单项式乘单项式,幂的乘方与积的乘方,负整数指数幂,属于基础计算题.17.甲、乙二人做某种机械零件,已知甲每小时比乙少做8个,甲做160个所用的时间比乙做160个所用的时间多1小时,设甲每小时做x 个零件,列方程为________.【分析】设甲每小时做x 个零件根据甲做160个所用的时间比乙做160个所用的时间多1小时得出方程解答即可【详解】解:设甲每小时做个零件则乙每小时做个零件依题意得:即故答案为:【点睛】本题考查了由实际问 解析:16016018x x -=+ 【分析】设甲每小时做x 个零件,根据甲做160个所用的时间比乙做160个所用的时间多1小时得出方程解答即可.【详解】解:设甲每小时做x 个零件,则乙每小时做(8)x +个零件,依题意,得:16016018x x -=+, 即16016018x x -=+. 故答案为:16016018x x -=+. 【点睛】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.18.已知1112a b -=,则ab a b-的值是________.-2【分析】先把所给等式的左边通分再相减可得再利用比例性质可得再利用等式性质易求的值【详解】解:∵∴∴即∴故答案为:-2【点睛】本题考查了分式的加减法代数式求值解题的关键是通分得出是解题关键解析:-2【分析】 先把所给等式的左边通分,再相减,可得12b a ab -=,再利用比例性质可得()2ab a b =--,再利用等式性质易求ab a b -的值. 【详解】解:∵1112a b -=, ∴12b a ab -=, ∴()2ab b a =-,即()2ab a b =--, ∴2ab a b=--. 故答案为:-2.【点睛】 本题考查了分式的加减法,代数式求值,解题的关键是通分,得出12b a ab -=是解题关键. 19.某公司生产了A 型、B 型两种计算机,它们的台数相同,但总价值和单价不同.已知A 型计算机总价值为102万元;B 型计算机总价值为81.6万元,且单价比A 型机便宜了2400元.问A 型、B 型两种计算机的单价各是多少万元.若设A 型计算机的单价是x 万元,请你根据题意列出方程________.【分析】设A 型计算机的单价是x 万元/台则B 型计算机的单价是(x-024)万元/台根据单价=总价÷数量即可得出关于x 的分式方程此题得解【详解】解:设型计算机的单价是万元/台则型计算机的单价是解析:10281.6x x 0.24=- 【分析】设A 型计算机的单价是x 万元/台,则B 型计算机的单价是(x-0.24)万元/台,根据单价=总价÷数量即可得出关于x 的分式方程,此题得解.【详解】解:设A 型计算机的单价是x 万元/台,则B 型计算机的单价是()x 0.24-万元/台, 根据题意得:10281.6x x 0.24=-. 故答案为:10281.6x x 0.24=-. 【点睛】 本题考查了由实际问题抽象出分式方程,根据数量关系单价=总价÷数量列出关于x 的分式方程是解题的关键.20.若关于x 的分式方程11222mx x x-=---无解,则m =______.2或1【分析】将分式方程化成整式方程按照一元一次方程无解的条件及分式方程无解的条件求得m 的值即可【详解】解:方程两边同时乘以(x ﹣2)得:1﹣mx =-1﹣2(x ﹣2)整理得:(2﹣m )x =2∵无解∴解析:2或1【分析】将分式方程化成整式方程,按照一元一次方程无解的条件及分式方程无解的条件求得m 的值即可.【详解】 解:方程11222mx x x-=---两边同时乘以(x ﹣2)得: 1﹣mx =-1﹣2(x ﹣2),整理得:(2﹣m )x =2,∵无解,∴当2﹣m =0,即m =2时,方程无解;当x ﹣2=0时,方程也无解,此时x =2,则2(2﹣m )=2,解得m =1.故答案为:2或1.【点睛】 本题考查了分式方程的解,明确分式方程和整式方程无解的条件是解题的关键.21.某商店购进 A B 、两种商品,购买1个A 商品比购买1个B 商品多花10元,并且花费300元购买A 商品和花费100元购买B 商品的数量相等(1)求购买一个A 商品和一个B 商品各需要多少元(2)商店准备购买A B 、两种商品共80个,若A 商品的数量不少于B 商品数量的4倍,并且购买A B 、商品的总费用不低于1000元且不高于1060元,那么商店有哪几种购买方案? 解析:(1)购买一个A 商品需要15元,购买一个B 商品需要5元;(2)商店有3种购买方案,方案①:购进A 商品66个,B 商品14个;方案②:购进A 商品65个,B 商品15个;方案③:购进A 商品64个,B 商品16个【分析】(1)设购买一个B 商品需要x 元,则购买一个A 商品需要()10x +元,列出分式方程求解;(2)设购买B 商品m 个,则购买A 商品()80m -个,根据题意列出不等式组求出m 的范围,取整数解.【详解】解:()1设购买一个B 商品需要x 元,则购买一个A 商品需要()10x +元,依题意, 得:30010010x x=+, 解得:5x =,经检验, = 5x 是原方程的解,且符合题意, 1015x ∴+=,答:购买一个A 商品需要15元,购买一个B 商品需要5元;()2设购买B 商品m 个,则购买A 商品()80m -个,依题意,得:()()804158051000158051060m m m m m m ⎧-≥⎪-+≥⎨⎪-+≥⎩,解得:1416m ≤≤, m 为整数,14m ∴=或15或16,∴商店有3种购买方案,方案①:购进A 商品66个,B 商品14个,方案②:购进A 商品65个,B 商品15个,方案③:购进A 商品64个,B 商品16个.【点睛】本题考查分式方程的应用和不等式的应用,解题的关键是掌握根据题意列分式方程和不等式的方法.22.解方程(1)22211x x x =-+. (2)2127111x x x +=+--. 解析:(1)无解;(2)2x =【分析】(1)先把分式方程化为整式方程,然后解方程,再进行检验,即可得到答案; (2)先把分式方程化为整式方程,然后解方程,再进行检验,即可得到答案;【详解】(1)解:原方程可变形为()()()21111x x x x =+-+, 方程两边同乘最简公分母()()11x x x +-,得21x x =-.解得:1x =-.检验:把1x =-代入最简公分母()()11x x x +-,得()()()()11111110x x x +-=--+--=,因此,1x =-是增根,从而原方程无解.(2)原方程可变形为:()()1271111x x x x +=+-+- 方程两边同乘最简公分母()()11x x +-,得()1217x x -++=解得,2x =检验:把2x =代入最简公分母()()11x x +-,得()()113130x x +-=⨯=≠因此,2x =是原方程的解.【点睛】本题考查了解分式方程,解题的关键是掌握解分式方程的步骤,注意解分式方程需要检验.23.(1)计算:22y x x y x y-++ (2)解方程:4322x x x=+-- 解析:(1)y x -;(2)5x =. 【分析】(1)根据分式运算的性质,结合平方差公式计算,即可得到答案;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】(1)22y x x y x y-++, =22y x x y-+, =()()x y x y x y +--+,=()x y y x --=-,y x =-;(2)4322x x x=+--, 去分母得()4=32x x --,去括号得436x x =--,移项合并得210x =,系数化1得5x =,当x=5时,25230x -=-=≠,所以x=5是原方程的解.【点睛】本题考查了分式的混合运算及解分式方程,能正确根据分式的运算法则进行化简以及掌握解分式方程的方法是解答此题的关键,注意解分式方程要验根.24.解方程:(1)3311x x x +=-- (2)23425525x x x +=-+- 解析:(1)3x =;(2)1x =【分析】(1)先去分母,再解整式方程求解,检验解是否为原方程的解即可;(2)先去分母,再解整式方程求解,检验解是否为原方程的解即可.【详解】解:(1)方程两边同乘1x -,得33(1)x x +=-,解得3x =,检验:当3x =时10x -≠,∴原分式方程的解为3x =;(2)方程两边同乘(5)(5)x x -+,得3(5)4(5)2x x ++-=,解得1x =,检验:当1x =时,(5)(5)0x x -+≠,∴原分式方程的解为1x =.【点睛】此题考查解分式方程,掌握解方程的步骤:先去分母,再解整式方程求解,检验解是否为原方程的解.25.某快餐店欲购进A ,B 两种型号的餐盘,每个A 种型号的餐盘比每个B 种型号的餐盘费用多5元,且用120元购进的A 种型号的餐盘与用90元购进的B 种型号的餐盘的数量相同.