03-04年高三数学(理)全国统一标准测试(四)

合集下载

2004年普通高等学校招生全国统一考试福建卷理科数学试题及答案

2004年普通高等学校招生全国统一考试福建卷理科数学试题及答案
更多资源加微信 ziyuanwang8
2004
年普通高等学校招生福建卷理工类数学试题 新疆
王新敞
奎屯
第Ⅰ卷(选择题 共 60 分)
一、选择题:本大题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有
一项是符合题目要求的.
新疆 王新敞
奎屯
1.复数 (1 − i )10 的值是 1+ i
其中正确结论的序号是
(写出所有正
确结论的序号).
16.如图 1,将边长为 1 的正六边形铁皮的六个角各
切去一个全等的四边形,再沿虚线折起,做成一
个无盖的正六棱柱容器.当这个正六棱柱容器的
底面边长为
时,其容积最大.
三、解答题:本大题共 6 小题,共 74 分.解答应写出文字说明,证明过程或演算步骤.
17.(本小题满分 12 分)
二、13.4 5 14.1/2 15.1,3 16.2/3
三、
17. 本小题主要考查平面向量的概念和计算,三角函数的恒等变换及其图象变换的基本技
能,考查运算能力.满分 12 分.
解:(Ⅰ)依题设,f(x)=2cos2x+
3
sin2x=1+2sin(2x+
).
6

1+2sin(2x+
)=1-
3
,得
sin(2
2
12
18.本小题主要考查概率统计的基础知识,运用数学知识解决问题的能力.满分 12 分.
解:(Ⅰ)依题意,甲答对试题数ξ的概率分布如下:
ξ0 1 2 3
1 3 11
P
30 10 2 6
甲答对试题数ξ的数学期望
Eξ=0×

2004年普通高等学校招生全国统一考试数学 (理工农林医 类)

2004年普通高等学校招生全国统一考试数学 (理工农林医 类)

2004年普通高等学校招生全国统一考试数学 (理工农林医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至1页,第Ⅱ卷3至10页。

考试结束后,将试卷和答题卡一并交回。

第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上。

2.每小题选出答案后,用铅笔在答题卡上对应题宗旨答案涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

不能答在试题卷上。

3.本卷共12小题,每小题5分,共60分。

在每小题给出的四个选项中,惟有一项乃是符合题目要求的。

参阅公式:三角函数的和差化积公式 )]sin()[sin(21cos sin βαβαβα-++= )]sin()[sin(21sin cos βαβαβα--+= )]cos()[cos(21cos cos βαβαβα-++= )]cos()[cos(21sin sin βαβαβα--+-=一、选择题1.设集合(){}R y R x y x y x M ∈∈=+=,,1,22,(){}R y R x y x y x N ∈∈=-=,,0,2,则集合NM 中元素的个数为( )A .1B .2C .3D .4 2.函数2sin x y =的最小正周期乃是( )A .2πB .πC .π2D .π43.设数列{}n a 乃是等差数列,且6,682=-=a a ,n S 乃是数列{}n a 的前n 项和,则 ( )A .54S S <B .54S S =C .56S S <D .56S S = 4.圆0422=-+x y x 在点)3,1(P 处的切线方程为( )正棱台、圆台的侧面积公式l c c S )(21+'=台侧 其中c ′、c 分别表示上、下底面周长,l 表示斜高或母线长 台体的体积公式334R V π=球 其中R 表示球的半径A .023=-+y xB .043=-+y xC .043=+-y xD .023=+-y x 5.函数)1(log 221-=x y 的定义域为( )A .[)(]2,11,2 -- B .)2,1()1,2( --C .[)(]2,11,2 --D .)2,1()1,2( --6.设复数z 的辐角的主值为32π,虚部为3,则2z =( )A .i 322--B .i 232--C .i 32+D .i 232+7.设双曲线的焦点在x 轴上,两条渐近线为x y 21±=,则该双曲线的离心率=e ( )A .5B .5 C .25D .45 8.不等式311<+<x 的解集为( )A .()2,0B .())4,2(0,2 -C .()0,4-D .())2,0(2,4 --9.正三棱锥的底面边长为2,侧面均为直角三角形,则此三棱锥的体积为 ( )A .322 B .2C .32D .324 10.在△ABC 中,AB=3,BC=13,AC=4,则边AC 上的高为( )A .223 B .233 C .23 D .3311.设函数⎪⎩⎪⎨⎧≥--<+=1,141,)1()(2x x x x x f ,则使得1)(≥x f 的自变量x 的取值范围为( )A .(][]10,02, -∞-B .(][]1,02, -∞-C .(][]10,12, -∞-D .[]10,1]0,2[ -12.将4名教师分配到3所中学任教,每所中学至少1名,则不同的分配方案共有( )A .12种B .24种C .36种D .48种第Ⅱ卷步骤.)13.用平面α截半径为R 的球,如果球心到平面α的距离为2R,那么截得小圆的面积与球的表面积的比值为 .14.函数x x y cos 3sin +=在区间⎥⎦⎤⎢⎣⎡2,0π上的最小值为 .15.已知函数)(x f y =乃是奇函数,当0≥x 时,13)(-=x x f ,设)(x f 的反函数乃是)(x g y =,则=-)8(g .16.设P 乃是曲线)1(42-=x y 上的一个动点,则点P 到点)1,0(的距离与点P 到y 轴的距离之和的最小值为 .三、解读回答题(6道题,共76分)17.(本小题满分12分)已知α为锐角,且21tan =α,求ααααα2cos 2sin sin cos 2sin -的值.18.(本小题满分12分)解方程 11214=-+xx.m的矩形蔬菜温室。

