高二下 数学导学先锋 答案
高二数学导数大题练习题及答案

高二数学导数大题练习题及答案一、解答题1.已知曲线()1f x x=(1)求曲线在点(1,1)P 处的切线方程. (2)求曲线过点(1,0)Q 的切线方程.2.已知函数e ()(ln )=--+xf x a x x a x(a 为实数).(1)当1a =-时,求函数()f x 的单调区间;(2)若函数()f x 在(0,1)内存在唯一极值点,求实数a 的取值范围.3.已知()2,13,1x x x f x x x ⎧-≥-=⎨+<-⎩,()()ln g x x a =+.(1)存在0x 满足:()()00f x g x =,()()00f x g x ''=,求a 的值; (2)当4a ≤时,讨论()()()h x f x g x =-的零点个数. 4.已知函数()21si cos n 2f x x x a x x =-++.(1)当1a =-时,求曲线()y f x =在点()()0,0f 处的切线方程;(2)若函数()f x 在3π0,4⎡⎤⎢⎥⎣⎦上单调递减,求a 的取值范围.5.已知函数()()2e 2e 1e 2e x xf x x =-++.(1)若函数()()g x f x a =-有三个零点,求a 的取值范围. (2)若()()()()123123f x f x f x x x x ==<<,证明:120x x +>. 6.已知()21e 2x f x k x =-.(1)若函数()f x 有两个极值点,求实数k 的取值范围;(2)证明:当n *∈N 时,()222221123123e 4e 1en n n -+++⋅⋅⋅+<+. 7.已知函数()()e sin x f x rx r *=⋅∈N ,其中e 为自然对数的底数.(1)若1r =,求函数()y f x =的单调区间;(2)证明:对于任意的正实数M ,总存在大于M 的实数a ,b ,使得当[,]x a b ∈时,|()|1f x ≤.8.已知函数()ln f x x x =-,322()436ln 1g x x x x x =---. (1)若()1x f ax ≥+恒成立,求实数a 的取值范围;(2)若121322x x <<<,且()()120g x g x +=,试比较()1f x 与()2f x 的大小,并说明理由.9.已知函数2()ln f x x x ax =-.(1)若()0f x ≤恒成立,求实数a 的取值范围;(2)若()112212ln 2ln 200x ax x ax x x -=-=>>,证明:()1212ln ln 10ln 2x x x x ⋅<<.10.已知函数()12ln f x x x x=--. (1)判断函数()f x 的单调性;(2)设()()()28g x f x bf x =-,当1x >时,()0g x >,求实数b 的取值范围.【参考答案】一、解答题1.(1)20x y +-= (2)440x y +-= 【解析】 【分析】(1)求得函数的导数()21f x x'=-,得到曲线在点(1,1)P 处的切线的斜率,结合直线的点斜式方程,即可求解;(2)设切线坐标为00(,)A x y ,得出切线的方程为020011()y x x x x -=--,根据点(1,0)Q 在切线上,列出方程求得0x 的值,代入即可求解.(1)由题意,函数()1f x x=,可得()21f x x '=-, 所以()11f '=-,即曲线在点(1,1)P 处的切线的斜率为1k =-, 所以所求切线方程为1(1)y x -=--,即20x y +-=. (2)解:设切点坐标为00(,)A x y ,则切线的斜率为201k x =-,所以切线的方程为020011()y x x x x -=--,因为点(1,0)Q 在切线上,可得020011(1)x x x -=--,解得012x =,所以所求切线的方程为124()2y x -=--,即440x y +-=. 2.(1)单调递减区间为(0,1),递增区间为(1,)+∞ (2)(e,)+∞ 【解析】 【分析】(1)求导2(1)(e )()--'=x x ax f x x,易知1a =-时,e 0-=+>x x ax e x ,然后由()0f x '<和()0f x '>求解;(2)由(1)知,0a 时,不符合题意, 0a >时,根据函数()f x 在(0,1)内存在唯一极值点,得到()0f x '=在(0,1)内存在唯一变号零点,转化为exa x=在(0,1)内存在唯一根求解. (1)解:函数()y f x =的定义域为(0,)+∞,22e (1)1(1)(e )()1---⎛⎫'=--= ⎪⎝⎭x x x x ax f x a x x x . 当1a =-时,e 0-=+>x x ax e x ,所以当(0,1)x ∈时,()0f x '<;当(1,)x ∈+∞时,()0f x '>. 所以()f x 的单调递减区间为(0,1),递增区间为(1,)+∞. (2)由(1)知,当0a 时,()f x 在(0,1)内单调递减, 所以()f x 在(0,1)内不存在极值点;当0a >时,要使函数()f x 在(0,1)内存在唯一极值点,则2(1)(e )()0--'==x x ax f x x 在(0,1)内存在唯一变号零点, 即方程e 0x ax -=在(0,1)内存在唯一根,所以e xa x=在(0,1)内存在唯一根,即y a =与()ex g x x=的图象在(0,1)内存在唯一交点,因为2(1)e ()0-'=<xx g x x , 所以()g x 在(0,1)内单调递减.又(1)e g =, 当0x →时,()g x ∞→+,所以e a >,即a 的取值范围为(e,)+∞. 3.(1)0a =或4; (2)答案见解析.【解析】 【分析】(1)在1x ≥-有()2000ln 21x x x -=--,构造中间函数并利用导数研究单调性和零点情况,求参数a ,在1x <-上根据已知列方程组求参数a ,即可得结果. (2)讨论a 的范围,利用导数研究()h x 的单调性,结合零点存在性定理判断各情况下零点的个数. (1)1x ≥-时()2f x x x =-,原条件等价于200000ln()1210x x x a x x a ⎧-=+⎪⎨-=>⎪+⎩,∴()2000ln 21x x x -=--,令()()2ln 21x x x x ϕ=-+-,则()221021x x x ϕ'=-+>-, ∴()ϕx 为增函数,由()10ϕ=,则()0x ϕ=有唯一解01x =,所以0a =,1x <-时,()000311x ln x a x a ⎧+=+⎪⎨=⎪+⎩,解得:4a =. 综上,0a =或4. (2)ⅰ.0a <时0x a +>,则0x a >->,()()()22ln ln h x x x x a x x x x ϕ=--+>--=,而()121x x x ϕ'=--,()2120x xϕ''=+>,即()x ϕ'为增函数,又()01ϕ'=, 当()0,1∈x 时()0ϕ'<x ;当()1,x ∈+∞时()0ϕ'>x ,故()()10x ϕϕ≥=, ∴()0h x >恒成立,故0a <时零点个数为0;ⅱ.0a =时,()2ln h x x x x =--,由①知:仅当1x =时()0h x =,此时零点个数为1.ⅲ.01a <≤时,()()()2ln h x x x x a x a =--+>-,则()121h x x x a'=--+,()()2120h x x a ''=+>+,∴()h x '为增函数,2102a h a a⎛⎫'-=---< ⎪⎝⎭,()11101h a'=->+, ∴()0h x '=仅有一解,设为0(,1)2ax ∈-,则在()0,a x -上()0h x '<,在()0,x +∞上()0h x '>,所以()h x 最小值为()0h x ,故()()010h x h ≤<.又2ln 02422a aa a h ⎛⎫-=+-> ⎪⎝⎭,()()22ln 20h a =-+>,故0,2a x ⎛⎫- ⎪⎝⎭、()0,2x 上()h x 各有一零点,即()h x 有2个零点.