(1)问A ,B 两种型号的餐盘单价为多少元?(2)若该快餐店决定在成本不超过1900元的前提下购进A ,B 两种型号的餐盘100个,则最多购进A 种型号餐盘多少个?解析:(1)A 种型号的餐盘单价为20元,B 种型号的餐盘单价为15元;(2)最多购进A 种型号餐盘80个【分析】(1)设A 型号的餐盘单价为x 元,则B 型号的餐盘单价为(x ﹣5)元,根据用120元购进的A 种型号的餐盘与用90元购进的B 种型号的餐盘的数量相同这个等量关系列出方程即可;(2)设购进A 种型号餐盘m 个,结合“该快餐店决定在成本不超过1900元的前提购进A 、B 两种型号的餐盘100个”列出不等式并解答.【详解】解:(1)设A 种型号的餐盘单价为x 元,则B 种型号的餐盘单价为(5x -)元, 由题意可列方程120905x x =-, 解得20x .经检验,20x 是原分式方程的解,则520515x -=-=.答:A 种型号的餐盘单价为20元,B 种型号的餐盘单价为15元.(2)设购进A 种型号餐盘m 个,则购进B 种型号餐盘()100m -个.依题意可得()20151001900m m +-≤,解得80m ≤.答:最多购进A 种型号餐盘80个.【点睛】本题考查了分式方程的应用和一元一次不等式的应用.解决本题的关键是读懂题意,找到符合题意的数量关系.准确的解分式方程或不等式是需要掌握的基本计算能力. 26.秋冬来临之际,天气开始慢慢变冷,某商家抓住商机,在十一月份力推甲、乙两款儿童棉服.已知十一月份甲款棉服的销售总额为8400元,乙款棉服的销售总额为9000元,乙款棉服的单价是甲款棉服单价的1.2倍,乙款棉服的销售数最比甲款棉服的销售数量少6件.(1)求十一月份甲款棉服的单价是多少元?(2)十二月份,为了加大推销力度,该商家将甲款棉服的单价在十一月份的基础上下调了%a ,结果甲款棉服的销量比十一月份多卖了24件;乙款棉服的单价在十一月份的基础上下调3%2a ,结果乙款棉服的销量比十一月份多卖了50件.要使十二月份的总销售额不低于22200元,求a 的最大值,解析:(1)十一月份甲款棉服的单价是150元;(2)20【分析】(1)设十一月份甲款棉服的单价是x 元,则十一月份乙款棉服的单价是1.2x 元,根据题意列方程即可得到结论;(2)根据不等量关系,列出关于a 的不等式,即可得到结论.【详解】(1)设十一月份甲款棉服的单价是x 元,则十一月份乙款棉服的单价是1.2x 元,根据题意得,8400900061.2x x-=, 解得:x =150,经检验:x =150是原方程的根, 答:十一月份甲款棉服的单价是150元;(2)由题意得:150(1-%a )(8400÷150+24)+1.2×150(1-3%2a )(8400÷150-6+50)≥22200,解得:a≤20,∴a 的最大值为20.【点睛】本题考查了分式方程的应用,一元一次不等式的应用,正确的理解题意,列出方程和不等式,是解题的关键.27.为了安全与方便,某自助加油站只提供两种自助加油方式:“每次定额只加200元”与“每次定量只加40升”.自助加油站规定每辆车只能选择其中一种自助加油方式,那么哪种加油方式更合算呢?请以两种加油方式各加油两次予以说明.(分析问题)“更合算”指的是两次加油后平均油价更低由于汽油单价会变,不妨设第一次加油时油价为x 元/升,第二次加油时油价为y 元/升.①两次加油,每次只加200元的平均油价为:_______________元/升.②两次加油,每次只加40升的平均油价为:_______________元/升.(解决问题)请比较两种平均油价,并用数学语言说明哪种加油方式更合算.解析:【分析问题】①2xy x y +;②2x y +;【解决问题】22x y xy x y +≥+,当x y =时,两种加油方式均价相等;当x y ≠时,每次加200元更合算【分析】分析问题:①计算出两次加油的总价400元,总的加油量为200200+xy ⎛⎫ ⎪⎝⎭升,从而得到两次加油的平均价格;②计算出两次加油的总价()4040x y +元,总的加油量为80升,从而得到两次加油的平均价格; 解决问题:利用作差法可得22x y xy x y +-+()()22x y x y -=+,再判断()()22x y x y -+的符号,从而可得结论.【详解】解:分析问题:① 第一次加油时油价为x 元/升, ∴ 第一次加油的数量为:200x升,第二次加油时油价为y 元/升,∴ 第二次加油的数量为:200y 升, 所以两次加油的平均价格为每升:()200+2004004002200200200200200xy xy x y x y x y x y xy===++++(元) 故答案为:2xy x y+ ②两次加油,每次只加40升的总价分别为:40x 元,40y 元, 所以两次加油的平均价格为每升:()40404080802x y x y x y +++==元, 故答案为:2x y +. 解决问题:()()()()()222422422x y x y x y xy xy x y x xy y x y x y +++-=--=++++()()22x y x y -=+ x ,y 为两次加油的汽油单价,故0x y +>,()20x y -≥ ()()22022x y x y xy x y x y -+∴-=≥+-,即22x y xy x y +≥+. 结论:当x y =时,两种加油方式均价相等;当x y ≠时,每次加200元更合算.【点睛】本题考查的是列代数式,分式的化简,分式的加减运算的应用,分式除法的应用,代数式的值的大小比较,掌握以上知识是解题的关键.28.先化简,再求值:213(1)211x x x x x +--÷-+-,其中x =12. 解析:1x x -,-1. 【分析】 先计算括号内,再将除法化为乘法,分别因式分解后约分,将x =12代入计算即可. 【详解】 解:原式=222113211x x x x x x x -+---÷-+- =2233211x x x x x x --÷-+- =2(3)1(1)3x x x x x ---- =1x x -, 当x =12时, 原式=121112=--. 【点睛】本题考查分式的化简求值.属于常考题型,熟练掌握分式混合运算的法则是解题的关键.。
苏科版 八年级数学下册尖子生培优必刷题 专题10.6分式的混合运算大题专练(重难点培优30题)(原卷

【拔尖特训】2023-2024学年八年级数学下册尖子生培优必刷题【苏科版】专题10.6分式的混合运算大题专练(重难点培优30题)班级:___________________ 姓名:_________________ 得分:_______________ 注意事项:本试卷试题解答30道,共分成三个层组:基础过关题(第1-10题)、能力提升题(第11-20题)、培优压轴题(第21-30题),每个题组各10题,可以灵活选用.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一.解答题(共30小题)1.(2023秋•苏州期末)化简:(1)a 2a−1−1a−1;(2)(m −3−7m+3)÷m 2−4m 2m+6.2.(2023•泉山区校级三模)(1)计算(π−3.14)0+(13)−2−(−2)3;(2)化简:(1a+1−1a 2−1)÷a−3a+1. 3.(2023春•六合区校级月考)计算.(1)4a 3b ⋅b 2a 3;(2)1−a−2a ÷a 2−4a 2+a. 4.(2023秋•崇川区校级月考)计算:(1)(π−3)0+(−13)−1−√(−2)2;(2)6a 6b 4÷3a 3b 4+a 2⋅(﹣5a );(3)(2y x )−2⋅xy x 2−xy 2xy 2÷2x ; (4)(a −1−2a−1a+1)÷a 2−4a+42+2a5.(2023春•宜兴市校级期中)计算(1)x 2x+2−x +2; (2)x 2−16x+4÷2x−84x .6.(2023春•梁溪区校级期中)计算:(1)6xy 2÷2y 2x ;(2)2x−1x−1−1x−1; (3)x x 2−4−12x−4; (4)x−y x ÷(x −2xy−y 2x) 7.(2023•徐州)计算:(1)(﹣1)2022+|√3−3|﹣(13)﹣1+√9; (2)(1+2x )÷x 2+4x+4x 2. 8.(2023春•溧阳市期中)计算:(1)a 2bc ⋅(−bc 2a ); (2)a−2a+3×2a+6a 2−4; (3)a 22a−4−2a−2; (4)(4x−2−x +2)÷(x−4x−2). 9.(2023•兴化市开学)(1)计算:(√3)2﹣(π−√5)0−√27−|√3−2|;(2)化简:ba 2−b 2÷(1−a a+b ). 10.(2023春•滨湖区校级期中)化简:(1)b 2−27a 3÷2b 9a ⋅3ab b 4; (2)4x 22x−3+93−2x ; (3)m 2m+2−m +2.11.