全国卷IV2004年理科

全国卷IV2004年理科

2004年普通高等学校招生全国统一考试(全国卷IV )适用地区:贵州、宁夏.一、选择题(共12小题,每小题5分,满分60分)1. (2004▪全国卷IV ▪理)已知集合{M =0,1,2},{|2N x x a ==,}a M ∈,则集合M N = A.{0}B.{0,1}C.{1,2}D.{0,2}2. (2004▪全国卷IV ▪理)函数2()x y e x R =∈的反函数为A.2ln (0)y x x =>B.ln(2)(0)y x x =>C.1ln (0)2y x x => D.1ln(2)(0)2y x x => 3. (2004▪全国卷IV ▪理)过点(1-,3)且垂直于直线230x y -+=的直线方程为A.210x y +-=B.250x y +-=C.250x y +-=D.270x y -+=4. (2004▪全国卷IV ▪理)2=i B.i i D.i5. (2004▪全国卷IV ▪理)不等式(2)03x x x +<-的解集为 A.{|2x x <-或03}x << B.{|20x x -<<或3}x > C.{|2x x <-或0}x > D.{|0x x <或3}x >6. (2004▪全国卷IV ▪理)等差数列{}n a 中,12324a a a ++=-,18192078a a a ++=,则此数列前20项和等于 A.160 B.180 C.200 D.220 7. (2004▪全国卷IV ▪理)对于直线m 、n 和平面α,下面命题中的真命题是A.如果m α⊂,n α⊄,m 、n 是异面直线,那么n ∥αB.如果m α⊂,n α⊄,m 、n 是异面直线,那么n 与α相交C.如果m α⊂,n ∥α,m 、n 共面,那么m ∥nD.如果m ∥α,n ∥α,m 、n 共面,那么m ∥n 8. (2004▪全国卷IV ▪理)已知椭圆的中心在原点,离心率12e =,且它的一个焦点与抛物线24y x =-的焦点重合,则此椭圆方程为A.22143x y += B.22186x y += C.2212x y += D.2214x y += 9. (2004▪全国卷IV ▪理)从5位男教师和4位女教师中选出3位教师,派到3个班担任班主任(每班1位班主任),要求这3位班主任中男女教师都有,则不同的选派方案共有 A.210种 B.420种 C.630种 D.840种10. (2004▪全国卷IV ▪理)已知球的表面积为20π,球面上有A 、B 、C 三点,如果2AB AC ==,BC =ABC 的距离为A.1D.211. (2004▪全国卷IV ▪理)ABC ∆中,a 、b 、c 分别为A ∠、B ∠、C ∠的对边,如果a 、b 、c 成等差数列,30B ∠=︒,ABC ∆的面积为32,那么b 等于A.12B.1C.22+D.212. (2004▪全国卷IV ▪理)设函数()()f x x R ∈为奇函数,1(1)2f =,(2)()f x f x +=+ (2)f ,则(5)f =A.0B.1C.52D.5二、填空题(共4小题,每小题4分,满分16分) 13. (2004▪全国卷IV ▪理)8(x x-展开式中5x 的系数为__________. 14. (2004▪全国卷IV ▪理)向量a 、b 满足()a b -▪(2)4a b +=-,且2a =,4b =,则a 与b 夹角的余弦值等于_________.15. (2004▪全国卷IV ▪理)函数1()cos cos 2()2f x x x x R =-∈的最大值等于________. 16. (2004▪全国卷IV ▪理)设x 、y 满足约束条件10x y y x y +≤⎧⎪≤⎨⎪≥⎩,则2z x y =+的最大值是__________.三、解答题(共6小题,满分12×5+14=74分)17. (2004▪全国卷IV ▪理)已知α为第二象限角,且sin α=求s i n ()4s i n 2c o s 21πααα+++的值.18. (2004▪全国卷IV ▪理)求函数21()ln(1)4f x x x =+-在[0,2]上的最大值和最小值. 19. (2004▪全国卷IV ▪理)某同学参加科普知识竞赛,需回答三个问题.竞赛规则规定:每题回答正确得100分,回答不正确得﹣100分.假设这名同学每题回答正确的概率均为0.8,且各题回答正确与否相互之间没有影响.⑴求这名同学回答这三个问题的总得分ξ的概率分布和数学期望;⑵求这名同学总得分不为负分(即0ξ≥)的概率.20. (2004▪全国卷IV ▪理)如图,四棱锥P ABCD -中,底面ABCD 为矩形,8AB =,AD =PAD 为等边三角形,并且与底面所成二面角为60︒. ⑴求四棱锥P ABCD -的体积; ⑵证明PA BD ⊥.21. (2004▪全国卷IV ▪理)双曲线22221(1x y a a b-=>,0)b >的焦距为2c ,直线l 过点(a ,0)和(0,)b ,且点(1,0)到直线l 的距离与点(1-,0)到直线l 的距离之和45s c ≥.求双曲线的离心率e 的取值范围. 22. (2004▪全国卷IV ▪理)已知函数()(cos sin )x f x e x x -=+,将满足()0f x '=的所有正数x 从小到大排成数列{}n x .⑴证明数列{()}n f x 为等比数列;⑵记n S 是数列{()}n n x f x 的前n 项和,求12limnn S S S n→∞+++.2004年贵州省高考数学试卷(理)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2004•贵州)已知集合M={0,1,2},N={x|x=2a,a∈M},则集合M∩N=()A.{0} B.{0,1} C.{1,2} D.{0,2}【分析】集合N的元素需要运用集合M的元素进行计算,经过计算得出M的元素,再求交集【解答】解:由题意知,N={0,2,4},故M∩N={0,2},故选D.【点评】此题考查学生交集的概念,属于基础题2.(5分)(2004•贵州)函数y=e2x(x∈R)的反函数为()A.y=2lnx(x>0)B.y=ln(2x)(x>0)C.y=lnx(x>0)D.y=ln(2x)(x>0)【分析】本题主要考查求反函数的方法以及指数式和对数式的互化,属于基础性题,考查对2个知识点的灵活运用.【解答】解:由y=e2x可得2x=lny即 x=lny,将x、y互换得y=lnx(x>0)∴函数y=e2x(x∈R)的反函数为y=lnx(x>0).故选C【点评】求反函数的解题过程一般分为三个层次,其一是把原函数看做方程利用指对互化解出x;其二是根据反函数定义x、y进行互换,其三是定义域的确定.3.(5分)(2004•贵州)过点(﹣1,3)且垂直于直线x﹣2y+3=0的直线方程为()A.2x+y﹣1=0 B.2x+y﹣5=0 C.x+2y﹣5=0 D.x﹣2y+7=0【分析】根据题意,易得直线x﹣2y+3=0的斜率为,由直线垂直的斜率关系,可得所求直线的斜率为﹣2,又知其过定点坐标,由点斜式得所求直线方程.【解答】解:根据题意,易得直线x﹣2y+3=0的斜率为,由直线垂直的斜率关系,可得所求直线的斜率为﹣2,又知其过点(﹣1,3),由点斜式得所求直线方程为2x+y﹣1=0.【点评】本题考查直线垂直与斜率的相互关系,注意斜率不存在的特殊情况.4.(5分)(2004•贵州)=()A.B.C.D.【分析】化简复数的分子和分母,然后同乘分母的共轭复数,化为a+bi(a、b∈R)的形式即可.【解答】解:故选D.【点评】本题考查复数代数形式的混合运算,是基础题.5.