ⅳ.14a <<时,(),1a --上()()()()3ln 3ln 4h x x x a x x p x =+-+>+-+=,()()()1103304p x x p x p x '=-=⇒=-⇒≥-=+, ∴()h x 无零点,则[)1,-+∞上()()2ln h x x x x a =--+,()121h x x x a'=--+,()()2120h x x a ''=+>+,∴()h x '为增函数,()11301h a '-=--<-+,()11101h a'=->+, ∴()0h x '=有唯一解,设为x ',则()()10h x h '≤<,又()()12ln 10h a -=--+>,()()22ln 20h a =-+>,故()1,x '-、(),2x '上,()h x 各有一个零点,即()h x 有2个零点.ⅴ.4a =时,由(1)知:(]4,1--上()h x 有唯一零点:3x =-;在()1,-+∞上()()2ln 4h x x x x =--+,则()1214h x x x '=--+,()2120(4)h x x ''=+>+, 所以()h x '为增函数,()11301h a '-=--<-+,()4105h '=>,故1(1,1)x ∃∈-使1()0h x '=,则1(1,)x -上()0h x '<,()h x 递减;1(,)x +∞上()0h x '>,()h x 递增; 故1()()h x h x ≥,而1()(1)ln 50h x h <=-<,又(1)2ln30h -=->,(2)2ln 60h =->,故在1(1,)x -、1(),2x 上()h x 各有一个零点, 所以()h x 共有3个零点.综上:0a <时()h x 零点个数为0;0a =时()h x 零点个数为1;04a <<时()h x 零点个数为2;4a =时()h x 零点个数为3. 【点睛】 关键点点睛:(1)根据分段函数的定义域讨论x ,结合函数、方程思想求参数.(2)讨论参数a ,利用二阶导数研究()h x '的单调性,进而判断其符号研究()h x 单调性,并结合零点存在性定理判断区间零点的个数. 4.(1)10y +=; (2)[)1,+∞. 【解析】【分析】(1)将1a =-代入函数()f x 中,得出函数()f x 的解析式,进而可以求出切点坐标,再利用导数的几何意义及点斜式即可求解;(2)根据已知条件可以将问题转化为恒成立问题,进而转化为求函数的最值问题,利用导数法求函数的最值即可求解. (1)当1a =-时,()2cos 1sin 2f x x x x x =--+()2cos 10000sin 012f =⨯--+=-,所以切点为0,1,()1sin cos x f x x x '=-++,∴(0)01sin 0cos00f '=-++=,所以曲线()y f x =在点()()0,0f 处的切线的斜率为(0)0k f '==, 所以曲线()y f x =在点0,1处的切线的斜率切线方程为()()100y x --=⨯-,即10y +=.(2)由()21si cos n 2f x x x a x x =-++,得()s 1co i s n f x x a x x '=--+因为函数()f x 在3π0,4⎡⎤⎢⎥⎣⎦上单调递减,可得()0f x '≤对任意3π0,4x ⎡⎤∈⎢⎥⎣⎦恒成立, 设()()1c s os in g x f x x a x x '==--+,则()cos 1sin g x a x x '=--. 因为si (n 0)001cos00g a =--+=, 所以使()0f x '≤对任意3π0,4x ⎡⎤∈⎢⎥⎣⎦恒成立, 则至少满足()00g '≤,即10a -≤,解得1a ≥. 下证明当1a ≥时,()0f x '≤恒成立, 因为3π0,4x ⎡⎤∈⎢⎥⎣⎦,所以sin 0x ≥, 因为1a ≥,所以()sin 1cos f x x x x '≤--+.记s ()cos n 1i h x x x x =--+,则π()1sin 14cos h x x x x ⎛⎫'=-=+ ⎝-⎪⎭.当π0,2x ⎛⎫∈ ⎪⎝⎭时,()0h x '<;当π3π,24x ⎛⎫∈ ⎪⎝⎭时,()0h x '>. 所以函数()h x 在π0,2⎡⎫⎪⎢⎣⎭上单调递减,在π3π,24⎛⎤⎥⎝⎦上单调递增.因为ππ(),h h ⎛⎫==- ⎪⎝⎭33001044, 所以()h x 在3π0,4⎡⎤⎢⎥⎣⎦上的最大值为(0)0h =. 即()()1sin cos 0f x h x x x x '≤=--+≤在3π0,4⎡⎤⎢⎥⎣⎦上恒成立.所以a 的取值范围为[)1,+∞. 5.(1)2(e ,2e 1)--- (2)证明见详解 【解析】 【分析】(1)令e x t =换元得函数2()2(e 1)2eln ,0h t t t t t =-++>,然后通过导数求极值,根据y a =与函数图象有三个交点可得;(2)构造函数1()()()m t h t h t=-,通过导数研究在区间(1,e)上的单调性,然后由单调性结合已知可证. (1)令e x t =,则ln x t =,记2()2(e 1)2eln ,0h t t t t t =-++> 令2e 2(1)(e)()22(e 1)0t t h t t t t--'=-++==,得121,e t t == 当01t <<时,()0h t '>,1e t <<时,()0h t '<,t e >时,()0h t '>所以当1t =时,()h t 取得极大值(1)2e 1h =--,e t =时,()h t 取得极大值2(e)e h =-, 因为函数()()g x f x a =-有三个零点⇔()y h t =与y a =有三个交点, 所以2e 2e 1a -<<--,即 a 的取值范围为2(e ,2e 1)---. (2)记221111()()()2(e 1)2eln 2(e 1)2eln m t h t h t t t t t t t=-=-++-++- 2212(e 1)2(e 1)4eln t t t t t+=-++-+ 4323234e 22(e 1)22(e 1)4e 2(e 1)2()22(e 1)t t t t m t t t t t t +-++-++'=-+++-=记432()22(e 1)4e 2(e 1)2n t t t t t =-++-++ 则32()86(e 1)8e 2(e 1)n t t t t '=-++-+ 记32()86(e 1)8e 2(e 1)s t t t t =-++-+ 则2()2412(e 1)8e s t t t '=-++易知()s t '在区间(1,e)上单调递增,所以()(1)124e 0s t s ''>=-> 所以()s t 在区间(1,e)上单调递增,所以()(1)0s t s >=所以()n t 在区间(1,e)上单调递增,所以()(1)0n t n >= 所以()m t 在区间(1,e)上单调递增因为()()()()123123f x f x f x x x x ==<<,记312123e ,e ,e x x xt t t ===所以()()()()123123h t h t h t t t t ==<< 由(1)可知,12301e t t t <<<<<所以2221()()()(1)0m t h t h m t =->=,即221()()h t h t >又()()12h t h t =,所以121()()h t h t >因为21e t <<,所以2101t <<由(1)知()h t 在区间(0,1)上单调递增,所以121t t >,即1212e1x xt t +=> 所以120x x +> 【点睛】本题第二问属于极值点偏移问题,关键点在于构造一元差函数,通常构造成00()()()F x f x x f x x =+--或0()()(2)F x f x f x x =--,本题由于采取了换元法转化问题,因此构造函数为1()()()m t h t h t=-. 6.(1)1(0,)e(2)证明见解析 【解析】 【分析】(1)求解导函数,再构造新函数,求导,判断单调性,求解极值,分类讨论1e k ≥与10e <<k 两种情况;(2)由(1)知,1e e x x ≤,可证2121(1)e (1)n n n n -++≤,由21111(1)(1)1n n n n n <=-+++,可得2111(1)e 1n n n n n -≤-++,从而利用裂项相消法求和可证明()222221123123e 4e 1e n n n -+++⋅⋅⋅+<+. (1)由21()e 2x f x k x =-,得()e e ()e x xxxf x k x k '=-=-. 