(2023春•东海县期末)计算:(1)a 2bc ⋅(−bc 2a ); (2)a 22a−4−2a−2. 12.(2023春•丹阳市期末)化简:(1)2xx 2−4−1x−2;(2)(1−1a )÷a 2−2a+1a 2−1.13.(2023春•常州期末)计算:(1)8x 3÷32x 2; (2)a−c a−b −c−b b−a. 14.(2023春•溧阳市期末)化简:(1)(−m n 2)•n m; (2)a a−1÷(a 2a 2−1−a a+1).15.(2023秋•环翠区校级月考)分式计算:(1)3x 2y ⋅512ab 2÷(−5a 4b ); (2)(−a 2bc )3⋅(−c 2a 2)2÷(−bc a )4; (3)a+31−a ÷a 2+3aa 2−2a+1; (4)(ab −b 2)÷a 2−b 2a+b. 16.(2023秋•张店区校级月考)分式的计算:(1)(1x−1−1x 2−1)÷x 2−x x 2−2x+1; (2)2x−6x−2÷(5x−2−x −2).17.(2023春•南关区校级月考)计算:(1)x x 2−1⋅x+1x 2; (2)(a+b)2ab −a 2+b 2ab. 18.(2023秋•和平区校级期末)计算:(1)(−4m 3n 3t )2÷n mt(2)x 2−4x 2−4x+4÷x+2x+1−x x−219.(2023春•罗湖区校级期末)计算(1)3x (x−3)2−x 3−x (2)1x+1+1x−1−x 2+1x 2−1x −1x−120.(2023春•南阳月考)化简:(1)(a ﹣1−4a−1a+1)÷a 2−8a+16a+1; (2)(x+2x 2−2x −x−1x 2−4x+4)÷x−4x . 21.(2023秋•青龙县期中)计算:(1)a 2a−b +b 2a−b −2ab a−b ;(2)(1−1a+1)÷a a 2+2a+1. 22.(2023春•沈北新区期末)化简:(1)(x 2﹣4y 2)÷2y+x xy •1x(2y−x); (2)2x x 2−4−1x−2.23.(2023•九龙坡区校级开学)分式化简:(1)16−x 2x 2+4x+4÷x 2x+4⋅x+2x+4; (2)1a+1−3−aa 2−6a+9÷a 2+a a−3. 24.(2023秋•寻甸县期末)计算与化简(1)32m−n −2m−n(2m−n)2;(2)(a +2−5a−2)÷3−a 2a−4. 25.(2023秋•沂水县期末)化简:(1)x x−1+3x−11−x 2; (2)(2m m−1−m m+1)÷m m 2−1. 26.(2023秋•天津期末)计算:(1)(﹣3xy )÷2y 23x •(y x)2; (2)(x x+y −2y x+y )÷x−2y xy •(1x +1y ). 27.(2023春•沙坪坝区校级月考)计算:(1)2y−x x−y +y y−x +x x−y ;28.(2023秋•沙坪坝区校级期末)计算:(1)(a +b )2+a (a ﹣2b );(2)(1−x x+2)÷x 2−4x+4x 2−4. 29.(2023秋•荔湾区期末)计算:(1)a−1a−b −1+b b−a ;(2)(4−a 2a−1+a )÷a 2−16a−1. 30.(2023秋•永年区期末)上课时老师在黑板上书写了一个分式的正确化简结果,随后用手掌盖住了一部分,形式如下: •y 2x 2−xy −y 2−x 2x 2−2xy+y 2=x x−y(1)聪明的你请求出盖住部分化简后的结果;(2)当x =2时,y 等于何值时,原分式的值为5.【拔尖特训】2023-2024学年八年级数学下册尖子生培优必刷题【苏科版】专题10.6分式的混合运算大题专练(重难点培优30题) 班级:___________________ 姓名:_________________ 得分:_______________注意事项:本试卷试题解答30道,共分成三个层组:基础过关题(第1-10题)、能力提升题(第11-20题)、培优压轴题(第21-30题),每个题组各10题,可以灵活选用.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一.解答题(共30小题)1.(2023秋•苏州期末)化简:(1)a 2a−1−1a−1;(2)(m −3−7m+3)÷m 2−4m 2m+6.【分析】(1)根据分式的减法法则进行计算,再化成最简分式即可;(2)先根据分式的减法法则进行计算,再根据分式的除法法则把除法变成乘法,最后根据分式的乘法法则进行计算即可.【解答】解:(1)原式=a 2−1a−1=(a+1)(a−1)a−1 =a +1;(2)原式=[(m−3)(m+3)m+3−7m+3]•2(m+3)m(m−4) =m 2−9−7m+3•2(m+3)m(m−4)=(m+4)(m−4)m+3•2(m+3)m(m−4)=2(m+4)m=2m+8m . 2.(2023•泉山区校级三模)(1)计算(π−3.14)0+(13)−2−(−2)3;(2)化简:(1a+1−1a 2−1)÷a−3a+1. 【分析】(1)根据零指数幂、负整数指数幂和有理数的乘方计算即可;(2)先算括号内的式子,再计算括号外的除法即可.【解答】解:(1)(π−3.14)0+(13)−2−(−2)3=1+9﹣(﹣8)=1+9+8=18;(2)(1a+1−1a 2−1)÷a−3a+1 =a−1−1(a+1)(a−1)•a+1a−3=a−2(a−1)(a−3)=a−2a 2−4a+3. 3.(2023春•六合区校级月考)计算. (1)4a 3b ⋅b 2a 3;(2)1−a−2a ÷a 2−4a 2+a. 【分析】(1)根据分式的乘法运算即可求出答案.(2)根据分式的乘除运算以及加减运算法则即可求出答案.【解答】解:(1)原式=4ab 6a 3b =23a 2. (2)原式=1−a−2a ×a 2+a a 2−4 =1−a−2a ×a(a+1)(a+2)(a−2)=1−a+1a+2=a+2a+2−a+1a+2=1a+2. 4.(2023秋•崇川区校级月考)计算:(1)(π−3)0+(−13)−1−√(−2)2;(2)6a 6b 4÷3a 3b 4+a 2⋅(﹣5a );(3)(2y x )−2⋅xy x 2−xy 2xy 2÷2x; (4)(a −1−2a−1a+1)÷a 2−4a+42+2a 【分析】(1)利用零指数幂,负指数幂和算术平方根的性质进行计算即可;(2)先利用整式的除法法则,乘法法则进行计算,然后再进行合并即可;(3)先分别利用负指数幂,分式的乘方,分式的乘法法则,除法法则进行计算,然后再进行减法运算;(4)先算括号内的减法,然后再将括号外分式的分子分母进行因式分解,将除法化为乘法再进行约分,最后化为最简分式即可.【解答】解:(1)(π−3)0+(−13)−1−√(−2)2=1+(﹣3)﹣2=﹣4;(2)6a 6b 4÷3a 3b 4+a 2⋅(﹣5a )=2a 3﹣5a 3=﹣3a 3;(3)(2y x )−2⋅xy x 2−xy 2xy 2÷2x =x 24y 2⋅xy x 2−xy 2xy 2⋅x 2=x 4y −x 4y=0;(4)(a −1−2a−1a+1)÷a 2−4a+42+2a=(a+1)(a−1)−(2a−1)a+1÷(a−2)22(a+1) =a(a−2)a+1⋅2(a+1)(a−2)2 =2a a−2. 5.(2023春•宜兴市校级期中)计算(1)x 2x+2−x +2; (2)x 2−16x+4÷2x−84x .【分析】(1)先通分再加减即可;(2)先因式分解,再根据除法法则计算即可.【解答】解:(1)x 2x+2−x +2 =x 2x+2−x 2+2x x+2+2x+4x+2 =4x+2;(2)x 2−16x+4÷2x−84x =(x+4)(x−4)x+4•4x 2(x−4)=2x .6.(2023春•梁溪区校级期中)计算:(1)6xy 2÷2y 2x ; (2)2x−1x−1−1x−1; (3)x x 2−4−12x−4; (4)x−y x ÷(x −2xy−y 2x) 【分析】(1)把除法转为乘法,再约分即可;(2)利用分式的减法法则进行运算即可;(3)先通分,再进行运算即可;(4)先通分,把能分解的进行分解,除法转为乘法,再约分即可.【解答】解:(1)6xy 2÷2y 2x=6xy 2⋅x 2y 2 =3x 2;(2)2x−1x−1−1x−1 =2x−1−1x−1=2(x−1)x−1=2;(3)x x 2−4−12x−4 =2x 2(x−2)(x+2)−x+22(x−2)(x+2) =x−22(x−2)(x+2)=12(x+2)=12x+4;(4)x−y x ÷(x −2xy−y 2x ) =x−y x ÷x 2−2xy+y 2x =x−y x ⋅x(x−y)2 =1x−y .7.