(5分)(2004•贵州)不等式<0的解集为()A.{x|x<﹣2或0<x<3} B.{x|﹣2<x<0或x>3} C.{x|x<﹣2或x>0} D.{x|x<0或x>3}【分析】将“不等式<0”转化为:“x(x+2)(x+3)<0”,用穿根法求解.【解答】解:依题意:原不等式转化为:x(x+2)(x+3)<0解得:x<﹣2或0<x<3故选A【点评】本题主要考查分式不等式的解法,一般是转化为整式不等式,再用穿根法求解.6.(5分)(2004•贵州)等差数列中,a1+a2+a3=﹣24,a18+a19+a20=78,则此数列前20项和等于()A.160 B.180 C.200 D.220【分析】先根据a1+a2+a3=﹣24,a18+a19+a20=78可得到a1+a20=18,再由等差数列的前20项和的式子可得到答案.【解答】解:∵a1+a2+a3=﹣24,a18+a19+a20=78∴a1+a20+a2+a19+a3+a18=54=3(a1+a20)∴a1+a20=18∴=180故选B【点评】本题主要考查等差数列的前n项和公式的应用.考查等差数列的性质.7.(5分)(2004•贵州)对于直线m、n和平面α,下面命题中的真命题是()A.如果m⊂α,n⊄α,m、n是异面直线,那么n∥αB.如果m⊂α,n⊄α,m、n是异面直线,那么n与α相交C.如果m⊂α,n∥α,m、n共面,那么m∥nD.如果m∥α,n∥α,m、n共面,那么m∥n【分析】根据空间中直线与直线之间的位置关系和空间中直线与平面之间的位置关系及其性质对A、B、C、D四个选项进行一一判断,从而进行求解.【解答】解:A、∵m⊂α,n⊄α,m、n是异面直线,若n⊥m,则n⊥α,故A错误;B、∵m⊂α,n⊄α,m、n是异面直线,可知n与α也可以平行,故B错误;C、∵m⊂α,n∥α,m、n共面,⇒m∥n,故C正确;D、∵m∥α,n∥α,m、n共面,可知m与n也可以垂直,故D错误;故选C.【点评】此题是一道立体几何题,主要考查直线与直线之间的位置关系:相交与平行;空间中直线与平面之间的位置关系:平行或相交,比较基础.8.(5分)(2004•贵州)已知椭圆的中心在原点,离心率,且它的一个焦点与抛物线y2=﹣4x的焦点重合,则此椭圆方程为()A.B.C.D.【分析】先求出焦点的坐标,再由离心率求得半长轴的长,从而得到短半轴长的平方,写出椭圆的标准方程.【解答】解:抛物线y2=﹣4x的焦点为(﹣1,0),∴c=1,由离心率可得a=2,∴b2=a2﹣c2=3,故椭圆的标准方程为+=1,故选 A.【点评】本题考查椭圆的简单性质,以及求椭圆的标准方程的方法.9.(5分)(2004•贵州)从5位男数学教师和4位女数学教师中选出3位教师派到3个班担任班主任(每班1位班主任),要求这3位班主任中男女教师都有,则不同的选派方案共有()A.210 B.420 C.630 D.840【分析】题目要求有男女教师九人选三个到3个班担任班主任是三个元素在九个位置排列,要求这3位班主任中男女教师都有,则选的都是男教师和选的都是女教师不和题意就,需要从总数中去掉.【解答】解:∵共有男女教师九人选三个到3个班担任班主任共有A93种结果,要求这3位班主任中男女教师都有,则选的都是男教师和选的都是女教师不合题意,选的都是男教师有A53种结果,选的都是女教师有A43种结果,∴满足条件的方案有A93﹣(A53+A43)=420,故选B.【点评】排列与组合问题要区分开,若题目要求元素的顺序则是排列问题,排列问题要做到不重不漏,有些题目带有一定的约束条件,解题时要先考虑有限制条件的元素.10.(5分)(2004•贵州)已知球的表面积为20π,球面上有A、B、C三点,如果AB=AC=2,BC=2,则球心到平面ABC的距离为()A.1 B.C.D.2【分析】由已知中球的表面积为20π,我们可以求出球半径R,再由△ABC中,AB=AC=2,BC=2,解三角形我们可以求出△ABC所在平面截球所得圆(即△ABC的外接圆半径),然后根据球心距d,球半径R,截面圆半径r,构造直角三角形,满足勾股定理,我们即可求出球心到平面ABC的距离.【解答】解:∵球的表面积为20π∴球的半径R=∵又AB=AC=2,BC=2,由余弦定理得CosA=﹣则SinA=则△ABC的外接圆半径2r==4则r=2则球心到平面ABC的距离d==1故选A【点评】本题考查的知识点是空间点、线、面之间的距离计算,其中根据球心距d,球半径R,截面圆半径r,构造直角三角形,满足勾股定理,是与球相关的距离问题常用方法.11.(5分)(2004•贵州)△ABC中,a,b、c分别为∠A、∠B、∠C的对边,如果a,b、c成等差数列,∠B=30°,△ABC的面积为,那么b等于()A.B.C.D.【分析】先根据等差中项的性质可求得2b=a+c,两边平方求得a,b和c的关系式,利用三角形面积公式求得ac的值,进而把a,b和c的关系式代入余弦定理求得b的值.【解答】解:∵a,b、c成等差数列,∴2b=a+c,得a2+c2=4b2﹣2ac,又∵△ABC的面积为,∠B=30°,故由,得ac=6.∴a2+c2=4b2﹣12.由余弦定理,得,解得.又b为边长,∴.故选B【点评】本题主要考查了余弦定理的运用.考查了学生分析问题和基本的运算能力.12.(5分)(2004•贵州)设函数f(x)(x∈R)为奇函数,f(1)=,f(x+2)=f(x)+f(2),则f(5)=()A.0 B.1 C.D.5【分析】利用奇函数的定义、函数满足的性质转化求解函数在特定自变量处的函数值是解决本题的关键.利用函数的性质寻找并建立所求的函数值与已知函数值之间的关系,用到赋值法.【解答】解:由f(1)=,对f(x+2)=f(x)+f(2),令x=﹣1,得f(1)=f(﹣1)+f(2).又∵f(x)为奇函数,∴f(﹣1)=﹣f(1).于是f(2)=2f(1)=1;令x=1,得f(3)=f(1)+f(2)=,于是f(5)=f(3)+f(2)=.故选:C.【点评】本题考查抽象函数求值的方法,考查函数性质在求函数值中的应用,考查了抽象函数求函数值的赋值法.灵活运用已知条件赋值是迅速解决本题的关键,考查学生的转化与化归思想.二、填空题(共4小题,每小题4分,满分16分)13.(4分)(2004•贵州)展开式中x5的系数为28 .【分析】由题意知本题要求二项式定理展开式的一个项的系数,先写出二项式的通项,使得变量x的指数等于5,解出r的值,把r的值代入通项得到这一项的系数.【解答】解:∵T r+1=C8r x8﹣r=,要求x5的系数,∴8﹣=5,∴r=2,∴x5的系数是(﹣1)2C82=28,故答案为:28【点评】本题是一个典型的二项式问题,主要考查二项式的通项,注意二项式系数和项的系数之间的关系,这是容易出错的地方,本题考查展开式的通项式,这是解题的关键.14.(4分)(2004•贵州)向量、满足(﹣)•(2+)=﹣4,且||=2,||=4,则与夹角的余弦值等于.【分析】(﹣)•(2+)=﹣4,且||=2,||=4,三式联立借助数量积的定义,求夹角的余弦值.【解答】解:(﹣)•(2+)=﹣4,得22﹣2﹣•=﹣4又||=2,||=4,∴8﹣16﹣2×4cosθ=﹣4 (θ是与夹角)∴cosθ=﹣应填﹣.【点评】考查向量的运算与向量的数量积公式.15.(4分)(2004•贵州)函数的最大值等于.【分析】首先由余弦的倍角公式把函数转化为同名三角函数,再利用配方法求最值.【解答】解:f(x)=cosx﹣cos2x=cosx﹣(2cos2x﹣1)=﹣cos2x+cosx+=所以f(x)的最大值为.故答案为.【点评】本题考查余弦的倍角公式及配方法求最值.16.(4分)(2004•贵州)设x、y满足约束条件,则z=x2+y2的最小值是 1 .