设()e x xg x =,则1()ex x g x -'=,当1x <时,()0g x '>,()g x 是增函数;当1x >时,()0g x '<,()g x 是减函数.又(1)0g '=,∴max 1()()(1)eg x g x g ===极大.设1e λ≥,当1ln x λ<-时,11111ln ln ()ln e x x g x e λλλλλ--=<=-<-.由于(0)0g =,所以()g x 在区间(,0)-∞上的值域是(,0)-∞.又0x >时,()0>g x ,所以当0k ≤时,直线y k =与曲线()y g x =有且只有一个交点,即()'f x 只有一个零点,不合题意,舍.当1ek ≥时,()0f x '≥,()f x 在R 上是增函数,不合题意,舍.当10e<<k 时,若1x ≤,由(1)可知,直线y k =与曲线()y g x =有一个交点.下面证明若1x >,直线y k =与曲线()y g x =有一个交点.由于()g x 是区间(1,)+∞上的减函数,所以需要证明()g x 在区间(1,)+∞上的值域为1(0,)e ,即对21(0,)eλ∀∈,都存在01x >,使得020()g x λ<<.构造函数2()e x h x x =-,则()e 2x h x x '=-,∴当ln 2x >时,()'()20xh x e =->',()h x '在区间(ln2,)+∞上是增函数,∴当1x >时,()(1)e 20h x h ''>=->,即()h x 是区间[1,)+∞的增函数,∴1x >时,()(1)e 10h x h >=->,此时2e x x >.设210e λ<<,当21x λ>时,0()e x x g x <=<221x x xλ=<,∴当10e<<k 时,直线y k =与曲线()y g x =有两个交点,即()'f x 有两个零点.设这两零点分别为1x ,212()x x x <,则1201x x <<<,不等式()0f x '>的解集为12(,)(,)x x -∞+∞,不等式()0f x '<的解集为12(,)x x .所以1x 为函数()f x 的极大值点,2x 为函数()f x 的极小值点. 综上所述,实数k 的取值范围是1(0,)e. (2)证明:由(1)知,1e ex x ≤,∴对*n N ∀∈,2121(1)e (1)n n n n -++≤.∵211(1)(1)n n n <=++111n n -+, ∴2111(1)1n nn e n n -<-++, ∴22222112311111111(1)()()()123e 4e (1)e 2233411n n n n n n -++++<-+-+-++-=-+++, 所以,222221123123e 4e (1)e n nn -++++<+.【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用. 7.(1)增区间为32,2,44k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ 减区间为52,2,44k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦(2)证明过程见解析. 【解析】 【分析】(1)对函数求导,利用辅助角公式合并为同名三角函数,利用单调增减区间代入公式求解即可.(2)将绝对值不等式转化为11sin e e xxrx ⎛⎫⎛⎫-≤≤ ⎪ ⎪⎝⎭⎝⎭,移向构造新函数,利用导数判定单调性,借助零点定理和隐零点证明新构造函数恒正,再结合三角函数的特有的周期特点寻找M 即可. (1)()e (sin cos )sin 4x x f x x x x π⎛⎫'=+=+ ⎪⎝⎭令22242k x k πππππ-≤+≤+,得32,244x k k ππππ⎡⎤∈-+⎢⎥⎣⎦令322242k x k ππππ+≤+≤π+,得24x k ππ⎡∈+⎢⎣,524k ππ⎤+⎥⎦当32,244x k k ππππ⎡⎤∈-+⎢⎥⎣⎦时, ()0f x '>,()f x 单调递增 当24x k ππ⎡∈+⎢⎣,524k ππ⎤+⎥⎦时, ()0,()f x f x '< 单调递減 综上() f x 单调递增区间为32,2,44k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦单调递减区间为 52,2,44k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦(2)要证|()|1f x ≤,即证e sin 1xrx ⋅≤,即证11sin =e e xx rx ⎛⎫≤ ⎪⎝⎭即证 11sin e e x xrx ⎛⎫⎛⎫-≤≤ ⎪ ⎪⎝⎭⎝⎭在[,]x a b ∈时成立即可,[,]x a b ∈时,1sin 0e 1sin 0e xxrx rx ⎧⎛⎫-≤⎪ ⎪⎪⎝⎭⎨⎛⎫⎪+≥ ⎪⎪⎝⎭⎩. 令1()sin e x h x rx ⎛⎫=- ⎪⎝⎭, 1()cos e xh x r rx ⎛⎫'=+ ⎪⎝⎭当222,k k x rr πππ⎛⎫+ ⎪∈⎪ ⎪⎝⎭时, cos 0,r rx > 所以1()cos 0,e xh x r rx ⎛⎫'=+> ⎪⎝⎭所以()h x 单调递增,2210,e k rk h rππ⎛⎫⎛⎫=-< ⎪ ⎪⎝⎭⎝⎭2221210(0)e k r k h k r ππππ+⎛⎫⎛⎫+ ⎪⎪=±>> ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭0(2)22,k k x rrπππ+∴∃∈ , 满足()00h x =由单调性可知02,k x x r π⎛⎫∈ ⎪⎝⎭, 满足()0()0h x h x <= 又因为当021,,sin 0,0,xk x x rx r e π⎛⎫⎛⎫∈>≥ ⎪ ⎪⎝⎭⎝⎭ 1sin 0xrx e ⎛⎫∴+≥ ⎪⎝⎭,所以1sin 0e 1sin 0e xxrx rx ⎧⎛⎫-≤⎪ ⎪⎪⎝⎭⎨⎛⎫⎪+≥ ⎪⎪⎝⎭⎩能够同时满足, 对于任意的正实数M ,总存在正整数k ,且满足2Mr k π>时, 使得 2k M r π>成立, 所以不妨取 02,,2k Mr a k b x rππ⎛⎫=>= ⎪⎝⎭ 则,a b M >且[,]x a b ∈时,1sin 01sin 0xxrx e rx e ⎧⎛⎫-≤⎪ ⎪⎪⎝⎭⎨⎛⎫⎪+≥ ⎪⎪⎝⎭⎩, 故对于任意的正实数M ,总存在大于M 的实数,a b ,使得当[,]x a b ∈ 时,|()|1f x ≤. 8.(1)0a ≤(2)()()21f x f x <,理由见解析 【解析】 【分析】(1)分离参变量,得到ln 1,(0)x x a x x--≤>恒成立,构造函数,将问题转化为求函数的最值问题;(2)由(1)可得1ln x x -≥,从而判断()g x 的单调性,确定1213122x x <<<<,再通过构造函数,利用导数判断其单调性,最终推出122x x +<;再次构造函数1ln ()12t t F t t -=-+,判断其单调性,由此推出2211ln ln x x x x -<-,可得结论. (1)()1x f ax ≥+恒成立,即ln 1,(0)x x a x x--≤>恒成立, 令ln 1()x x h x x --=,2ln ()xh x x'=, 当(0,1)x ∈时,()0h x '<,函数()h x 递减; 当(1,)x ∈+∞时,()0h x '>,函数()h x 递增, 故min ()(1)0h x h ==, 所以0a ≤. (2)2()121212ln 12(1ln )g x x x x x x x x '=--=--,由(1)知1ln x x -≥,所以在13,22⎛⎫⎪⎝⎭上()0g x '≥,所以()g x 在13,22⎛⎫⎪⎝⎭上单调递增,且(1)0g =.