(2023•徐州)计算:(1)(﹣1)2022+|√3−3|﹣(13)﹣1+√9; (2)(1+2x )÷x 2+4x+4x 2. 【分析】(1)根据有理数的乘方、绝对值和负整数指数幂可以解答本题;(2)先算括号内的式子,然后计算括号外的除法即可.【解答】解:(1)(﹣1)2022+|√3−3|﹣(13)﹣1+√9 =1+3−√3−3+3=4−√3;(2)(1+2x )÷x 2+4x+4x 2=x+2x •x 2(x+2)2=x x+2.8.(2023春•溧阳市期中)计算:(1)a 2bc ⋅(−bc 2a ); (2)a−2a+3×2a+6a 2−4; (3)a 22a−4−2a−2;(4)(4x−2−x +2)÷(x−4x−2).【分析】(1)根据分式的约分可以解答本题;(2)先对分式的分子分母分解因式,再约分即可;(3)先通分,然后再分解因式,最后约分即可;(4)先对括号内的式子通分,然后计算括号外的除法即可.【解答】解:(1)a 2bc ⋅(−bc 2a )=−a 2; (2)a−2a+3×2a+6a 2−4=a−2a+3•2(a+3)(a+2)(a−2) =2a+2;(3)a 22a−4−2a−2=a 2−42(a−2)=(a+2)(a−2)2(a−2)=a+22;(4)(4x−2−x +2)÷(x−4x−2) =4−(x−2)(x−2)x−2•x−2x−4=4−x 2+4x−4x−4=−x(x−4)x−4 =﹣x .9.(2023•兴化市开学)(1)计算:(√3)2﹣(π−√5)0−√27−|√3−2|;(2)化简:ba 2−b 2÷(1−a a+b). 【分析】(1)先化简各式,然后再进行计算即可解答;(2)先利用异分母分式加减法计算括号里,再算括号外,即可解答.【解答】解:(1)原式=3﹣1﹣3√3−2+√3=﹣2√3;(2)原式=b (a+b)(a−b)÷(a+b−a a+b ) =b (a+b)(a−b)⋅a+b b=1a−b. 10.(2023春•滨湖区校级期中)化简: (1)b 2−27a 3÷2b 9a ⋅3ab b 4; (2)4x 22x−3+93−2x ; (3)m 2m+2−m +2.【分析】(1)先把除法转化为乘法,然后约分化简即可;(2)把第二个分母变形后根据同分母分式的加减法法则计算;(3)先通分,然后根据同分母分式的加减法法则计算.【解答】解:(1)原式=b 2−27a 3⋅9a 2b ⋅3ab b 4 =−12ab 2;(2)原式=4x 22x−3−92x−3=4x 2−92x−3=(2x−3)(2x+3)2x−3=2x +3; (3)原式=m 2m+2−(m −2)=m 2m+2−m 2−4m+2=m 2−m 2+4m+2=4m+2. 11.(2023春•东海县期末)计算:(1)a 2bc ⋅(−bc 2a ); (2)a 22a−4−2a−2. 【分析】(1)根据分式的乘法运算即可求出答案.(2)根据分式的加减运算即可求出答案.【解答】解:(1)原式=−a 2.(2)原式=a 22(a−2)−42(a−2)=a 2−42(a−2) =(a−2)(a+2)2(a−2)=a+22.12.(2023春•丹阳市期末)化简:(1)2xx 2−4−1x−2;(2)(1−1a )÷a 2−2a+1a 2−1. 【分析】(1)原式通分并利用同分母分式的减法法则计算,约分即可得到结果;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:(1)原式=2x (x+2)(x−2)−x+2(x+2)(x−2)=2x−(x+2)(x+2)(x−2)=2x−x−2(x+2)(x−2)=x−2(x+2)(x−2)=1x+2;(2)原式=a−1a ÷(a−1)2(a+1)(a−1) =a−1a •(a+1)(a−1)(a−1)2=a+1a .13.(2023春•常州期末)计算:(1)8x 3÷32x 2; (2)a−c a−b −c−b b−a. 【分析】(1)根据分式的除法运算进行化简即可求出答案.(2)根据分式的加减运算进行化简即可求出答案.【解答】解:(1)原式=8x 3⋅x 232 =14x. (2)原式=a−c+b−c a−b =a+b a−b . 14.(2023春•溧阳市期末)化简:(1)(−m n 2)•n m; (2)a a−1÷(a 2a 2−1−a a+1).【分析】(1)根据分式的乘法计算即可;(2)先算括号内的式子,然后计算括号外的除法即可.【解答】解:(1)(−m n 2)•n m =﹣(m n 2•n m ) =−1n ;(2)a a−1÷(a 2a 2−1−a a+1) =a a−1÷a 2−a(a−1)(a+1)(a−1)=a a−1⋅(a+1)(a−1)a 2−a 2+a=a a−1⋅(a+1)(a−1)a =a +1.15.(2023秋•环翠区校级月考)分式计算:(1)3x 2y ⋅512ab 2÷(−5a 4b ); (2)(−a 2b c )3⋅(−c 2a 2)2÷(−bc a )4; (3)a+31−a ÷a 2+3aa 2−2a+1; (4)(ab −b 2)÷a 2−b 2a+b .【分析】(1)按照从左到右的顺序,进行计算即可解答;(2)先算乘方,再算乘除,即可解答;(3)先把除法转化为乘法,进行计算即可解答;(4)先把除法转化为乘法,进行计算即可解答.【解答】解:(1)3x 2y ⋅512ab 2÷(−5a 4b ) =15x 2y12ab 2•(−4b 5a ) =−x 2y a 2b; (2)(−a 2b c )3⋅(−c 2a 2)2÷(−bc a )4; =−a 6b 3c 3•c 4a 4÷b 4c 4a 4 =−a 6b 3c 3•c 4a 4•a 4b 4c 4 =−a 6c 3b; (3)a+31−a ÷a 2+3aa 2−2a+1=a+31−a •(a−1)2a(a+3)=1−a a ;(4)(ab −b 2)÷a 2−b 2a+b =b (a ﹣b )•a+b (a+b)(a−b)=b .16.(2023秋•张店区校级月考)分式的计算:(1)(1x−1−1x 2−1)÷x 2−x x 2−2x+1; (2)2x−6x−2÷(5x−2−x −2).【分析】(1)分式的加减运算以及乘除运算法则即可求出答案.(2)分式的加减运算以及乘除运算法则即可求出答案.【解答】解:(1)原式=x+1−1(x−1)(x+1)•(x−1)2x(x−1)=x (x−1)(x+1)•x−1x=1x+1.(2)原式=2(x−3)x−2÷5−(x+2)(x−2)(x−2) =2(x−3)x−2•x−29−x 2=−2(x−3)(x+3)(x−3) =−2x+3. 17.(2023春•南关区校级月考)计算: (1)x x 2−1⋅x+1x 2; (2)(a+b)2ab −a 2+b 2ab. 【分析】(1)先分解因式,然后再约分.(2)同分母相减,分母不变,分子相减即可求出答案.【解答】解:(1)原式=x (x+1)(x−1)•x+1x 2=1x(x−1). (2)原式=a 2+2ab+b 2−a 2−b 2ab =2ab ab=2. 18.(2023秋•和平区校级期末)计算:(1)(−4m 3n 3t )2÷n mt(2)x 2−4x 2−4x+4÷x+2x+1−x x−2【分析】(1)先计算乘方,再计算除法即可;(2)先按分式除法法则计算,再按分式减法法则计算即可.【解答】解:(1)原式=16m 6n 29t 2÷n mt=16m 6n 29t 2×mt n =16m 7n 9t; (2)原式=(x+2)(x−2)(x−2)2−x+1x+2−x x−2 =x+1x−2−x x−2=1x−2. 19.(2023春•罗湖区校级期末)计算(1)3x (x−3)2−x 3−x (2)1x+1+1x−1−x 2+1x 2−1(3)(x+1x 2−1+x x−1)÷x+1x 2−2x+1【分析】(1)直接进行通分运算进而得出答案;(2)直接进行通分运算进而得出答案;(3)直接利用分式的性质化简,再利用分式的混合运算法则计算得出答案.【解答】解:(1)3x (x−3)2−x 3−x =3x (x−3)2+x(x−3)(x−3)2 =x 2(x−3)2;(2)1x+1+1x−1−x 2+1x 2−1=x−1x 2−1+x+1x 2−1−x 2+1x 2−1=−x 2+2x−1(x+1)(x−1)=−(x−1)2(x+1)(x−1)=−x−1x+1;(3)(x+1x 2−1+x x−1)÷x+1x 2−2x+1 =1+x x−1•(x−1)2x+1=x ﹣1.20.(2023春•南阳月考)化简:(1)(a ﹣1−4a−1a+1)÷a 2−8a+16a+1; (2)(x+2x 2−2x −x−1x 2−4x+4)÷x−4x . 【分析】(1)先算括号内的减法,把除法变成乘法,再算乘法即可;(2)先算括号内的减法,把除法变成乘法,再算乘法即可.