【分析】本题属于线性规划中的延伸题,对于可行域不要求线性目标函数的最值,而是求可行域内的点与原点(0,0)构成的线段的长度问题.【解答】解:先根据约束条件画出可行域,z=x2+y2,表示可行域内点到原点距离OP的平方,当P在点A时,z最小,最小值为12+02=1,故答案为:1.【点评】本题利用直线斜率的几何意义,求可行域中的点与原点的斜率.本题主要考查了用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属中档题.巧妙识别目标函数的几何意义是我们研究规划问题的基础,纵观目标函数包括线性的与非线性,非线性问题的介入是线性规划问题的拓展与延伸,使得规划问题得以深化.三、解答题(共6小题,满分74分)17.(12分)(2004•贵州)已知α为第二象限角,且,求的值.【分析】先利用两角和与差的正弦函数和二倍角公式将待求式子化成只含有角α的三角函数,再由三角函数的同角公式求出角α余弦值,从而求出结果即可.【解答】解:=,当α为第二象限角,且时,sinα+cosα≠0,,所以=.【点评】本题主要考查了两角和与差的正弦函数、二倍角的正弦余弦、同角公式等,属于基础题.18.(12分)(2004•贵州)求函数在[0,2]上的最大值和最小值.【分析】要求函数在区间的最值,求出导函数令其为零得到驻点,然后分区间讨论函数的增减性,求出函数的极大值,考虑闭区间两个端点对应的函数值的大小,最后判断出最大值和最小值即可.【解答】解:,令,化简为x2+x﹣2=0,解得x1=﹣2(舍去),x2=1.当0≤x<1时,f'(x)>0,f(x)单调增加;当1<x≤2时,f'(x)<0,f(x)单调减少.所以为函数f(x)的极大值.又因为f(0)=0,f(2)=ln3﹣1>0,f(1)>f(2),所以f(0)=0为函数f(x)在[0,2]上的最小值,为函数f(x);在[0,2]上的最大值.【点评】本小题主要考查函数的导数计算,利用导数讨论函数的性质,判断函数的最大值、最小值以及综合运算能力.19.(12分)(2004•贵州)某同学参加科普知识竞赛,需回答三个问题.竞赛规则规定:每题回答正确得100分,回答不正确得﹣100分.假设这名同学每题回答正确的概率均为0.8,且各题回答正确与否相互之间没有影响.(Ⅰ)求这名同学回答这三个问题的总得分ξ的概率分布和数学期望;(Ⅱ)求这名同学总得分不为负分(即ξ≥0)的概率.【分析】(1)由题意知这名同学回答这三个问题时可能三个题目都答对,答对两个、答对一个、答对0个,所以总得分ξ的可能取值是﹣300,﹣100,100,300.根据变量对应的事件根据独立重复试验公式得到结果.(2)不得负分包括得100和300分,而得这两个分数这两个事件是互斥的,根据互斥事件的概率,得到结果.【解答】解:(Ⅰ)ξ的可能值为﹣300,﹣100,100,300.P(ξ=﹣300)=0.23=0.008,P(ξ=﹣100)=3×0.22×0.8=0.096,P(ξ=100)=3×0.2×0.82=0.384,P(ξ=300)=0.83=0.512,Eξ=(﹣300)×0.008+(﹣100)×0.096+100×0.384+300×0.512=180.(Ⅱ)这名同学总得分不为负分的概率为P(ξ≥0)=0.384+0.512=0.896.【点评】本小题主要考查离散型随机变量的分布列、数学期望等概念,以及运用概率统计知识解决实际问题的能力.这种题目高考必考,应注意解题的格式.20.(12分)(2004•贵州)如图,四棱锥P﹣ABCD中,底面ABCD为矩形,AB=8,AD=4,侧面PAD为等边三角形,并且与底面所成二面角为60°.(Ⅰ)求四棱锥P﹣ABCD的体积;(Ⅱ)证明PA⊥BD.【分析】(Ⅰ)取AD的中点E,连接PE,则PE⊥AD.作PO⊥平面在ABCD,垂足为O,连接OE.求出高PO和底面ABCD的面积,可求四棱锥P﹣ABCD的体积;(Ⅱ)法一:建立空间直角坐标系,求出,计算,就证明了PA⊥BD.法二:连接AO,延长AO交BD于点F,通过相似和计算,证明直线BD垂直直线PA在平面ABCD内的身影AF,即可证明PA⊥BD.【解答】解:(Ⅰ)如图1,取AD的中点E,连接PE,则PE⊥AD.作PO⊥平面在ABCD,垂足为O,连接OE.根据三垂线定理的逆定理得OE⊥AD,所以∠PEO为侧面PAD与底面所成的二面角的平面角,由已知条件可知∠PEO=60°,PE=6,所以PO=3,四棱锥P﹣ABCD的体积V P﹣ABCD=.(Ⅱ)法一:如图1,以O为原点建立空间直角坐标系.通过计算可得P(0,0,3),A(2,﹣3,0),B(2,5,0),D(﹣2,﹣3,0)所以.因为,所以PA⊥BD.法二:如图2,连接AO,延长AO交BD于点F.通过计算可得EO=3,AE=2,又知AD=4,AB=8,得.所以Rt△AEO∽Rt△BAD.得∠EAO=∠ABD.所以∠EAO+∠ADF=90°所以AF⊥BD.因为直线AF为直线PA在平面ABCD内的身影,所以PA⊥BD.【点评】本题主要考查棱锥的体积、二面角、异面直线所成的角等知识和空间想象能力、分析问题能力.21.(12分)(2004•贵州)双曲线=1(a>1,b>0)的焦点距为2c,直线l过点(a,0)和(0,b),且点(1,0)到直线l的距离与点(﹣1,0)到直线l的距离之和.求双曲线的离心率e的取值范围.【分析】直线l的方程是bx+ay﹣ab=0.点(1,0)到直线l的距离,点(﹣1,0)到直线l的距离,.由知.所以4e4﹣25e2+25≤0.由此可知e的取值范围.【解答】解:直线l的方程为,即bx+ay﹣ab=0.由点到直线的距离公式,且a>1,得到点(1,0)到直线l的距离,同理得到点(﹣1,0)到直线l的距离.由,即.于是得,即4e4﹣25e2+25≤0.解不等式,得.由于e>1>0,所以e的取值范围是.【点评】本题主要考查点到直线距离公式,双曲线的基本性质以及综合运算能力.22.(14分)(2004•贵州)已知函数f(x)=e﹣x(cosx+sinx),将满足f'(x)=0的所有正数x从小到大排成数列{x n}.(Ⅰ)证明数列{f{x n}}为等比数列;(Ⅱ)记S n是数列{x n f{x n}}的前n项和,求.【分析】(1)先求导数,解出f'(x)=0的所有正数解x,求得数列{x n}.从而可证明数列{f{x n}}为等比数列.(2)利用错位相减法求得Sn,从而求得,进而得解.【解答】解:(Ⅰ)证明:f'(x)=﹣e﹣x(cosx+sinx)+e﹣x(﹣sinx+cosx)=﹣2e﹣x sinx.由f'(x)=0,得﹣2e﹣x sinx=0.解出x=nπ,n为整数,从而x n=nπ,n=1,2,3,f(x n)=(﹣1)n e﹣nπ..所以数列{f{x n}}是公比q=﹣e﹣π的等比数列,且首项f(x1)=q.(Ⅱ)解:S n=x1f(x1)+x2f(x2)++x n f(x n)=πq(1+2q++nq n﹣1),qS n=πq(q+2q2++nq n),S n﹣qS n=πq(1+2q2++q n﹣1﹣nq n)=,从而===.因为,所以.【点评】本小题主要考查.函数求导,等比数列证明,错位相减的求和方法,及极限的求解等知识.是对知识的综合性考查,能力要求较高.参与本试卷答题和审题的老师有:tuolujiao;liuerq;danbo7801;qiss;wodeqing;zhwsd;zhiyuan;caoqz;涨停;豫汝王世崇;301137;xintrl;wzj123;yhx01248;sllwyn;zlzhan;lzcgm(排名不分先后)菁优网2017年5月17日。