所以1213122x x <<<<,设()12(1ln )m x x x x =--,()12(22ln )m x x x '=--, 设()12(22ln )n x x x =--,则12(21)()x n x x -'=,13,22x ⎛⎫∈ ⎪⎝⎭,()0n x '>, 所以()m x '在13,22⎛⎫ ⎪⎝⎭上单调递增,且(1)0m '=,所以()m x 在1,12⎛⎫ ⎪⎝⎭上单调递减,在31,2⎛⎫⎪⎝⎭上单调递增,令()()(2)H x g x g x =+-,()()(2)12[22ln (2)ln(2)]H x g x g x x x x x x '''=--=--+--, 令()()G x H x '=,()2()12ln 2G x x x '=--,31,2x ⎛⎫∈ ⎪⎝⎭,()0G x '>,所以()H x '在31,2⎛⎫⎪⎝⎭上单调递增,所以()(1)0H x H ''>=, 所以()H x 在31,2⎛⎫ ⎪⎝⎭上单调递增,所以()(1)0H x H >=, 所以()()()22220H x g x g x =+->,()()()2212g x g x g x ->-=,而()g x 在13,22⎛⎫⎪⎝⎭上单调递增,所以212x x ->,122x x +<;设1ln ()12t tF t t -=-+,()()()221021t F t t t '--=≤+, 所以()F t 单调递减,且(1)0F =,1t >,()0F t <,所以210x F x ⎛⎫< ⎪⎝⎭,即221121ln 121x x x xx x ⎛⎫- ⎪⎝⎭<+,即212121ln 2ln x x x x x x -<+-, 所以212121ln ln 12x xx x x x -+<-<, 所以2121ln ln x x x x -<-,即2211ln ln x x x x -<-. 所以()()21f x f x <. 【点睛】本题考查了利用导数解决不等式恒成立时求参数范围问题以及利用导数比较函数值大小问题,综合性较强,难度较大,解答的关键是要合理地构造函数,利用导数判断函数单调性以及确定极值或最值,其中要注意解答问题的思路要清晰明确.9.(1)1,e∞⎡⎫+⎪⎢⎣⎭(2)证明见解析 【解析】 【分析】(1)()0f x ≤恒成立,等价于ln xa x ≥恒成立,即max ln x a x ⎛⎫≥ ⎪⎝⎭,令()ln x g x x=,利用导数求出函数()g x 的最大值,即可得出答案;(2)()112212ln 2ln 200x ax x ax x x -=-=>>,即()1212,0x x x x >>为函数ln 2y x ax=-的两个零点,即()1212,0x x x x >>为方程ln 2x a x =的两个根,由(1)知102ea <<,且1201x x <<<,则要证()1212ln ln 10ln 2x x x x ⋅<<,只需证()1212ln 2ln ln x x x x >⋅,即证2122112212ln x x x x x x ->,令12,1x t t x =>,则要证22n 1l t tt ->,令()()12ln 1t t t t t ϕ=-->,利用导数证明()min 0t ϕ>即可. (1)解:因为函数()f x 的定义域为()0,∞+,所以()0f x ≤恒成立, 等价于ln xa x ≥恒成立,所以maxln x a x ⎛⎫≥ ⎪⎝⎭,令()ln x g x x =,则()21ln x g x x-'=, 当()0,e x ∈时,()0g x '>,()g x 单调递增; 当()e,x ∈+∞时,()0g x '<,()g x 单调递减, 所以()()max 1e eg x g ==,故1ea ≥,即实数a 的取值范围是1,e∞⎡⎫+⎪⎢⎣⎭;(2)证明:()112212ln 2ln 200x ax x ax x x -=-=>>, 即()1212,0x x x x >>为函数ln 2y x ax =-的两个零点, 即()1212,0x x x x >>为方程ln 20x ax -=的两个根, 即()1212,0x x x x >>为方程ln 2xa x=的两个根, 由(1)知102ea <<,即102ea <<,且1201x x <<<, 由11ln 2x ax =,22ln 2x ax =,得()1212ln ln 2x x a x x -=-, 所以1212ln ln 2x x a x x -=-, 要证()1212ln ln 10ln 2x x x x ⋅<<,只需证()1212ln 2ln ln x x x x >⋅,即证121212ln ln 112ln ln ln ln x x x x x x +=+>⋅,即1211222ax ax +>,即12114a x x +>,也就是121212ln ln 112x x x x x x -+>⨯-,整理得221211222ln x x x x x x ->,即证2122112212ln x x xx x x ->, 令12,1x t t x =>,则要证2112ln t t t t t -=->, 令()()12ln 1t t t t tϕ=-->,则()()222221122110t t t t t t t tϕ--+'=+-==>, 所以()t ϕ在()1,+∞上单调递增,所以()()10t ϕϕ>=, 所以当t >1时,12ln t t t->,故原结论成立,即()1212ln ln 10ln 2x x x x ⋅<<.【点睛】本题考查了不等式恒成立问题和不等式的证明问题,考查了利用导数求函数的最值,考查了分离参数法,考查了转化思想,考查了学生的数据分析能力和逻辑推理能力,难度较大. 10.(1)在(0,)+∞单调递增; (2)1b ≤ 【解析】 【分析】(1)对函数()f x 通过求导,判断出导数恒大于等于0,得到()f x 在(0,)+∞单调递增.(2)将()g x 化简整理并求导,得到222(1)1()(24)-'=++-x g x x b x x,讨论b 的取值可确定()g x 在(1,)+∞单调性,即可得到取值范围. (1)因为()f x 的定义域为(0,)+∞,对函数()f x 求导,则222221221(1)()10x x x f x x x x x'-+-=+-==≥,∴函数()f x 在(0,)+∞单调递增. (2)因为()()()28g x f x bf x =-,所以22211()2ln 8(2ln )0=----->g x x x b x x x x 对1x ∀>恒成立, 322412()28(1)'=+--+-g x x b x x x x4232312248(2)⎡⎤=+--+-⎣⎦x x b x x x x222322(1)2(1)1(1)4(24)--⎡⎤=+-=++-⎣⎦x x x bx x b x x x当1x >时,124++>x x,当44≤b , 即1b ≤时,()0g x '>对1x ∀>恒成立,∴()g x 在(1,)+∞单调递增,()(1)g x g >=0符合题意.当1b >时,存在01x >使得当0(1,)x x ∈时,()0,()g x g x '<单调递减; 此时()(1)0g x g <=这与()0>g x 恒成立矛盾. 综上:1b ≤. 【点睛】本题考查函数恒成立条件下求解参数范围问题,属于难题.对函数()g x 求导,有222(1)1()(24)-'=++-x g x x b x x,再利用()1=0g 的特点,可分类讨论b 的取值范围,在1b ≤时,()g x 在(1,)+∞单调递增,原式成立,此时满足要求;当1b >时,()g x 在(1,)+∞先出现递减区间,必有()0g x <出现,与已知矛盾,即可确定b 的范围.。
苏教版高中数学必修二导学案答案