【解答】解:(1)原式=(a−1)(a+1)−(4a−1)a+1•a+1(a−4)2=a 2−1−4a+1a+1=a 2−4a a+1•a+1(a−4)2 =a(a−4)a+1•a+1(a−4)2=a a−4;(2)原式=[x+2x(x−2)−x−1(x−2)2]•x x−4 =(x+2)(x−2)−x(x−1)x(x−2)2•x x−4 =x 2−4−x 2+x x(x−2)2 =x−4x(x−2)2⋅x x−4 =1(x−2)2 =1x 2−4x+4. 21.(2023秋•青龙县期中)计算: (1)a 2a−b +b 2a−b −2ab a−b; (2)(1−1a+1)÷a a 2+2a+1. 【分析】(1)根据同分母分式加减法则进行计算;(2)先通分计算括号内的减法,再把除法转化为乘法,约分计算便可.【解答】解:(1)a 2a−b +b 2a−b −2ab a−b=a 2+b 2−2ab a−b=(a−b)2a−b =a ﹣b ;(2)(1−1a+1)÷aa 2+2a+1 =a a+1×(a+1)2a =a +1.22.(2023春•沈北新区期末)化简:(1)(x 2﹣4y 2)÷2y+x xy •1x(2y−x); (2)2xx 2−4−1x−2.【分析】(1)先算小括号里面的,然后再算括号外面的;(2)先通分,然后按同分母分式加减法法则进行计算求解.【解答】解:(1)原式=(x +2y )(x ﹣2y )•xy 2y+x ⋅1x(2y−x) =﹣y ;(2)原式=2x (x+2)(x−2)−x+2(x+2)(x−2)=2x−x−2(x+2)(x−2) =1x+2. 23.(2023•九龙坡区校级开学)分式化简: (1)16−x 2x 2+4x+4÷x 2x+4⋅x+2x+4; (2)1a+1−3−aa 2−6a+9÷a 2+a a−3. 【分析】(1)根据分式的乘除法可以解答本题;(2)根据分式的除法和减法可以解答本题.【解答】解:(1)16−x 2x 2+4x+4÷x 2x+4⋅x+2x+4 =(4+x)(4−x)(x+2)2⋅2(x+2)x ⋅x+2x+4 =2(4−x)x=8−2x x ;(2)1a+1−3−aa 2−6a+9÷a 2+a a−3=1a+1−3−a (a−3)2⋅a−3a(a+1) =1a+1+1a(a+1) =a+1a(a+1)=1a .24.(2023秋•寻甸县期末)计算与化简(1)32m−n −2m−n (2m−n)2; (2)(a +2−5a−2)÷3−a 2a−4.【分析】(1)先约分,再根据分式的减法法则进行计算即可;(2)先算括号内的加减,把除法变成乘法,再根据分式的乘法法则求出答案即可.【解答】解:(1)原式=32m−n −12m−n=3−12m−n=22m−n ;(2)原式=(a+2)(a−2)−5a−2÷−(a−3)2(a−2) =a 2−9a−2•2(a−2)−(a−3) =(a+3)(a−3)a−2•2(a−2)−(a−3)=﹣2(a +3)=﹣2a ﹣6.25.(2023秋•沂水县期末)化简:(1)x x−1+3x−11−x 2; (2)(2m m−1−m m+1)÷m m 2−1. 【分析】(1)先通分,再根据同分母分式相加法则求出答案即可;(2)先算括号内的减法,把除法变成乘法,再算乘法即可.【解答】解:(1)x x−1+3x−11−x 2 =x(x+1)(x+1)(x−1)−3x−1(x+1)(x−1)=x 2+x−3x+1(x+1)(x−1)=x 2−2x+1(x+1)(x−1)=(x−1)2(x+1)(x−1) =x−1x+1; (2)(2m m−1−m m+1)÷m m 2−1 =2m(m+1)−m(m−1)(m+1)(m−1)•(m+1)(m−1)m =m 2+3m (m+1)(m−1)•(m+1)(m−1)m =m(m+3)(m+1)(m−1)•(m+1)(m−1)m=m +3.26.(2023秋•天津期末)计算:(1)(﹣3xy )÷2y 23x •(y x)2; (2)(x x+y −2y x+y )÷x−2y xy •(1x +1y ). 【分析】(1)先算乘方,把除法变成乘法,最后根据分式的乘法法则求出答案即可;(2)先算括号内的加减,再把除法变成乘法,最后根据分式的乘法法则求出答案即可.【解答】解:(1)原式=(﹣3xy )÷2y 23x •y 2x 2 =(﹣3xy )•3x 2y 2•y 2x 2=−9y 2;(2)原式=x−2y x+y ÷x−2y xy •x+y xy=x−2y x+y •xy x−2y •x+y xy =1.27.(2023春•沙坪坝区校级月考)计算:(1)2y−x x−y +y y−x +x x−y ;(2)(x +1−8x−1)÷x 3−9x x 2−2x+1. 【分析】(1)先变形为同分母分式的加减运算,再根据法则计算即可;(2)先计算括号内分式的减法、将除式的分子、分母因式分解,继而将除法转化为乘法,然后约分即可.【解答】解:(1)原式=2y−x x−y −y x−y +x x−y =2y−x−y+x x−y=y x−y ;(2)原式=(x 2−1x−1−8x−1)÷x(x+3)(x−3)(x−1)2=(x+3)(x−3)x−1•(x−1)2x(x+3)(x−3)=x−1x .28.(2023秋•沙坪坝区校级期末)计算:(1)(a +b )2+a (a ﹣2b );(2)(1−x x+2)÷x 2−4x+4x 2−4. 【分析】(1)根据完全平方公式.单项式乘多项式可以解答本题;(2)先算括号内的减法,然后计算括号外的除法即可.【解答】解:(1)(a +b )2+a (a ﹣2b );=a 2+2ab +b 2+a 2﹣2ab=2a 2+b 2;(2)(1−x x+2)÷x 2−4x+4x 2−4=x+2−x x+2×(x+2)(x−2)(x−2)2 =2x−2. 29.(2023秋•荔湾区期末)计算: (1)a−1a−b −1+b b−a ;(2)(4−a 2a−1+a )÷a 2−16a−1. 【分析】(1)原式变形后,利用同分母分式的加法法则计算即可求出值;(2)原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:(1)原式=a−1a−b +1+b a−b=a+b a−b;(2)原式=4−a2+a2−aa−1•a−1(a+4)(a−4)=−a−4a−1•a−1 (a+4)(a−4)=−1a+4.30.(2023秋•永年区期末)上课时老师在黑板上书写了一个分式的正确化简结果,随后用手掌盖住了一部分,形式如下:•y2x2−xy−y2−x2x2−2xy+y2=xx−y(1)聪明的你请求出盖住部分化简后的结果;(2)当x=2时,y等于何值时,原分式的值为5.【分析】(1)根据被减数、减数、差及因数与积的关系,化简分式求出盖住的部分即可;(2)根据x=2时分式的值是5,得关于y的方程,求解即可.【解答】解:(1)∵(xx−y +y2−x2x2−2xy+y2)÷y2x2−xy=[xx−y +(y+x)(y−x)(x−y)2]×x(x−y)y2=−y x−y ×x(x−y)y2=−x y∴盖住部分化简后的结果为−x y;(2)∵x=2时,原分式的值为5,即22−y=5,∴10﹣5y=2解得y=8 5经检验,y=85是原方程的解.所以当x=2,y=85时,原分式的值为5.。
分式混合运算(习题及答案)

分式混合运算(习题及答案)混合运算(题)例1:混合运算:解:原式可以化简为:frac{4-x}{x-2} \div \frac{12}{x+2-x^2}$$frac{4-x}{x-2} \times \frac{x+2-x^2}{12}$$frac{-(x-4)}{(x-2)(x+4)}$$例2:先化简,然后在$-2\leq x\leq 2$的范围内选取一个合适的整数$x$代入求值.解:先化简原式:frac{x(x+1)}{(x-1)(1-x)} \div \frac{2x}{x+1}$$frac{x(x+1)}{(x-1)(x-1)} \times \frac{x+1}{2x}$$frac{1}{2}$$由于$-2\leq x\leq 2$,且$x$为整数,因此使原式有意义的$x$的值为$-2$,$-1$或$2$。
代入计算可得:当$x=2$时,原式为$-2$。