2004高考数学试题(全国4理)及答案

2004高考数学试题(全国4理)及答案

2004年高考试题全国卷Ⅳ理科数学(必修+选修Ⅱ)第I 卷参考公式: 如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率P n (k)=C kn P k (1-P)n -k一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的 1.已知集合},2|{},2,1,0{M a a x x N M ∈===,则集合N M ⋂= ( )A .{0}B .{0,1}C .{1,2}D .{0,2} 2.函数)(2R x e y x∈=的反函数为( )A .)0(ln 2>=x x yB .)0)(2ln(>=x x yC .)0(ln 21>=x x y D .)0(2ln 21>=x x y 3.过点(-1,3)且垂直于直线032=+-y x 的直线方程为( )A .012=-+y xB .052=-+y xC .052=-+y xD .072=+-y x 4.)1)31(2ii +-=( )A .i +3B .i --3C .i -3D .i +-3 5.不等式03)2(<-+x x x 的解集为( )A .}30,2|{<<-<x x x 或B .}3,22|{><<-x x x 或C .}0,2|{>-<x x x 或D .}3,0|{<<x x x 或6.等差数列}{n a 中,78,24201918321=++-=++a a a a a a ,则此数列前20项和等于 ( )A .160B .180C .200D .220 7.对于直线m 、n 和平面α,下面命题中的真命题是( )A .如果m n m ,,αα⊄⊂、n 是异面直线,那么α//n ;B .如果m n m ,,αα⊄⊂、n 是异面直线,那么α与n 相交C .如果m n m ,//,αα⊂、n 共面,那么n m //;D .如果m n m ,//,//αα、n 共面,那么n m //8.已知椭圆的中心在原点,离心率21=e ,且它的一个焦点与抛物线x y 42-=的焦点重合, 则此椭圆方程为( )球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π 其中R 表示球的半径A .13422=+y x B .16822=+y x C .1222=+y x D .1422=+y x 9.从5位男教师和4位女教师中选出3位教师,派到3个班担任班主任(每班1位班主任),要求这3位班主任中男、女教师都要有,则不同的选派方案共有( )A .210种B .420种C .630种D .840种10.已知球的表面积为20π,球面上有A 、B 、C 三点.如果AB=AC=2,BC=32,则球心 到平面ABC 的距离为( )A .1B .2C .3D .211.△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边.如果a 、b 、c 成等差数列,∠B=30°,△ABC 的面积为23,那么b = ( )A .231+ B .31+C .232+ D .32+12.设函数))((R x x f ∈为奇函数,),2()()2(,21)1(f x f x f f +=+=则=)5(f ( )A .0B .1C .25 D .5第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.8)1(xx -展开式中5x 的系数为 .14.向量a 、b 满足(a -b )·(2a +b )=-4,且|a |=2,|b |=4,则a 与b夹角的余弦值等于 .15.函数)(2cos 21cos )(R x x x x f ∈-=的最大值等于 . 16.设y x ,满足约束条件:⎪⎩⎪⎨⎧≥≤≤+,0,,1y x y y x 则y x z +=2的最大值是 .三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知α为第二象限角,且 sin α=,415求12cos 2sin )4sin(+++ααπα的值. 18.(本小题满分12分)求函数241)1ln()(x x x f -+=在[0,2]上的最大值和最小值.C19.(本小题满分12分) 某同学参加科普知识竞赛,需回答三个问题.竞赛规则规定:每题回答正确得100分,回答不正确得-100分.假设这名同学每题回答正确的概率均为0.8,且各题回答正确与否相互之间没有影响. (Ⅰ)求这名同学回答这三个问题的总得分ξ的概率分布和数学期望; (Ⅱ)求这名同学总得分不为负分(即ξ≥0)的概率. 20.(本小题满分12分)如图,四棱锥P —ABCD 中,底面ABCD 为矩形,AB=8,AD=43,侧面PAD 为等边三角形,并且与底面所成二面角为60°.(Ⅰ)求四棱锥P —ABCD 的体积; (Ⅱ)证明PA ⊥BD. 21.(本小题满分12分)双曲线)0,1(12222>>=-b a by a x 的焦点距为2c ,直线l 过点(a ,0)和(0,b ),且点(1,0)到直线l 的距离与点(-1,0)到直线l 的距离之和.54c s ≥求双曲线的离心率e 的取值范围. 22.(本小题满分14分)已知函数0)(),sin (cos )(='+=-x f x x ex f x将满足的所有正数x 从小到大排成数列}.{n x(Ⅰ)证明数列{}{n x f }为等比数列;(Ⅱ)记n S 是数列{}{n n x f x }的前n 项和,求.lim 21nS S S nn +++∞→2004年高考试题全国卷4理科数学(必修+选修Ⅱ)参考答案一、选择题1—12 D C A D A B C A B A B C二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.28 14.21-15.43 16.2三、解答题17.本小题主要考查同角三角函数的基本关系式,二倍角公式以及三角函数式的恒等变形等 基础知识和基本技能.满分12分.解:αααααααπα2cos 2cos sin 2)cos (sin 2212cos 2sin )4sin(++=+++.)cos (sin cos 4)cos (sin 2ααααα++= 当α为第二象限角,且415sin =α时41cos ,0cos sin -=≠+ααα, 所以12cos 2sin )4sin(+++ααπα=.2cos 42-=α 18.本小题主要考查函数的导数计算,利用导数讨论函数的性质,判断函数的最大值、最小值以及综合运算能力.满分12分. 解:,2111)(x x x f -+=' 令 ,02111=-+x x 化简为,022=-+x x 解得.1),(221=-=x x 舍去当)(,0)(,10x f x f x >'<≤时单调增加; 当)(,0)(,21x f x f x <'≤<时单调减少. 所以412ln )1(-=f 为函数)(x f 的极大值. 又因为 ),2()1(,013ln )2(,0)0(f f f f >>-==所以 0)0(=f 为函数)(x f 在[0,2]上的最小值,412ln )1(-=f 为函数)(x f 在[0,2]上的最大值.19.本小题主要考查离散型随机变量的分布列、数学期望等概念,以及运用概率统计知识解 决实际问题的能力.满分12分. 解:(Ⅰ)ξ的可能值为-300,-100,100,300.P (ξ=-300)=0.23=0.008, P (ξ=-100)=3×0.22×0.8=0.096, P (ξ=100)=3×0.2×0.82=0.384, P (ξ=300)=0.83=0.512,图2Cy所以ξ的概率分布为根据ξ的概率分布,可得ξ的期望E ξ=(-300)×0.08+(-100)×0.096+100×0.384+300×0.512=180.(Ⅱ)这名同学总得分不为负分的概率为P (ξ≥0)=0.384+0.512=0.896.20.本小题主要考查棱锥的体积、二面角、异面直线所成的角等知识和空间想象能力、分析问题能力.满分12分. 解:(Ⅰ)如图1,取AD 的中点E ,连结PE ,则PE ⊥AD.作PO ⊥平面在ABCD ,垂足为O ,连结OE. 根据三垂线定理的逆定理得OE ⊥AD , 所以∠PEO 为侧面PAD 与底面所成的二面角的平面角, 由已知条件可知∠PEO=60°,PE=6, 所以PO=33,四棱锥P —ABCD 的体积 V P —ABCD =.963334831=⨯⨯⨯ (Ⅱ)解法一:如图1,以O 为原点建立空间直角坐标系.通过计算可得P (0,0,33),A (23,-3,0),B (23,5,0),D (-23,-3,0) 所以).0,8,34(),33,3,32(--=--=BD PA 因为,002424=++-=⋅BD PA 所以PA ⊥BD.解法二:如图2,连结AO ,延长AO 交BD 于点F.通过计算可得EO=3,AE=23知AD=43,AB=8,得.ABADAE EO = 所以 Rt △AEO ∽Rt △BAD. 得∠EAO=∠ABD.所以∠EAO+∠ADF=90° 所以 AF ⊥BD.因为 直线AF 为直线PA 在平面ABCD 内的身影,所以PA ⊥BD.21.本小题主要考查点到直线距离公式,双曲线的基本性质以及综合运算能力.满分12分. 解:直线l 的方程为1=+bya x ,即 .0=-+ab ay bx 由点到直线的距离公式,且1>a ,得到点(1,0)到直线l 的距离221)1(ba ab d +-=,同理得到点(-1,0)到直线l 的距离222)1(ba ab d ++=.222221cabb a ab d d s =+=+= 由,542,54c c ab c s ≥≥得 即 .25222c a c a ≥- 于是得 .025254,2152422≤+-≥-e e e e 即解不等式,得.5452≤≤e 由于,01>>e 所以e 的取值范围是.525≤≤e 22.本小题主要考查函数的导数,三角函数的性质,等差数列与等比数列的概念和性质,以及综合运用的能力.满分14分. (Ⅰ)证明:.sin 2)cos sin ()sin (cos )(x e x x e x x ex f x x x----=+-++-='由,0)(='x f 得.0sin 2=--x e x解出n n x ,π=为整数,从而,3,2,1,==n n x n π .)1()(πn n n e x f --=.)()(1π-+-=e x f x f n n所以数列)}({n x f 是公比π--=eq 的等比数列,且首项.)(1q x f =(Ⅱ)解:)()()(2211n n n x f x x f x x f x S +++= ),21(1-+++=n nq q q π),11()21(),2(122n nnn n n n n nq qq q nq qq q qS S nq q q q qS ---=-+++=-+++=-πππ 而).11(1n nn nq qq q q S ----=πnS S S n+++ 21.)1()1()1(2)1()11()1(11)1()1()21()1()1()1()1(2232222222121222q q q q n q q qnq qq q n q q q q n q q q nq q q n q qq q n q q qn n n nn n n -+----=----------=+++--+++---=+--πππππππππ因为0lim .1||=<=∞→-n n q eq π,所以.)1()1(lim 2221+-=-=+++∞→ππππe e q q n S S S n n。

2004年湖北省 高考理科数学试题(真题与答案解析)

2004年湖北省 高考理科数学试题(真题与答案解析)
(A) (B) (C)2(D)4
(8)已知数列{an}的前 项和 ,其中a、b是非零常数。则存在数列{ }、{ }使得
(A)an= + 其中{ }为等差数列,{ }为等比数列
(B)an= + ,其中{ }和{ }都为等差数列
(C)an= · ,其中{ }为等差数是列,{ }为等比数列
(D)an= · 其中{ }和{ }都为等比数列
∴ 。
既 对n=1,2,…都成立。
(Ⅱ)邻 ,得 。
∴ 。
∴ ,解得 。
现证明当 时, ,对 ,…都成立。
(Ⅰ)当 时结论成立(已验证)。
(Ⅱ)假设当 时结论成立,既 ,那么

故只须证明 ,既证 对 成立。
由于A= ,
而当 时, ∴A≥2。
∴ 既
故当 时, 。
既 时结论成立。
根据(Ⅰ)和(Ⅱ),可知结论对一切正整数都有成立。
(Ⅱ)当1E⊥平面AB1F时,F是CD的中点。又E是BC的中点,连接EF,则EF∥BD。连接AC,设AC与EF交于点H,则AH⊥EF。连接C1H,则CH是C1H在底面ABCD内的射影。
∴C1H⊥EF,既∠AHC1是二面角C1-EF-A的平面角。
∵C1(1,1,1),H , 。
∴ , 。

= 。
既∠AHC1=
直线 : 与双曲线C: 的右支交于不同的两点A、B。
(Ⅰ)求实数 的取值范围;
(Ⅱ)是否存在实数 ,使得以线段AB为直径的圆经过双曲线C的右焦点F?若存在,求出 的值。若不存在,说明理由。
(21)(本小题满分12分)
某突发事件,在不采取任何预防措施的情况下发生的概率为0.3;一旦发生,将造成400万元的损失。现有甲、乙两种相互独立的预防措施可供采用。单独采用甲、乙预防措施所需的费用分别为45万元和30万元,采用相应预防措施后此突发事件不发生的概率分别是0.9和0.85。若预防方案允许甲、乙两种预防措施单独采用、联合采用或不采用,请确定预防方案使总费用最少。