解析几何2.1.1 直线的斜率︒ 2.11,,172- 3. 4.3,3 5.180α︒- 6.1 7.(1)m>1或m<-5; (2)m=-5; (3)-5<m<1. 8.a=1或a=29.(1)A ,B ,C 的坐标只要满足26)2y x x -=<<-即可;(2)根据第1问的答案,这里答案各不相同,但所求斜率k 1k <<;(3)1,3045k α≤≤︒≤≤︒ 2.1.2 直线的方程——点斜式(略) 2.1.2 直线的方程——两点式1.y=6301111x +;2.123x y -=;3.142x y -=;4.32-;5.2或12;6.126x y+=;7.4x+3y=0或x+y+1=0;8.123a ≤≤;9.4332k k ≤-≥或;2.1.3 两条直线的平行与垂直(1)1.(1)平行;(2)不平行;2.-8;3.m=2或m=-3;4.4x+3y-16=0;5.2x-3y-7=0,;6.m=-2,n=0或10 ,7.平行四边形;8.m=4 ,9.a=2,b=-2或a=2/3,b=2.2.1.3 两条直线的平行与垂直(2)1.3x-y+2=0,2.(1)垂直;(2)不垂直3.2a-b=0;4.3 ,5.(-1,0),6.2x+y-5=07.3x+4y+12=0或3x+4y-12=0 ,8.2x+y-7=0,x-y+1=0,x+2y-5=0;9. 4x-3y 0±=.2.1.4 两条直线的交点1.36477⎛⎫⎪⎝⎭,;2.6或-6;3.12-;4.4390x y -+=;5.10,-12,-2;61162k -<<; 7.230x y --=;8.m=4,或m=-1,或m=1;9.(1)表示经过210x y -+=和2390x y ++=的交点(-3,-1)的直线(不包括直线2390x y ++=);(2)30,40x y x y -=++=2.1.5 平面上两点间的距离1.()53,;2.正方形;3.(6,5);1122y y+=+=;5.47240;6.23120;7.(1,0)150;9.x y x y P x y +-=+-=--=且略2.1.6 点到直线的距离(1)1.(1,2),(2,1);-52.;23.21±4.43±=m5.36.x y 43±=7.(4,7),(6,1)(8,3),(6,3);C D C D ---或8.220,3420,2;9,560x y x y x x y --±=-+==-+=2.1.6点到直线的距离(2)1.1017 2.343.3450,34350x y x y --=--=4.05;d <≤5.3x-4y-17=0和3x-4y-1=0 6.230;7.(4,7),(6,1)(8,3),(6,3);x y C D C D -+=---或8. 5x-12y-5=0,5x-12y+60=0,260≤<d ,9. x+3y+7=0,3x-y-3=0和3x-y+9=0.2.2.1 圆的方程 (1)1.22(8)(3)25x y -++=2.22(5)(6)10x y -+-=3.22(5)(4)16x y ++-=4. 25.222;0;;a b r a r b r a b +=====6.22(2)(3)13x y -++=7.可求已只知圆心(3,4)关于已知直线的对称点为(-3,-4),半径不变,所以要求的圆的方程为22(3)(4)1x y +++=8.由题可设圆的方程为222222()()()()x a y a a x a y a a -++=-+-=或,将点A (1,2)带入上述方程得a=1或5,所以所求的圆的方程为2222(1)(1)1(5)(5)25x y x y -+-=-+-=和.9.略2.2.1 圆的方程(2)1.(-1,2),3;2. 4,-6.-3;3. 114k k <>或;4.x 2+y 2-2x-4y=0;5. x-2+y 2-2x-2y=0;6.D ≠0且E=F=0;7.(1)x 2+y 2+x-9y-12=0;(2)x 2+y 2-4x+3y=0;8.a=-10;9.以AB 的中点O 为坐标原点,AB 所在直线为x 轴建立坐标系.则A (-3,0),B (3,0),C (2,3).设圆的方程为220x y Dx Ey F ++++=,则0439D E F =⎧⎪⎪=-⎨⎪=-⎪⎩,故所求圆的方程为224903x y Dx y ++-+= 2.2.2 直线与圆的位置关系1. 2.4;相离; 3.3;4. 5.点在圆外;相切;6.1a =-7.(1)25;(2)3450,1;(3)x y x y x +=-+==略;22228.16;9.(1)(1)2(1)(1)2m x y x y =-+++=-+-=或2.2.3 圆与圆的位置关系(略)2.3.1 空间直角坐标系1~4.略;5.在空间直角坐标系中,yOz 坐标平面与x 轴垂直,xOz 坐标平面与y 轴垂直,xOy 坐标平面与z 轴垂直;6.在空间直角坐标系中,落在x 轴上的点的纵坐标和竖坐标都是0,如(2,0,0),(-3,0,0),(5,0,0);xOy 坐标平面内的点的竖坐标为0,如(1,1,0),(-1,2,0),(1,2,0);7.(2,3,0),(0,3,4),(2,0,4);(2,0,0),(0,3,0),(0,0,4);8.(-1,-3,5);(1,-3,5);9.若两点坐标分别为111(,,)x y z 和222(,,)x y z ,则过这两点的直线方程为111212121x x y y z z x x y y z z ---==---121212(,,)x x y y z z ≠≠≠ 2.3.2 空间两点间的距离31,)2231,,4).22-- 2.M(0,0,-3). 3.略. 4.(1)x+3y-2z-6=0; (2)2x-y-2z+3=0. 5.(x+1)2+y 2+(z-4)2=9. 6.x=4,y=1,z=2. 7.D(3,0,2). 8.A(2,-4,-7),B(0,0,5),C(6,4,-1). 9.(1)(1,2,1); (2)x=1,y=8,z=9.直线和圆单元测试1.32π 2.),2(]4,0[πππ⋃ 3.[5,1212ππ] 4.直角三角形 5.(,1)∪(1,) 6.3± 7.328.22± 9.(-∞,)∪,+∞) 10.{4,5,6,7} 11.)3,3(- 12.345 13.030 14.B D ,15.解:设D 点的坐标为(x 0, y 0),∵直线AB:1,26x y+=即3x+y —6=0,∴000000113,3120360OD AB y k k x x y x y ⎧⎧=-=⎪⎪⎨⎨⎪⎪+-=+-=⎩⎩即. 解得x 0=,518 y 0=)56,518(56D 即,.由|PD|=2|BD|, 得λ=23-=PD BP . ∴由定比分点公式得x p =542554-=p y ,.将P(542,554-)代入l 的方程, 得a=103. ∴k 1= -3. 故得直线l 的倾斜角为120°16. 解:(1)由题意知此平面区域表示的是以(0,0),(4,0),(0,2)O P Q 构成的三角形及其内部,且△OPQ 是直角三角形,所以覆盖它的且面积最小的圆是其外接圆,故圆心是(2,1),, 所以圆C 的方程是22(2)(1)5x y -+-=. (2)设直线l 的方程是:y x b =+.因为CA CB ⊥u u u r u u u r ,所以圆心C 到直线l,=解得:1b =-±.所以直线l 的方程是:1y x =-±.17.解: 依题意知四边形PAQB 为矩形。
《新学案》2015年春高中数学苏教版选修2-2名师导学第一章 导数及其应用(含解析)

第 1 章 导数及其应用第1课时 平均变化率教学过程一、 问题情境现有某市某年3月和4“气温陡增”这一句生活用语,用数学方法如何刻画?二、 数学建构问题1 “气温陡增”是一句生活用语,它的数学意义是什么?(形与数两方面)[1]问题2 如何量化(数学化)曲线上升的陡峭程度?[2]解 通过讨论,给出函数f (x )在区间[x 1,x 2]上的平均变化率:错误!未找到引用源。
.概念理解1. 具体计算函数f (x )在区间[x 1,x 2]上的平均变化率可用错误!未找到引用源。
=错误!未找到引用源。
=错误!未找到引用源。
,应注意分子、分母的匹配.2. 函数f (x )在区间[x 1,x 2]上的平均变化率近似地刻画了曲线在某区间上的变化趋势,从定义看,f (x )在区间错误!未找到引用源。
上的平均变化率就是直线AB 的斜率.巩固概念问题3 回到问题情境中,从数和形两方面对平均变化率进行意义建构.解 从数的角度:3月18日到4月18日的日平均变化率约为0.5;4月18日到4月20日的日平均变化率为7.4.从形的角度:比较斜率的大小.[3]三、 数学运用【例1】 设函数f (x )=x 2-1,当自变量x 由1变到1.1时,求:(1) 自变量的增量Δx ;(2) 函数的增量Δy ;(3) 函数的平均变化率.[处理建议]根据定义来求解.[规范板书]解(1)Δx=1.1-1=0.1. (2) Δy=1.12-1-(12-1)=0.21. (3)错误!未找到引用源。