巩固练1.计算:1)$$\frac{x-y}{x+2y} \div \frac{1}{2x+4y}$$化简原式:frac{x-y}{x+2y} \times \frac{2x+4y}{1}$$frac{2(x-y)}{x+2y}$$2)$$\frac{\frac{a}{a-1}-1}{a^2-2a+1} \div \frac{1}{a+1}$$ 化简原式:frac{\frac{a}{a-1}-1}{(a-1)^2} \times (a+1)$$frac{a-2}{(a-1)^2}$$3)$$\frac{2a-2ab}{a^2-b^2} \div \frac{a+b}{a+b}$$化简原式:frac{2a-2ab}{a^2-b^2} \times \frac{a+b}{a+b}$$frac{2a-2ab}{(a-b)(a+b)} \times \frac{a+b}{1}$$frac{2(1-b)}{a-b}$$4)$$\frac{y-1-\frac{8}{y-1}}{y^2+y} \div\frac{1}{y(y+1)}$$化简原式:frac{y-1-\frac{8}{y-1}}{y(y+1)} \times \frac{y(y+1)}{1}$$ frac{(y-1)^2-8}{y(y+1)^2}$$5)$$\frac{a^2-2ab+b^2}{b}\div \frac{1}{a-b}-1$$化简原式:frac{(a-b)^2}{b} \times \frac{a-b}{1}-1$$frac{(a-b)^3}{b}-1$$6)$$\frac{x^2-4x+4}{x(x-1)} \div \frac{x+2}{x-1}$$化简原式:frac{(x-2)^2}{x(x-1)} \times \frac{x-1}{x+2}$$frac{(x-2)^2}{x(x+2)}$$7)$$\frac{2}{(x-1)^2} - \frac{1}{(x-1)^2(x+1)}$$化简原式:frac{2(x+1)-1}{(x-1)^2(x+1)}$$frac{2x+1}{(x-1)^2(x+1)}$$8)$$\frac{3-x}{2(x-2)} \div \frac{5}{x-2}-\frac{5}{x-3}$$ 化简原式:frac{3-x}{2(x-2)} \times \frac{x-2}{5} - \frac{5}{x-3}$$ frac{(x-3)(x-1)}{2(x-2)5} - \frac{5}{x-3}$$frac{x^2-4x+7}{10(x-2)(x-3)}$$9)$$\frac{x-1}{x+1} \div \frac{x-3}{x-2} - \frac{5}{x^2-3x}$$化简原式:frac{(x-1)(x-2)}{(x+1)(x-3)} - \frac{5}{x(x-3)}$$frac{x^2-3x-2}{x(x-3)(x+1)(x-3)} - \frac{5(x+1)}{x(x-3)(x+1)(x-3)}$$frac{x^2-3x-2-5x-5}{x(x-3)(x+1)(x-3)}$$frac{x^2-8x-7}{x(x-3)(x+1)^2}$$10)$$\frac{1}{(x-1)(x+1)}-\frac{1}{x(x-1)}$$化简原式:frac{x-(x-1)}{x(x-1)(x+1)}$$frac{1}{x(x+1)}$$11)$$\frac{2}{x+y} - \frac{1}{y-x} \times \frac{y^2-x^2}{11}$$化简原式:frac{2(y-x)}{(y-x)(x+y)} - \frac{y+x}{11(x+y)}$$frac{y-x-2}{11(x+y)}$$2.化简求值:1)先化简,再求值:$\frac{x^2+2x+1}{x+2x+2} \div \frac{1}{x+2}$,其中$x=3-1$。
八年级数学分式练习题及答案

八年级数学分式练习题及答案21、在11x?13xy3x22?x?y、a?1m中分式的个数有有意义,则x应满足A.x≠-1B.x≠C.x≠±1D.x≠-1且x≠2、下列约分正确的是Ax63x?yx?yx2?x; Bx?y?0; C12xy21x2?xy?x; D4x2y?2 4、如果把分式xyx?y中的x和y都扩大2倍,则分式的值 A、扩大4倍; B、扩大2倍; C、不变;D缩小2倍5、化简m2?3m9?m2的结果是 A、mm? B、?mmmm?3C、m?D、3?m6、下列分式中,最简分式是a?bx2?y2A.b?a B.x2?42?ax?y C.x?D.a2?4a??a7、根据分式的基本性质,分式a?b可变形为aaa?b??a?a a?ba?ba?b8、对分式y2x,x3y,124xy通分时,最简公分母是 A.24x2y B.12x2yC.24xyD.12xy、下列式子x?y1x2?y2?x?y;b?ac?a?a?ba?c;b?ayx?ya?b??1;?x??x?y?x?y中正确个数有 A 、1个 B 、个 C、个 D、个 10、x-y的倒数的相反数 A.-111x?y B.?x?y C.x?y D.?1x?y二、填空题11、当x 时,分式1x?5有意义.x212、当x 时,分式?1x?1的值为零。
13、当x=1x-y2,y=1时,分式xy-1的值为_________________14、计算:yx?xyy?x??15、用科学计数法表示:—a2a16、如果b?3,那么a?b?____ 。
17、若x?5x?4?14?x?5有增根,则增根为___________。
?1 18、20080-22+??1??3??=19、方程75x?2?x的解是。
0、某工厂库存原材料x吨,原计划每天用a 吨,若现在每天少用b吨,则可以多用天。
三、解答题21、计算题?1?a2aa?1x2?2x?1x?x2?1?1x2?x22、先化简,再求值:??1?x?1?x?1x2?1,其中:x=-223、解方程2x?3?3x3xx?1x?2?x?1?124、勐捧中学162班和163班的学生去河边抬砂到校园内铺路,经统计发现:162班比163班每小时多抬30kg,162班抬900kg所用的时间和163班抬600kg所用的时间相等,两个班长每小时分别抬多少砂?25、已知y=x?12?3x,x取哪些值时: y的值是零;分式无意义; y的值是正数; y的值是负数.第16章分式参考答案11. x≠12. x=1 13. 1y314. ?3x15. -3.02?10 16.?4217. x=418. 0 19. x=-5x20.a?b三、解答题分式x2?11、当x为何值时,分式2有意义?x?x?2x2?1当x为何值时,分式2的值为零?x?x?22、计算:a2?41x2x?4?2x?1???a?2x? ?1?? ??2a?2a?2x?2?xx?2?x?2x?211242?x?y??x?y????? ?x?y????241?x1?x1?x1?xx3xx?y?3x1??xx21?1?3、计算已知2,求x?的值。
分式混合运算练习题(50题)

分式混合运算练习题(50题) 分式混合运算练50题(5月25、26、27日完成)1.计算:$\frac{3}{4}+\frac{1}{6}-\frac{1}{8}$。
2.计算:$\frac{5}{6}-\frac{1}{4}+\frac{1}{3}$。
3.化简:$\frac{6x+2}{2x}$。
4.化简:$\frac{5x^2-15}{10}$。
5.计算:$\frac{2}{3}+\frac{1}{4}-\frac{1}{6}$。
6.化简:$\frac{3}{4}+\frac{2}{5}-\frac{1}{10}$。
7.计算:$\frac{2}{3}+\frac{3}{4}-\frac{5}{6}$。
8.计算:$\frac{3}{4}+\frac{1}{2}\div\frac{2}{5}$。
9.计算:$\frac{1}{2}+\frac{1}{3}\times\frac{3}{4}$。
10.化简:$\frac{3x^2-12}{6x}$。
11.计算:$\frac{1}{2}+\frac{2}{3}\times\frac{3}{4}-\frac{3}{5}$。
12.计算:$-\frac{1}{a+1}$。
13.计算:$\frac{2a-1}{a^2-1}$。
14.计算:$\frac{1}{a^2}+\frac{1}{a^3}$。
15.计算:$\frac{1}{2}+\frac{2}{3}\times\frac{3}{5}$。
16.化简:$\frac{x^2-2x+1}{x^2-1}$,$x\neq-1,1$。
17.已知$ab=1$,试求$\frac{a^2+b^2}{a^2-b^2}$的值。
18.计算:$-\frac{a}{a^2-1}$。
19.计算:$\frac{1}{a}+\frac{1}{b}-\frac{a+b}{ab}$。
20.化简:$\frac{2x^2-8}{4x}$。
21.计算:$\frac{1}{2}+\frac{1}{4}+\frac{1}{8}$。
人教版八年级数学上册 分式混合运算(习题及答案)