2004 年普通高等学校招生全国统一考试(全国卷四

2004 年普通高等学校招生全国统一考试(全国卷四

!""#年普通高等学校招生全国统一考试(全国卷!)数学本试卷分第"卷(选择题)和第#卷(非选择题)两部分$满分%&"分$考试时间%!"分钟$第"卷(选择题共’"分)参考公式:三角函数的和差化积公式:()*!+()*",!()*!+"!・-.(!/"!()*!/()*",!-.(!+"!・()*!/"!-.(!+-.(",!-.(!+"!・-.(!/"!-.(!/-.(",/!()*!+"!・()*!/"!正棱台、圆台的侧面积公式!台侧,%!("0+")#其中"0,"分别表示上、下底面周长,#表示斜高或母线长球体的表面积公式:!球,#$$!其中$表示球的半径一、选择题:本大题共%!小题,每小题&分,共’"分$在每小题给出的四个选项中,只有一项是符合题目要求的$%1设集合%,{(&,’)2&!+’!,%,&!!,’!!},(,{(&,’)2&!/’,",&!!,’!!},则集合%"(中元素的个数为31%41!51671#!1函数’,()*&!的最小正周期是31$!41$ 51!$71#$61(理)设数列{)*}是等差数列,且)!,/’,)8,’,!*是数列{)*}的前*项和,则31!#9!&41!#,!&51!’9!&71!&,!’(文)等比数列{)*}中,)!,:,)&,!#6,则{)*}的前#项和为318%41%!"51%’871%:!#1圆&!+’!/#&,"在点+(%,#6)处的切线方程为31&#+6’/!,"41&#+6’/#,"51&#/6’+#,"71&#/6’+!,"&1(理)函数’,;.<%!(&!/%#)的定义域是31[#/!,/%)$(%,#!]41(#/!,/%)$(%,#!)51[/!,/%)$(%,!]71(/!,/%)$(%,!)(文)记函数’,%+6/&的反函数为’,,(&),则,(%"),31!41/!51671/%’1设复数-的辐角的主值为!$6,虚部为#6,则-!,##31/!/!6)41/!6/!)##51!+!6)71!6+!)=1设双曲线的焦点在&轴上,两条渐近线为’,>%!&,则该双曲线的离心率.为#31&41&51#&!71&#81不等式%92&+%296的解集为31(",!)41(/!,")$(!,#)51(/#,")71(/#,/!)$(",!):1正三棱锥的底面边长为!,侧面均为直角三角形,则此三棱锥的体积为!"#$!!#%"#&"!#$’"($!#)*"在"!"#中,!"+$,"#!+)$,!#+(,则边!#上的高为!"$#!#%"$#!$&"$#!’"$$))"(理)设函数$(%)+(%,))#,%-)(.%!.),%#{),则使得$(%)#)的自变量%的取值范围为!"(./,.#]$[*,)*]%"(./,.#]$[*,)]&"(./,.#]$[),)*]’"[.#,*]$[),)*](文)(!%.)%)0的展开式中的常数项为!")1%".)1&"#*’".#*)#"将(名教师分配到$所中学任教,每所中学至少)名教师,则不同的分配方案共有!")#种%"#(种&"$0种’"(2种第!卷(非选择题共3*分)二、填空题:本大题共(小题,每小题(分,共)0分4把答案填写在题中的横线上4)$"用平面!截半径为&的球,如果球心到平面!的距离为&#,那么截得小圆的面积与球的表面积的比值为4)("(理)函数’+567%!,$895%在区间[*,"#]上的最小值为4(文)函数’+567%.)#895%(%%!)的最大值为4)1"(理)已知函数’+$(%)是奇函数,当%#*时,$(%)+$%.)4设$(%)的反函数是’+((%),则((.2)+4(文)函数’+:9;)#(%.)!)的定义域是4)0"(理)设)是曲线’#+((%.))上的一个动点,则点)到点(*,))的距离与点)到’轴的距离之和的最小值是4(文)设)为圆%#,’#+)上的动点,则点)到直线$%.(’.)*+*的距离的最小值为4三、解答题:本大题共0小题,共<(分4解答应写出文字说明、证明过程或演算步骤4)<"(本小题满分)#分)已知!为锐角,且=>7!+)#,求567#!895!.567!567#!895#!的值4)2"(本小题满分)#分)(理)解方程(%,?).#%?+))4(文)解方程(%.#%,#.)#+*4某村计划建造一个室内面积为%&&’$的矩形蔬菜温室(在温室内,沿左、右两侧与后侧内墙各保留!’宽的通道,沿前侧内墙保留)’宽的空地(当矩形温室的边长各为多少时,蔬菜的种植面积最大?最大种植面积是多少?三棱锥!—"#$中,侧面!"$与底面"#$垂直,!"*!#*!$*)((!)求证"#!#$;($)(理)设"#*#$"*$),求"$与平面!#$所成角的大小((文)如果"#*#$"*$),求侧面!#$与侧面!"$所成二面角的大小(设椭圆!!"%"%#!&"的两个焦点是$"(’%,()与$!(%,()(%)(),且椭圆上存在点&,使得直线&$"与直线&$!垂直*(")求实数"的取值范围;(!)设’是相应于焦点$!的准线,直线&$!与’相交于点(*若+($!++&$!+!&!’,,求直线&$!的方程*(理)已知数列{)*}的前*项和+*满足+*&!)*%(’")*,*""*(")写出数列{)*}的前,项)",)!,),;(!)求数列{)*}的通项公式;(,)证明:对任意的整数")$,有")$%")-%…%")"./*(文)设数列{)*}是公差不为零的等差数列,+*是数列{)*}的前*项和,且+!,&1+!,+$&$+!,求数列{)*}的通项公式*。

2004年普通高等学校招生全国统一考试数学试卷(全国卷.理)

2004年普通高等学校招生全国统一考试数学试卷(全国卷.理)

web 试卷生成系统谢谢使用一、填空题(每空? 分,共? 分)1、已知函数的最小正周期为3,则A= .2、设满足约束条件:则的最大值是 .二、选择题(每空? 分,共? 分)3、在△ABC 中,AB=3,BC=,AC=4,则边AC 上的高为A. B.C.D.4、设集合U={1,2,3,4,5},集合M={0,3,5},N={1,4,5},则M ∩( U N )=(A ){5} (B ){0,3} (C){0,2,3,5}(D ) {0,1,3,4,5}5、函数的反函数为(A ) (B ) (C ) (D )6、正三棱柱侧面的一条对角线长为2,且与底面成45°角,则此三棱柱的体积为(A ) (B ) (C ) (D )7、 函数在处的导数等于(A )1 (B )2 (C )3 (D )48、为了得到函数的图像,可以把函数的图像(A )向左平移3个单位长度 (B )向右平移3个单位长度 (C )向左平移1个单位长度 (D )向右平移1个单位长度9、等差数列中,,则此数列前20项和等于(A )160 (B )180(C )200(D )22010、已知函数的图象有公共点A,且点A的横坐标为2,则(A)(B )(C )(D )11、已知圆C的半径为2,圆心在轴的正半轴上,直线与圆C相切,则圆C的方程为(A )(B )(C )(D )12、从5位男教师和4位女教师中选出3位教师,派到3个班担任班主任(每班1位班任),要求这3位班主任中男、女教师都要有,则不同的选派方案共有(A)210种(B)420种(C)630种(D)840种13、函数的最小值等于(A)-3 (B)-2 (C)-1 (D)-14、已知球的表面积为20,球面上有A、B、C三点.如果AB=AC=BC=2,则球心到平面ABC的距离为(A)1 (B)(C ) (D)215、△ABC中,a、b、c分别为∠A、∠B、∠C的对边.如果a、b、c成等差数列,∠B=30°,△ABC 的面积为,那么b=A.B. C.D.16、已知函数(A )(B)-(C)2 (D)-217、函数的反函数是A. B.C. D.18、的展开式中常数项是(A)14 (B)-14 (C)42 (D)-4219、设若则=A. B. C. D.420、设抛物线的准线与轴交于点Q,若过点Q的直线与抛物线有公共点,则直线的斜率的取值范围是A. B.[-2,2] C.[-1,1] D.[-4,4]21、已知正四面体ABCD的表面积为S,其四个面的中心分别为E、F、G、H,设四面体EFGH的表面积为T ,则等于A. B. C. D.22、从1,2,……,9这九个数中,随机抽取3个不同的数,则这3个数的和为偶数的概率是A. B. C.D.三、计算题(每空?分,共?分)23、已知数列{}为等比数列,(Ⅰ)求数列{}的通项公式;(Ⅱ)设是数列{}的前项和,证明24、已知直线为曲线在点(1,0)处的切线,为该曲线的另一条切线,且(Ⅰ)求直线的方程;(Ⅱ)求由直线、和轴所围成的三角形的面积.25、双曲线的焦距为2c ,直线过点(a,0)和(0,b),且点(1,0)到直线的距离与点(-1,0)到直线的距离之和求双曲线的离心率e的取值范围.参考答案一、填空题1、3/22、2二、选择题3、B4、B5、C6、A7、D8、D9、B10、A11、D12、B13、C14、A15、B16、B17、B18、A19、B20、C21、A22、C三、计算题23、解:(I)设等比数列{a n}的公比为q,则a2=a1q, a5=a1q4.a1q=6,依题意,得方程组a1q4=162.解此方程组,得a1=2, q=3.故数列{a n}的通项公式为a n=2・3n-1.(II)24、解:(Ⅰ)y′=2x+1.直线l1的方程为y=3x-3.设直线l2过曲线y=x2+x-2上的点B(b, b2+b-2),则l2的方程为y=(2b+1)x-b2-2 因为l1⊥l2,则有2b +1=所以直线l2的方程为(II)解方程组得所以直线l1和l2的交点的坐标为l1、l2与x轴交点的坐标分别为(1,0)、.所以所求三角形的面积25、解:直线的方程为,即由点到直线的距离公式,且,得到点(1,0)到直线的距离,同理得到点(-1,0)到直线的距离由即于是得解不等式,得由于所以的取值范围是。