=错误!未找到引用源。
=2.1.[题后反思]求平均变化率时关键在于理解定义,知道Δx与Δy分别指的是什么.【例2】(教材第7页例4)已知函数f(x)=2x+1,g(x)=-2x,分别计算在区间[-3,-1],[0,5]上f(x)及g(x)的平均变化率.(见学生用书P2)[处理建议]可回顾“必修2”中关于直线斜率的内容,让学生体会错误!未找到引用源。
的含义.[规范板书]解函数f(x)在[-3,-1]上的平均变化率为错误!未找到引用源。
高二数学导数大题练习详细答案

高二数学导数大题练习详细答案一、解答题1.已知函数()ln f x x x x =-,()2ln 1g x a x x =-+. (1)求函数()f x 的最小值;(2)若()0g x ≤在()0,∞+上恒成立,求实数a 的值; (3)证明:1111232022e 2023+++⋅⋅⋅+>,e 是自然对数的底数. 2.已知函数()()1ln 0f x a x x a x=-+>.(1)当1≥x 时,()0f x ≤恒成立,求实数a 的取值范围;(2)当1a =时,()()21g x xf x x =+-,方程()g x m =的根为1x 、2x ,且21x x >,求证:211e x x m ->+.3.已知函数()2ln 1f x x x mx nx =+++在点()()1,1f 处的切线方程是10x y +-=.(1)记()f x 的导函数为()g x ,求()g x 的最大值; (2)如果()12,0,x x ∈+∞,且121x x ⋅>,求证()()120f x f x +<. 4.已知函数()()()1111ln k knk x f x x k-=-⋅-=-∑.(1)分别求n=1和n=2的函数()f x 的单调性; (2)求函数()f x 的零点个数.5.已知函数()ln f x x =,()21g x x x =-+.(1)求函数()()()h x f x g x =-的单调区间;(2)若直线l 与函数()f x ,()g x 的图象都相切,求直线l 的条数.6.设函数()()2()ln 1f x x a x x =++-,其中R a ∈.(1)1a =时,求曲线()y f x =在点()()1,1f 处的切线方程; (2)讨论函数()f x 极值点的个数,并说明理由; (3)若()0,0x f x ∀>成立,求a 的取值范围. 7.求下列函数的导数: (1)2cos x xy x -=; (2)()e 1cos 2x x y x =+-; (3)()3log 51y x =-.8.已知函数()()1ln f x x x =+ (1)求函数()f x 的单调区间和极值;(2)若m Z ∈,()()1m x f x -<对任意的()1,x ∈+∞恒成立,求m 的最大值. 9.已知函数()ln f x x =(1)过原点作()f x 的切线l ,求l 的方程; (2)令()()f x g x x=,求()g x a ≥在4e,e ⎡⎤⎣⎦恒成立,求a 的取值范围 10.设函数y =x 3+ax 2+bx +c 的图像如图所示,且与y =0在原点相切,若函数的极小值为-4.(1)求a ,b ,c 的值. (2)求函数的递减区间.【参考答案】一、解答题 1.(1)1- (2)2(3)证明见解析 【解析】 【分析】(1)求导求单调性即可求解;(2)()()220a x g x x x-'=>,分类讨论单调性得到()ln 1222max g x a a a =-+,要使()0g x ≤在()0,∞+恒成立,则()0max g x ≤,即ln 10222a a a -+≤, 又由(1)可得到ln 10222a a a -+≥,所以ln 10222a a a -+=,即可求解;(3)由(2)知()22ln 1g x x x =≤-得到22ln 1x x ≤-,所以ln 1t t ≤-,所以e 1xx ≥+,即11e >nn n+,代入证明即可. (1)()f x 的定义域为()0,∞+,()ln f x x '=,当()0,1x ∈时,()0f x '<,当(1,)x ∈+∞时,()0,f x '> 故()f x 在()01,上单调递减,在(1,)+∞上单调递增. 所以()()11min f x f ==-. (2)()()2220a a x g x x x x x-'=-=>,当0a ≤时,()0g x '<,()g x 在()0,∞+上单调递减, 此时存在()00,1x ∈,使得()()010g x g >=,与题设矛盾.当0a >时,x ∈时,()0g x '>,)x ∈+∞时,()0g x '<,故()g x 在上单调递增,在)+∞上单调递减,所以()1ln 12222max a a a ag g x a ==+=-+, 要使()0g x ≤在()0,∞+恒成立,则()0max g x ≤,即ln 10222a a a -+≤又由(1)知()ln 1f x x x x =-≥-,即ln 1x x x -≥-,(当且仅当1x =时,等号成立).令2a x =有ln 10222a a a -+≥,故ln 10222a a a -+=且12a = 所以2a =. (3)证明:由(2)知()22ln 1g x x x =≤-得22ln 1x x ≤-(当且仅当1x =时等号成立),令)0x t =>,则ln 1t t ≤-(当且仅当1t =时等号成立),令e x t =,所以ln e e 1x x ≤-,即e 1x x ≥+(当且仅当0x =时等号成立),令()*10x n N n =>∈,则111e >1n n n n++=从而有11111320212022223420222023e e eee>12320212022⋅⋅⋅⨯⨯⨯⨯⨯ 所以111112320212022e 2023.+++⋯++> 【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用. 2.(1)02a <≤ (2)证明见解析 【解析】 【分析】(1)分析可知1≥x ,()()01f x f ≤=,分02a <≤、2a >两种情况讨论,利用导数分析函数()f x 在[)1,+∞上的单调性,验证()()1f x f ≤对任意的1≥x 是否恒成立,由此可求得实数a 的取值范围;(2)利用导数分析函数()g x 的单调性,可得出12101x x e<<<<,证明出31x x >,证明出当1,1e x ⎛⎫∈ ⎪⎝⎭时,()()11e 1g x x <--,可得出()241e 1x x m >=+-,结合不等式的性质可证得结论成立. (1)解:因为()()1ln 0f x a x x a x =-+>,则()222111a x ax f x x x x-+-'=--=,且()10f =, 由题意可知,对任意的1≥x ,()()01f x f ≤=, 设21y x ax =-+-,则24a ∆=-,(ⅰ)当02a <≤时,0∆≤,()0f x '≤恒成立且()f x '不恒为零,()f x 在[)1,+∞上是减函数,又因为()10f =,所以()0f x ≤恒成立;(ⅱ)当2a >时,0∆>,方程210x ax -+-=的根为1x =,2x =又因为121=x x ,所以121x x .由()0f x '>得1x ≤<()0f x '<,得x所以()f x 在⎡⎢⎢⎣⎭上是增函数,在⎫+∞⎪⎪⎝⎭上是减函数,因为()10f =,所以()0f x ≤不恒成立. 综上所述,02a <≤. (2)证明:当1a =时,()()21ln g x xf x x x x =+-=,()1ln g x x '=+,由()0g x '<,可得10e x <<,由()0g x '>,可得1ex >,所以()g x 在10,e ⎛⎫⎪⎝⎭上是减函数,在1,e ⎛⎫+∞ ⎪⎝⎭上是增函数,则()min11e e g x g ⎛⎫==- ⎪⎝⎭, 当01x <<时,()ln 0g x x x =<,所以,12101x x e <<<<,且10em -<<, 当10,ex ⎛⎫∈ ⎪⎝⎭时,ln 1x <-,所以ln x x x <-,即()g x x <-.