÷ x + 2 - ⎪ . 解:原式 = - ÷例 2:先化简 ⎢⎡ x ( x + 1) + x ⎥ ÷ 解:原式 = ⋅例题示范例 1:混合运算: 分式混合运算(习题)4 - x ⎛ 12 ⎫x - 2 ⎝ x - 2 ⎭【过程书写】x - 4 x 2 - 4 - 12x - 2 x - 2 x - 4 x 2 - 16 =- ÷x - 2 x - 2 x - 4 x - 2 =- ⋅x - 2 ( x + 4)( x - 4)=-1x + 4⎤ 2 x⎣ x - 1 ⎦ 1 - x,然后在 -2 ≤ x ≤ 2 的范围内选取一个你认为合适的整数 x 代入求值.【过程书写】x 2 + x + x 2 - x 1 - x x - 1 2 x2 x 2 1 - x = ⋅x - 1 2 x = - x∵ -2 ≤ x ≤ 2 ,且 x 为整数∴使原式有意义的 x 的值为-2,-1 或 2 当 x =2 时,原式=-2(2) - 1⎪ ÷ (3)⎪(4) y - 1 - y - 1 ⎭ y 2 + y巩固练习1. 计算:(1)1 - x - y x 2 - y 2÷x + 2 y x 2 + 4 x y + 4 y 2;⎛ a ⎫ ⎝ a - 1 ⎭ a 1 2 - 2a + 1;⎛ 2 ⎝ a 2 - b 2 - 1 ⎫ a ÷ a 2 - ab ⎭ a + b;⎛ 8 ⎫ y 2 - 6 y + 9 ⎪ ÷ ⎝;(5) ÷ - ⎪ ; (6) ÷ -1⎪ ;x ⎪ ⎪ ; 3 - x ⎛ 5 ⎫ x - 2 ⎛ -5 ⎫ ÷ - x - 3 ⎪ ; ÷ x + 2 -(10) ( x 2 - 1) - - 1⎪ ; 1a 2 - 2ab + b 2 ⎛ 1 1 ⎫ x 2 - 4x + 4 ⎛ 2 ⎫ 2a - 2b ⎝ b a ⎭ ⎝ x ⎭(7) ⎛ ⎝ 3x + 4 2 ⎫ x + 2 - ÷ x 2 - 1 x - 1 ⎭ x 2- 2 x + 1;(8) (9) 2 x - 4 ⎝ x - 2 ⎭ 2 x - 6 ⎝ x - 3 ⎭⎛ 1 ⎫ ⎝ x - 1 x + 1 ⎭(11) - ÷ - - ⎪ . ⎝ x + y x - y ⎭ x 2- 3xy ⎝x y ⎭ (1)先化简,再求值: 1 - ⎪÷(2)先化简,再求值: + ÷ x 2 - y 2 y 2 - x 2 ⎭ x 2 y - xy 2⎛ 2 1 ⎫ x 2 - y 2 ⎛ 1 1 ⎫ ⎪ ⋅2. 化简求值:⎛ ⎝ 1 ⎫ x 2 + 2x + 1 x + 2 ⎭ x + 2,其中 x = 3 -1.⎛ 5x + 3 y 2 x ⎫ 1 ⎪ ⎝x = 3 + 2 , y = 3 - 2 .,其中(3)先化简 ⎛ + 1⎪ ÷ (4)已知 A = .x + 1 ⎫ x 2 + x 2 - 2 x +⎝ x - 1 ⎭ x 2 - 2 x + 1 x 2 - 1,然后在 -2 ≤ x ≤ 2的范围内选取一个合适的整数 x 代入求值.x 2 + 2 x + 1 x -x 2 - 1 x - 1①化简 A ; ⎧ x -1≥ 0②当 x 满足不等式组 ⎨ ,且 x 为整数时,求 A 的值.⎩ x - 3 < 0x 2 + 3 B . x 2 + 1 D. 2ab 中的分子、分母的值同时扩大为原来的 2 倍,则分式的值(ab 中 a ,b 的值都扩大为原来的 2 倍,则分式的值(x 2 + y 2 中 x ,y 的值都扩大为原来的 2 倍,则分式的值(( x - 2)( x + 3) = x + 3,则 A =_______,B =_______.3. 不改变分式13x - y2 的值,把分子、分母中各项系数化为整数,结果是( )1 3 x2 + 1A . 6 x - yC . 3x - 3 y 18 x - 3 y2 x 2 + 6 18 x -3 y2 x 2 + 34. 把分式 a - 3bA .不变B .扩大为原来的 2 倍C .扩大为原来的 4 倍D .缩小为原来的 12)5. 把分式 3a - 4bA .不变B .扩大为原来的 2 倍C .扩大为原来的 4 倍D .缩小为原来的 126. 把分式 2 xyA .不变B .扩大为原来的 2 倍C .扩大为原来的 4 倍D .缩小为原来的 12))7. 已知 4 x + 7A x - 2 + B2.(1)原式=1,当x=3-1时,原式=【参考答案】巩固练习1.(1)-yx+y (2)a-1(3)1 a2(4)y(y+1)(y2-2y-7) (y-1)(y-3)2(5)ab 2(6)-x+2(7)x-1 x+1(8)-(9)-1 2x+6 1 2x+4(10)-x2+3(11)-yx+y3x+13(2)原式=3xy,当x=3+2,y=3-2时,原式=3(3)原式=2x-4x+1,当x=2时,原式=0(4)①1x-1;②13. 4. 5. 6. 7.BADA 3,1。
分式混合运算培优学案,附练习题含参考答案

分式混合运算学案知识梳理1.在进行分式的运算前,要先把分式的分子和分母因式分解.分式的乘除要约分,加减要通分,最后的结果要化成最简分式或整式.2.运算顺序:先乘除、后加减,有括号先算括号.例1:混合运算:412222x x x x -⎛⎫÷+- ⎪--⎝⎭. 【过程书写】2244122241622422(4)(4)14x x x x x x x x x x x x x x ---=-÷----=-÷----=-⋅-+-=-+解:原式例2:先化简(1)211x x x x x x+⎡⎤+÷⎢⎥--⎣⎦,然后在22x -≤≤的范围内选取一个你认为合适的整数x 代入求值.【过程书写】2221122112x x x x x x xx x x x x++--=⋅--=⋅-=-解:原式 ∵22x -≤≤,且x 为整数∴使原式有意义的x 的值为-2,-1或2当x =2时,原式=-2练习题1. 分式的混合运算:(1)242222x x x x x⎛⎫++÷ ⎪--⎝⎭; (2)2111122x x x x ⎛⎫-÷ ⎪-+-⎝⎭;(3)24142a a a ⎛⎫+÷ ⎪--⎝⎭; (4)2344111x x x x x -+⎛⎫+-÷ ⎪--⎝⎭;(5)222112x x x x x ⎛⎫-+÷+ ⎪-⎝⎭; (6)11-+a a 221a a a -÷-+a 1.2. 化简求值:(1)先化简,再求值:22112111x x x x x x x ⎛⎫--+÷ ⎪-++-⎝⎭,其中4x =.(2)先化简,再求值:2222211b a ab b a a ab a a b ⎛⎫-+⎛⎫÷++ ⎪ ⎪-⎝⎭⎝⎭,其中11a b ==,.(3)先化简分式221221x x x x x x x x -⎛⎫-÷ ⎪---+⎝⎭,然后从13x -≤≤中选取一个你认为合适的整数x 代入求值.(4)先化简分式3423332a a a a a a a +-+⎛⎫-÷⋅ ⎪+++⎝⎭,然后从不等式组 25<324a a --⎧⎨⎩≤的解集中选取一个你认为符合题意的a 代入求值.3. 化简:22111a a ab a ab--÷⋅+,并选取一组你喜欢的整数a ,b 代入求值.小刚计算这一题的过程如下:22(1)(1)1111(1)(1)1a a a ab a aba a ab a a ab ab+--=÷⋅++-=⨯⋅+-=解:原式①②③当a =1,b =1时,原式=1. ④ 以上过程有两处错误,第一次出错在第______步(填写序号),原因:_____________________________________________;还有第_______步出错(填写序号),原因:___________________________________________________.请你写出此题的正确解答过程.4. 课堂上,王老师出了这样一道题:已知2015x =-,求代数式22213111x x x x x -+-⎛⎫÷+ ⎪-+⎝⎭的值. 小明觉得直接代入计算太复杂了,同学小刚帮他解决了问题,并解释说:“结果与x 无关”.解答过程如下:2(1)13(1)(1)1111112(1)12_________x x x x x x x x x x x x -++-=÷+-+-=÷+-+=⋅+-=原式①②③④当2015x =-时,12=原式. (1)从原式到步骤①,用到的数学知识有_______________;(2)步骤②中空白处的代数式应为_____________________;(3)从步骤③到步骤④,用到的数学知识有_____________.5. 有两个熟练工人甲和乙,已知甲每小时能制作a 个零件,乙每小时能制作b个零件.现要赶制一批零件,如果甲单独完成需要m 小时,那么甲、乙两人同时工作,可比甲单独完成提前_______________小时.6. 若把分式x y x y+-中的x 和y 都扩大为原来的m 倍,则分式的值( ) A .扩大为原来的m 倍 B .不变C .缩小为原来的1mD .不能确定7. 若把分式2x y xy+中的x 和y 都扩大为原来的3倍,则分式的值( ) A .扩大为原来的3倍 B .不变C .缩小为原来的13D .缩小为原来的168. 已知53m n =,则222m m n m n m n m n +-=+--__________.9. 