2004年普通高等学校招生全国统一考试数学(理工农医类)(重庆卷)及答案

2004年普通高等学校招生全国统一考试数学(理工农医类)(重庆卷)及答案

2004年普通高等学校招生全国统一考试数学(理工农医类)(重庆卷)本试卷分第Ⅰ部分(选择题)和第Ⅱ部分(非选择题)共150分 考试时间120分钟.第Ⅰ部分(选择题 共60分)参考公式:如果事件A 、B 互斥,那幺 P(A+B)=P(A)+P(B)如果事件A 、B 相互独立,那幺 P(A·B)=P(A)·P(B)如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率k n kk n n P P C k P --=)1()(一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.函数y =( )A .[1,)+∞B .23(,)+∞C .23[,1]D .23(,1] 2.设复数z z i z 2,212-+=则, 则22Z Z -=( ) A .–3 B .3 C .-3i D .3i3.圆222430x y x y +-++=的圆心到直线1x y -=的距离为 ( )A .2B .2C .1D 4.不等式221x x +>+的解集是( )A .(1,0)(1,)-+∞B .(,1)(0,1)-∞-C .(1,0)(0,1)-D .(,1)(1,)-∞-+∞5.sin163sin 223sin 253sin313+=( )A .12-B .12C .2-D .26.若向量a 与b 的夹角为60,||4,(2).(3)72b a b a b =+-=-,则向量a 的模为 ( )A .2B .4C .6D .127.一元二次方程2210,(0)ax x a ++=≠有一个正根和一个负根的充分不必要条件是:( )A .0a <B .0a >C .1a <-D .1a > 8.设P 是60的二面角l αβ--内一点,,PA PB αβ⊥⊥平面平面,A,B 为垂足,4,2,PA PB ==则AB 的长为( )A .B .C .D .9. 若{}n a 是等差数列,首项120032004200320040,0,.0a a a a a >+><,则使前n 项和0n S >成立的最大自然数n 是:( ) A .4005B .4006C .4007D .400810.已知双曲线22221,(0,0)x y a b a b-=>>的左,右焦点分别为12,F F ,点P 在双曲线的右支上,且12||4||PF PF =,则此双曲线的离心率e 的最大值为:( ) A .43 B .53 C .2 D .7311.某校高三年级举行一次演讲赛共有10位同学参赛,其中一班有3位,二班有2位,其它班有5位,若采用抽签的方式确定他们的演讲顺序,则一班有3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为: ( )A .110B .120C .140 D .112012.若三棱锥A-BCD 的侧面ABC 内一动点P 到底面BCD 的距离与到棱AB 的距离相等,则动点P 的轨迹与△ABC 组成图形可能是( )(C ) (D )第Ⅱ部分(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.若在5(1)ax +的展开式中3x 的系数为80-,则_______a =.14.曲线23112224y x y x =-=-与在交点处切线的夹角是______,(用幅度数作答) 15.如图P 1是一块半径为1的半圆形纸板,在P 1的左下端剪去一个半径为12的半圆后得到图形P 2,然后依次剪去一个更小半圆(其直径为前一个被剪掉半圆的半径)得圆形P 3、P 4、…..,P n ,…,记纸板P n 的面积为n S ,则lim ______n x S →∞=.16.对任意实数K ,直线:y kx b =+与椭圆:)20(sin 41cos 23πθθθ<≤⎩⎨⎧+=+=y x 恒有公共点,则b 取值范围是_______________三、解答题:本题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)求函数44sincos cos y x x x x =+-的最小正周期和最小值;并写出该函数在[0,]π上的单调递增区间。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密 ★ 启用前 (一月号)03-04年高三数学(理)全国统一标准测试(四)命题范围:第九章 直线、平面、简单几何体 第十章 排列、组合与概率 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷(选择题 共60分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案.3.如果不采用答题卡答题,请把第Ⅰ卷(选择题)的答案填入第Ⅱ卷的选择题答题表中. 参考公式:sin αcos β=21[sin(α+β)+sin(α-β)] cos αsin β=21[sin(α+β)-sin(α-β)] cos αcos β=21[cos(α+β)+cos(α-β)] sin αsin β=-21[cos(α+β)-cos(α-β)]sin α+sin β=2sin2βα+cos2βα-sin α-sin β=2cos2βα+sin2βα-cos α+cos β=2cos2βα+cos2βα-cos α-cos β=-2sin2βα+sin2βα-S 台侧=21(c ′+c )l (c 、c 分别表示上、下底面周长,l 表示斜高或母线长) V 台体=31(S ′+S S '+S )h (S ′、S 分别表示上、下底面积,h 表示高)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设正四棱锥底面边长为3,体积为329,则它的侧面与底面所成角的大小为A.75°B.30°C.45°D.60° 2.由正方体的八个顶点中的四个顶点所组成的正四面体的表面积与正方体的表面积比是A.22B.33C.3D.23.设m =37+27C ·35+47C ·33+67C ·3,n =17C ·36+37C ·34+57C ·32,则m -n 等于A.0B.127C.128D.1294.设a 、b 、c 表示三条直线,α、β表示两个平面,则下列命题中逆命题不成立的是 A.c ⊥α,若c ⊥β,则α∥βB.b ⊂β,c 是a 在β内射影,若b ⊥c ,则a ⊥bC.b ⊂β,若b ⊥α,则β⊥αD.b ⊂α,c ⊄α,若c ∥α,则b ∥c5.正方体ABCD —A 1B 1C 1D 1中,E 、F 分别是AA 1和AB 的中点,则EF 与对角面A 1C 1CA 所成角为 A.30° B.45°C.60°D.90°6.把英语单词“error ”中字母的拼写顺序写错了,则可能出现的错误种数是A.20B.19C.10D.97.在有太阳的时候,一个大球放在地面上,球的影子伸到距球与地面的接触点10米处,同一时刻,一根长1米,一端接触地面而垂直于地面的尺子的影子长度是2米,则球的半径是A.2.5米B.105-20米C.6-15米D.9-45米8.设集合M ={-1,0,1},N ={2,3,4,5,6},映射f :M →N ,使对任何x ∈M ,都有x +f (x )+xf (x )是奇数,这样的映射f 的个数为A.122B.15C.50D.27 9.对于不共面的三个向量a 、b 、c ,下列命题正确的是 A.(a ·b )2·c =(a 2·b 2)·cB.总可以找到两个实数λ、μ,使c =λa +μbC.这三个向量不能相加D.对空间任意向量d ,存在有序实数组x 1、x 2、x 3、x 4,使x 1d =x 2a +x 3b +x 4c ,其中x 1不等于零 10.如图①是一个正三棱柱形容器,底面边长为a ,高为2a ,内装水若干.将容器放倒,把一个侧面作为底面,如图②,这时水面恰好为中截面.请问图①中容器内水面的高度是图① 图②A.aB.34 aC.23aD.3 a11.如图,在一个倒置的正三棱锥容器中,放入一个钢球,钢球恰与棱锥的四个面都接触上,经过棱锥的一条侧棱和高作截面,正确的截面图形是12.如图在水平横梁上A 、B 两点处各挂长为50 cm 的细绳AM 、BN ,在MN 处栓长为60 cm 的木条,MN 平行于横梁,木条绕过MN 中点O 的铅垂线旋转60°,则木条比原来升高了A.10 cmB.5 cmC.103 cmD.53cm第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中的横线上) 13.