设直线y x =-与y m =的交点的横坐标为3x ,则3111ln x m x x x =-=->,下面证明当1,1e x ⎛⎫∈ ⎪⎝⎭时,()()11e 1g x x <--, 设()()()111ln 1ln e 1e 1e 1h x x x x x x x ⎡⎤=--=-+⎢⎥---⎣⎦,令()()11ln e 1e 1p x x x =-+--,则()()()()22e 1111e 1e 1x p x x x x --'=-=--, 当11ee 1x <<-时,()0p x '<,当11e 1x <<-时,()0p x '>, 所以()p x 在11,e e 1⎛⎫ ⎪-⎝⎭上是减函数,在1,1e 1⎛⎫⎪-⎝⎭上是增函数, 又因为10e p ⎛⎫= ⎪⎝⎭,()10p =,所以当11e x <<时,()0p x <,()0h x <,故当1,1e x ⎛⎫∈ ⎪⎝⎭时,()()11e 1g x x <--. 设直线()111e y x =--与y m =的交点的横坐标为4x ,则41e 1x m -=-,可得()41e 1x m =+-,如下图所示:则()241e 1x x m >=+-,所以21431e x x x x m ->-=+,得证. 【点睛】方法点睛:利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式()()f x g x >(或()()f x g x <)转化为证明()()0f x g x ->(或()()0f x g x -<),进而构造辅助函数()()()h x f x g x =-;(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论; (3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数. 3.(1)ln2-; (2)证明见解析. 【解析】 【分析】(1)根据导数的几何意义,结合导数的性质进行求解即可; (2)根据对数的运算性质,结合(1)中的结论进行证明即可. (1)由题意:()ln 21f x x mx n =+++',则()1211f m n =++=-', 又()10f =,得10++=m n ,解得:1,0m n =-=;()2ln 1f x x x x ∴=-+()()()112ln 21,2x g x f x x x g x x x-∴==-+==''- 所以()g x 在10,2⎛⎫ ⎪⎝⎭上单调递增,在1,2⎛⎫+∞ ⎪⎝⎭上单调递减,()11ln ln222g x g ⎛⎫≤==- ⎪⎝⎭所以函数()g x 的最大值为ln2-; (2)由(1)可知,()()ln20f x g x =≤-<', 所以()f x 在()0,∞+上单调递减;121x x <<与121x x >,可得:()1122111x f f x x x ⎛⎫<⇒> ⎪⎭<⎝,故()()()22122222222222222211111ln ln 2ln f x f x f x f x x x x x x x x x x x x ⎛⎫⎛⎫⎛⎫+<+=---+=--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭只需要证明:22222211ln 0x x x x x ⎛⎫⎛⎫---< ⎪ ⎪⎝⎭⎝⎭,化为2221ln 0x x x ⎛⎫--< ⎪⎝⎭,2222ln 10x x x -+<,即()20f x <因为()f x 在区间()0,∞+上单调递减,而21>x ,则()()210f x f <=,得证不等式成立. 【点睛】关键点睛:利用分析法证明22222211ln 0x x x x x ⎛⎫⎛⎫---< ⎪ ⎪⎝⎭⎝⎭是解题的关键.4.(1)当1n =时,函数()f x 在()0,1上单调递增,在()1,+∞上单调递减;当2n =时,()f x 在()0,∞+上单调递增; (2)1个. 【解析】 【分析】(1)利用导数求函数的单调区间得解;(2)求出()()1nx f x x-'=,再对n 分奇数和偶数两种情况讨论得解.(1)解:由已知,得()()()()()()2311111ln 123n nx x x f x x x n-⎡⎤----=---+++⎢⎥⎢⎥⎣⎦. ①当1n =时,()()ln 1f x x x =--,()11f x x'=-.由()110f x x '=->,得01x <<;由()110'=-<f x x,得1x >.因此,当1n =时,函数()f x 在()0,1上单调递增,在()1,+∞上单调递减.②当2n =时,()()()21ln 12x f x x x ⎡⎤-=---⎢⎥⎢⎥⎣⎦,()()()21111x f x x x x -'=-+-=.因为()0f x '≥在()0,∞+恒成立,且只有当1x =时,()0f x '=, 所以()f x 在()0,∞+上单调递增. (2)解:由()()()()()()2311111ln 123n nx x x f x x x n-⎡⎤----=---+++⎢⎥⎢⎥⎣⎦, 得()()()()()()()()211111111111111nnn n x x f x x x x x x x x-----⎡⎤'=---+-++--=-=⎣⎦--. 当n 为偶数时,()0f x '≥在()0,∞+恒成立,且只有当1x =时,()0f x '=, 所以()f x 在()0,∞+上单调递增.因为()10f =,所以()f x 有唯一零点1x =. 当n 为奇数时,由()()10nx f x x-'=>,得01x <<;由()()10nx f x x-'=<,得1x >.因此,()f x 在()0,1上单调递增,在()1,+∞上单调递减. 因为()10f =,所以()f x 有唯一零点1x =.综上,函数()f x 有唯一零点1x =,即函数()f x 的零点个数为1. 5.(1)在()0,1上单调递增,在()1,+∞上单调递减 (2)两条 【解析】 【分析】(1)求出函数的导函数,再解关于导函数的不等式,即可求出函数的单调区间;(2)设直线l 分别与函数()f x ,()g x 的图象相切于点()11,ln A x x ,()2222,1B x x x -+,依题意可得()()12AB f x g x k '='=,即可得到方程组,整理得()211211ln 204x x x++-=,令()()221ln 24x F x x x +=+-,利用导数说明函数的单调性,利用零点存在性定理判断零点的个数,即可得解; (1)解:由题设,()()()2ln 1h x f x g x x x x =-=-+-,定义域为()0,∞+,则()()()221112121x x x x h x x x x x+---'=-+=-=- 当01x <<时,()0h x '>;当1x >时,()0h x '<,所以()h x 在()0,1上单调递增,在()1,+∞上单调递减.(2)解:因为()ln f x x =,()21g x x x =-+,所以()1f x x'=,()21g x x '=-,设直线l 分别与函数()f x ,()g x 的图象相切于点()11,ln A x x ,()2222,1B x x x -+ 则()()12AB f x g x k '='=,即21222112ln 1121x x x x x x x -+-=-=- 由2122112ln 11x x x x x x -+-=-,得2121221ln 1x x x x x x -=-+- 即2212211ln 1x x x x x -=-+-,即221221ln 20xx x x x -++-=由21121x x =-,得12112x x x +=,代入上式,得211112111111ln 20222x x x x x x x ⎛⎫+++-++-= ⎪⎝⎭即()211211ln 204x x x++-=,则()()2221117ln 2ln 4244x F x x x x x x +=+-=++- 设()()()()223332111112102222x x x x F x x x x x x x+---='=--=> 当01x <<时,()0F x '<;当1x >时,()0F x '>,所以()F x 在()0,1上单调递减,在()1,+∞上单调递增.