已知34(1)(2)12x A B x x x x -=+----,则A =______,B =______. 10. 计算:(1)22221244x y x y x y x xy y ---÷+++; (2)211121a a a a ⎛⎫-÷ ⎪--+⎝⎭;(3)22221a a b a ab a b ⎛⎫-÷ ⎪--+⎝⎭; (4)2286911y y y y y y ⎛⎫-+--÷ ⎪-+⎝⎭;(5)2221122a ab b a b b a -+⎛⎫÷- ⎪-⎝⎭; (6)24421x x x x -+⎛⎫÷- ⎪⎝⎭;(7)2234221121x x x x x x ++⎛⎫-÷ ⎪---+⎝⎭;(8)352242x x x x -⎛⎫÷+- ⎪--⎝⎭;(9)253263x x x x --⎛⎫÷-- ⎪--⎝⎭; (10)211(1)111x x x ⎛⎫--- ⎪-+⎝⎭;(11)22221113x y x y x y x xy x y ⎛⎫⎛⎫--⋅÷-- ⎪ ⎪+--⎝⎭⎝⎭.11.化简求值:(1)先化简,再求值:2121122x x x x ++⎛⎫-÷ ⎪++⎝⎭,其中1x =.(2)先化简,再求值:2222225321x y x x y y x x y xy ⎛⎫++÷ ⎪---⎝⎭,其中x =y =(3)先化简22212211211x x x xx x x x ++-⎛⎫+÷+ ⎪--+-⎝⎭,然后在22x -≤≤的范围内选取一个合适的整数x 代入求值.(4)已知222111x x xA x x ++=---.①化简A ;②当x 满足不等式组1030x x -⎧⎨-<⎩≥,且x 为整数时,求A 的值.12.不改变分式2132113x yx -+的值,把分子、分母中各项系数化为整数,结果是() A .263x y x -+ B .218326x yx -+C .2331x y x -+D .218323x yx -+13.把分式32a bab -中的分子、分母的值同时扩大为原来的2倍,则分式的值()A .不变B .扩大为原来的2倍C .扩大为原来的4倍D .缩小为原来的1214.把分式34a b ab-中a ,b 的值都扩大为原来的2倍,则分式的值( ) A .不变 B .扩大为原来的2倍C .扩大为原来的4倍D .缩小为原来的1215.把分式222xy x y +中x ,y 的值都扩大为原来的2倍,则分式的值( ) A .不变B .扩大为原来的2倍C .扩大为原来的4倍D .缩小为原来的1216.已知47(2)(3)23x A B x x x x +=+-+-+,则A =_______,B =_______. 【参考答案】1. (1)2x (2)4x (3)2a a +(4)22x x +-(5)11x +(6)21(1)a -- 2. (1)原式,当4x =时,原式(2)原式1ab=-,当11a b ==,时,原式1=- (3)原式12x =--,当x =3时,原式1=- (4)原式=a +3,当0a =时,原式3=3. ③,约分出错④,a 的取值不能为1,当a =1时,原分式无意义正确的解答过程略 4. (1)分解因式,通分,分式的基本性质(2)221x x -+ (3)约分,分式的基本性质5. bm a b+ 6. B41x =+=7. C8. 41169. 1,210. (1)(2)(3)21a(4)(5)(6) (7)(8)(9)(10)(11) 11. (1)原式11x =+,当1x =时,原式=(2)原式=3xy,当x =y =-时,原式=3(3)原式241x x -=+,当x =2时,原式=0 (4)①11x -;②1 12. B13. A14. D15. A16. 3,1 y x y -+1a -22(1)(27)(1)(3)y y y y y y +----2ab 2x -+11x x -+126x -+124x -+23x -+y x y -+。
分式专项训练之04-通分与分式的混合运算(含答案)

分式专题训练之四(通分与分式的混合运算)含答案一.解答题(共30小题)1.指出下列各组分式的最简公分母:(1),,;(2),;(3),.2.直接写出下列各组分式的最简公分母:(1),,;(2),;(3);(4).3.计算:(1)﹣a﹣2;(2)﹣2x+y;(3)﹣﹣.4.计算:(1)+;(2)﹣y;(3)+.5.计算:(1);(2).6.计算:(1)(2)7.计算(1)(2).8.计算(1)(2)9.计算:(1);(2).10.计算:(1);(2).11.计算:(1)(﹣)÷;(2)(﹣1)÷;(3)(﹣)÷;(4)(+)÷﹣÷.12.计算:(1)÷(1﹣)(2)÷(a+2)×(3)(﹣)÷(4)﹣×.13.计算:(1)+﹣(2)x+﹣(3)++(4)1++.14.化简:(1)2a﹣﹙a﹣1﹚+;(2)(﹣)•(x﹣3);(3)()•;(4)(1﹣)÷a.15.化简:(1)÷•;(2)()2÷()2•;(3)﹣;(4)﹣;(5)﹣.16.计算:(1)++(2)+(3)﹣(4)﹣.17.计算:÷.18.化简:.19.化简:.20.计算:(﹣)÷.21.化简:÷.22.(1)化简:•;(2)•.23..24.化简:(﹣)•÷(+)25.26..27.计算:.28.•﹣÷29.化简:+.30.计算:.分式专题训练之四(通分与分式的混合运算)含答案参考答案与试题解析一.解答题(共30小题)1.指出下列各组分式的最简公分母:(1),,;(2),;(3),.2.直接写出下列各组分式的最简公分母:(1),,;(2),;(3);(4).),的最简公分母是,,的最简公分母是,的最简公分母是,,3.计算:(1)﹣a﹣2;(2)﹣2x+y;(3)﹣﹣.4.计算:(1)+;(2)﹣y;(3)+.=;=;﹣5.计算:(1);(2).﹣,即可利用同分母的分式的减法法则计算;﹣==1+=.6.计算:(1)(2))7.计算(1)(2).﹣﹣+8.计算(1)(2)+﹣=÷=.9.计算:(1);(2).)﹣10.计算:(1);(2).)=a==+==.11.计算:(1)(﹣)÷;(2)(﹣1)÷;(3)(﹣)÷;(4)(+)÷﹣÷.(﹣÷•;﹣÷•﹣÷•+)÷﹣÷.﹣12.计算:(1)÷(1﹣)(2)÷(a+2)×(3)(﹣)÷(4)﹣×.÷••﹣÷=[]=[]•﹣×﹣×﹣﹣13.计算:(1)+﹣(2)x+﹣(3)++(4)1++.+=.14.化简:(1)2a﹣﹙a﹣1﹚+;(2)(﹣)•(x﹣3);(3)()•;(4)(1﹣)÷a.==•﹣•.15.化简:(1)÷•;(2)()2÷()2•;(3)﹣;(4)﹣;(5)﹣.•••=;.16.计算:(1)++(2)+(3)﹣(4)﹣.=n==;﹣17.计算:÷.•﹣=﹣=.18.化简:.﹣•﹣•﹣19.化简:.(×20.计算:(﹣)÷.﹣]÷﹣)÷•.21.化简:÷.+÷=[]÷••22.(1)化简:•;(2)•.)﹣))••23..故答案为﹣24.化简:(﹣)•÷(+)25.=故答案为26..27.计算:.﹣×﹣28.•﹣÷×﹣×﹣故答案为29.化简:+.•30.计算:.÷=[÷×.故答案为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
时间:案序:
知识目标:巩固分式的运算法则和顺序,并能正确熟练的进行计算,提高计算的准确率。
1、填空:(1) 。(2)若 。
(3)已知, ,那么 。
2、计算:(1) (2) (3)
(4) (5) (6)
; ;
3、化简求பைடு நூலகம்。
4、已知,
课题:16.2分式的混合运算练习2时间:案序:
知识目标:巩固分式的运算法则和顺序,并能正确熟练的进行计算,提高计算的准确率。
一、填空
1、已知 ,则 =_____________.
2、.在等号成立时,右边填上适当的符号: =_____ .
3、化简 的结果为__________
二、选择(4×7)
4、分式 , , 的最简公分母是()A.5cx3B.15abcx C. 15abcx2D.15abcx3
A. 、 B. 、 C. 、 D. 、
三、计算题9、 10、 11、
12、 13、 14、 -x-1
15先化简,再求值: - + ,其中a= .
四、16、有这样一道题:“计算 ÷ -x的值,其中x=2004”甲同学把“x=2004”错抄成“x=2040”,但他的计算结果也正确,你说这是怎么回事?
5、如果 ,那么A等于( )A. m-8 B.2-m C.18-3mD.3m-12
6、分式 约分之后正确的是()A. B. C. D.
7、下列分式中,计算正确的是
A. = B. C. =-1D.
8.甲、乙两人加工某种机器零件,已知甲每天比乙多做a个,甲做m个所用的天数与乙做n个所用的天数相等(其中m≠n),设甲每天做x个零件,则甲、乙两人每天所做零件的ਪ数分别是( )