已知甲烷的分子结构是:中心为一个碳原子,外围有4个氢原子(这4个氢原子构成一个正四面体的四个顶点).设中心碳原子到外围4个氢原子连成的四条线段两两组成的角为θ,则c os θ=_________.14.甲射击命中目标的概率是21,乙射击命中目标的概率是31,丙射击命中目标的概率是41,现在三人同时射击目标,则目标被击中的概率为_________.15.降水量是指水平面上单位面积所降雨水的深度,用上口直径为38厘米,底面直径为24厘米,深为35厘米的圆台形水桶来测量降水量.如果在一次降水过程中,用此桶接得的雨水正好是桶深的71,则此次下雨的降水量为_________毫米.16.如图,甲、乙、丙、丁为湖中四个亭子,要建3座小桥将四个亭子连接起来,不同的建桥方案共有_________种.三、解答题(本大题共6小题,共74分.解答过程应写出文字说明、证明过程或演算步骤)17.(本小题满分12分)已知整式函数f (x )=(1+x )m +(1+x )n (m ,n ∈N *)的展开式为f (x )=a 0+a 1x +a 2x 2+a 3x 3+…+a m x m ,已知a 1=17.(1)求f (x )中x 2项系数的最小值; (2)求a 5;(3)求f (x )中所有x 的指数是奇数的项的系数和. 18.(本小题满分12分)从三棱锥P —ABC (如图1)的顶点沿着三条侧棱P A 、PB 、PC 剪开,成平面图形,得到△P 1P 2P 3(如图2),且P 1P 2=P 2P 3;图1 图2(1)在棱锥P —ABC 中,求证:P A ⊥BC ; (2)P 1P 2=26,P 1P 3=20,求三棱锥的体积. 19.(本小题满分12分)已知集合P={m|m=2k,k∈N,k≤6},Q={n|n=6k,k∈N,k≤6}(1)若集合A含有三个元素,且A⊂P,这样的集合A有多少个?所有集合A中元素之和是多少?(2)若集合A、B各含有三个元素,且A⊂P,B⊂Q,A∩B=∅,这样的集合A、B有多少对?20.(本小题满分12分)袋中有12个球,其中白球4个,甲、乙、丙三人接连从袋中取球,甲先取,然后乙,然后丙,然后甲,…如此进行下去,规定先取出一个白球者获胜,分两种:(1)抽后放回;(2)抽后不放回.则甲乙丙获胜的概率各为多少?21.(本小题满分12分)如图,已知三棱柱ABC—A1B1C1中,底面△ABC是等腰直角三角形,且∠BAC=Rt∠,BC=2a,侧棱AA1与AB、AC所成角都是60°,且底面△ABC的面积是截面△A1BC面积的2倍.求:(1)A1A与底面ABC所成的角;(2)二面角A—BC—A1的大小;(3)这个三棱柱的侧面积.22.(本小题满分14分)如图一楔体,ABCD是边长为2的菱形,∠BAD=60°,P1A⊥面ABCD,P2D⊥面ABCD,P1A=P2D=3,求:(1)二面角A—P1B—D的大小;(2)异面直线P1D与P2B所成角的大小.03-04年高三数学(理)全国统一标准测试(四)答案一、1.D 2.B 3.D 4.C 5.A 6.B 7.B 8.C 9.D 10.C 11.B 12.A二、13.-31 14.4315.2.2 16.16三、17.解:(1)11C C n m +=17,∴m +n =17 2分x 2的系数为:)272342(21)(212)1(2)1(C C 22222+-=--+=-+-=+m m n m n m n n m m n m=m 2-17m +136=(m -217)2+6343∴m =8或m =9时,x 2项的系数最小,最小值为64.6分 (2)当m =8时n =9;当m =9时n =8,∴a 5=5958C C + =1828分 (3)f (x )=(1+x )8+(1+x )9∴所有项的系数和为f (1)=28+29=768;10分又f (-1)=0,∴f (x )中所有x 的指数是奇数的项的系数和为:21f (1)=38412分18.解:(1)由展开过程可知,图2中A 、B 、C 分别是边P 1P 3、P 1P 2、P 2P 3的中点,又P 1P 2=P 2P 3,故AB =A C. 2分在图1中,取BC 中点H ,连AH 、PH , ∵AH ⊥BC ,PH ⊥BC , 5分 ∴BC ⊥面P AH ,即得P A ⊥B C. 7分 (2)由(1)知BC ⊥面P AH ,在图1中可知,PB =PC =AB =AC =13,BC =10,PH =HA =12,S △P AH =5119,10分∴V =31S △P AH ·BC =119350.12分19.解:(1)P ={2,4,6,8,10,12}A 有36C =20个.2分在20个集合中含有元素2的有:25C =10个;含有其他(即4,6,8,10,12)各元素的均各有10个; 5分 故所有A 中各元素之和为(2+4+6+8+10+12)×10=420.6分(2)Q ={6,12,18,24,30,36},符合条件的A 、B 有三类:①6,12∉A 时,有3634C C 对;8分 ②6∉A ,12∈A 或12∉A ,6∈A 时,则有23524C C 对;10分③16,12∈A 时,则有3414C C 对,故符合条件的A 、B 对共有:341435243634C C C C 2C C ++ =216.12分20.解:(1)抽后放回,是独立试验,每抽到白球的概率为31,则甲获胜的概率为:)31()32()31()32(3163+++ +…=199)32(1313=-;2分乙获胜的概率为:(32)·(31)+(32)4·(31)+(32)7·(31)+…=196)32(131323=-⋅;4分丙获胜的概率为:1-194196199=-.6分(2)抽后不放回. 甲获胜的概率为:)64()73()84()95()106()117()128()94()106()117()128(124⋅⋅⋅⋅⋅⋅+⋅⋅⋅+=16577.8分乙获胜的概率为:)54()62()73()84()95()106()117()128()84()95()106()117()128()114()128(⋅⋅⋅⋅⋅⋅⋅+⋅⋅⋅⋅+⋅ =1655310分丙获胜的概率为:1-165351655316577=-.12分21.解:(1)作A 1H 垂直于平面ABC 于H ,因∠A 1AB =∠A 1AC =60°,所以H 在∠BAC 的角平分线上. 2分连AH 并延长交BC 于D ,所以∠A 1AH 就是A 1A 与底面ABC 所成的角.3分作A 1E ⊥AB 于E ,连接EH ,设A 1A =x ,在直角三角形A 1AE 中,得AE =21x ,在等腰直角三角形AEH 中,得AH =22x ,在直角三角形A 1HA 中,得cos A 1AD =22,∴A 1A 与底面ABC 所成的角为45°.6分(2)因AB =AC =2a ,所以△A 1AB ≌△A 1AC ,所以A 1B =A 1C ,则AD ⊥BC ,连A 1D ,则A 1D ⊥BC ,所以∠A 1DA 是二面角A —BC —A 1的平面角.8分由∠A 1AD =45°,又因S △ABC =2BC A S 1∆,所以AD =2A 1D =a , ∴∠A 1DA =45°,即二面角A —BC —A 1为45°.10分(3)由(2)得A 1A ⊥BC ,所以BB 1⊥BC ,所以BCC 1B 1为矩形.由于AD =a ,AA 1=23a ,AB =2a .所以S 侧=21111B BCC BAB A S S +=2·22a ·2a ·23+2a ·22a =(23+)a 2.12分22.解:(1)取AB 的中点E ,连接DE ,则DE ⊥AB ,DE ⊥面ABP 1,作EF 垂直于P 1B 于F ,连接DF ,∴DF ⊥P 1B ,∠DFE 为二面角A —P 1B —D 的平面角. 4分∵DE =2·23=3,EF =21·73732=. 在△DEF 中,tan DFE =7=EF DE,∴∠DFE =arctan 7∴二面角A —P 1B —D 的大小为arctan 7.7分(2)以A 为原点,分别以AB 、AP 1所在直线为x 轴和y 轴,过A 点且与平面ABP 1垂直的直线为z 轴,建立空间直角坐标系A —xyz则B (2,0,0),P 1(0,3,0),D (1,0,3),P 2(1,3,3)10分则D P 1=(1,-3,3),B P 2 =(1,-3,-3)|P1|=7,|P 2|=7,P 1·P 2=1+3-3=1 12分∴cos <P1,P 2>=71||||2121=B P D P∴<B P D P21,>=arccos 71 ∴异面直线P 1D 与P 2B 所成角的大小为arccos 7114分。

相关文档
最新文档