因为()()min 110F x F ==-<,()()()222222441e 1e e ln e 204e4eF ++=+-=>,则()F x 在()1,+∞上仅有一个零点.因为()24242e e 7e 4e 7e 2024424F ---=-++-=+>,则()F x 在()0,1上仅有一个零点. 所以()F x 在()0,∞+上有两个零点,故与函数()f x ,()g x 的图象都相切的直线l 有两条.6.(1)322ln230x y -+-=(2)当0a <时,函数()f x 有一个极值点; 当809a ≤≤时,函数()f x 无极值点; 当89a >时,函数()f x 有两个极值点. (3)0,1 【解析】 【分析】(1)将1a =代入函数()f x 中,得出函数()f x 的解析式,进而可以求出切点坐标,再利用导数的几何意义及点斜式即可求解;(2)根据已知条件,对a 进行分类讨论,利用导数法求函数极值的步骤及函数极值的定义即可求解;(3)根据()0,0x f x ∀>成立,转化为()min 0,0x f x ∀>即可,再利用第(2)的结论即可求解. (1)当1a =时,()2()ln 1f x x x x =++-()()21ln 1111ln 2f =++-=,所以切点为()1,ln2,()()11321,12111112f x x k f x ''=+-∴==+⨯-=++, 所以曲线()y f x =在点()()1,1f 处的切线的斜率为()312k f ='=, 所以曲线()y f x =在点()1,ln2处的切线的斜率切线方程为()3ln212y x -=-,即322ln230x y -+-= (2)由题意知函数()f x 的定义域为()1,-+∞,()()21212111ax ax a f x a x x x +-+=+-='++,令()()221,1,g x ax ax a x =+-+∈-+∞,(i )当0a =时,()10f x '=>,函数()f x 在()1,-+∞单调递增,无极值点 (ii )当0a >时,()Δ98a a =-,①当809a <≤时,()()Δ0,0,0g x f x '≤≥≥, 所以函数()f x 在()1,-+∞单调递增,无极值点; ②当89a >时,Δ0>,设方程2210ax ax a +-+=两根1212,,x x x x ==此时12x x <()121211111,,,110,12444x x x x g x +=-∴---=>-<<∴<->()()121,,,x x x ∴∈-+∞时,()()0,0g x f x '>>,函数()f x 单调递增;()12,x x x ∈时,()()0,0g x f x '<<,函数()f x 单调递减. ∴函数有两个极值点;③当0a <时,()Δ980a a =->,设方程2210ax ax a +-+=两根1212,,x x x x ==此时12x x >()12110,1x g x -=>∴-<<()11,x x ∴∈-时,()()0,0g x f x '>>,函数()f x 单调递增; ()1,x x ∈+∞时,()()0,0g x f x '<<,函数()f x 单调递减.∴函数有一个极值点;综上所述:当0a <时,函数()f x 有一个极值点; 当809a ≤≤时,函数()f x 无极值点; 当89a >时,函数()f x 有两个极值点. (3)由()0,0x f x ∀>成立等价于()min 0,0x f x ∀>≥即可. ①当809a ≤≤时,函数()f x 在()0,+∞上单调递增,()()00,0,f x =∴∈+∞时,()0f x >,符合题意;②当819a <≤时,由()00g >,得20x ≤,∴函数()f x 在()0,+∞上单调递增, 又()()00,0,f x =∴∈+∞时,()0f x >,符合题意;③当1a >时,由()00<g ,得20x >()20,x x ∴∈时, ()f x 单调递减,()()200,0,f x x =∴∈时,()0f x <时,不合题意;④当0a <时,设()()ln 1h x x x =-+,()0,x ∈+∞,时,()()110,11x h x h x x x =-=>∴+'+在()0,+∞上单调递增. ∴当()0,x ∞∈+时,()()00h x h >=,即()ln 1x x +<,可得()()()221f x x a x x ax a x <+-=+-, 当11x a>-时,()210ax a x +-<,此时()0f x <,不合题意. 综上,a 的取值范围是0,1.【点睛】解决此题的关键是第一问利用导数的几何意义及点斜式即可,第二问主要是对参数进行分类讨论,再结合利用导数法求函数的极值的步骤即可,第三问主要将恒成立问题转化为最值问题再结合第二问的结论即可求解.7.(1)'y ()31sin 2cos x x xx --=;(2)'y ()e 1cos sin 2ln 2x x x x =+--;(3)'y ()551ln 3x =-⋅.【解析】【分析】根据导数的运算法则,对(1)(2)(3)逐个求导,即可求得结果.(1) 因为2cos x x y x -=,故'y ()()()243sin 12cos 1sin 2cos x x x x x x x x x x ------==. (2)因为()e 1cos 2x x y x =+-,故'y ()e 1cos sin 2ln 2x x x x =+--.(3)因为()3log 51y x =-,故'y ()()155?51ln 351ln 3x x =⨯=--⋅.8.(1)递增区间为2(e ,)-+∞,递减区间为2(0,e )-,极小值为2e --,没有极大值(2)3【解析】【分析】(1)由导数分析单调性后求解(2)参变分离后,转化为最值问题求解(1)函数()()1ln f x x x =+的定义域为(0,)+∞,由()=ln 2f x x '+,令()=0f x '可得2e x -=,当2(0,)e x -∈时,()0f x '<,函数()()1ln f x x x =+在2(0,e )-上单调递减, 当2(e ,)x -∈+∞时,()0f x '>,函数()()1ln f x x x =+在2(e ,)-+∞上单调递增, ∴ 函数()()1ln f x x x =+的递增区间为2(e ,)-+∞,递减区间为2(0,e )-, 函数()()1ln f x x x =+在2e x -=时取极小值,极小值为2e --,函数()()1ln f x x x =+没有极大值(2)当()1,x ∈+∞时,不等式()()1m x f x -<可化为ln 1x x x m x +<-, 设ln ()1x x x g x x +=-,由已知可得[]min ()g x m <, 又()()()22ln 2(1)ln 2'ln 11()x x x x g x x x x x x +---==----, 令()ln 2(1)h x x x x =-->,则1'()10h x x =->,∴ ()ln 2h x x x =--在()1,+∞上为增函数,又(3)1ln30h =-<,(4)2ln 40h =->, ∴ 存在0(3,4)x ∈,使得0()0h x =,即002ln x x -=当()01,x x ∈时,()0g x '<,函数ln ()1x x x g x x +=-在0(1,)x 上单调递减, 当0(,)x x ∈+∞时,()0g x '>,函数ln ()1x x x g x x +=-在0(,)x +∞上单调递增, ∴ []20000000min 00ln ()=()==11x x x x x g x g x x x x +-=--, ∴ 0m x <,∴ m 的最大值为3.9.(1)1ey x =;(2)4e 4a ≤. 【解析】【分析】(1)设切线的方程为y kx =,设切点为(,ln )t t ,求出e t =即得解;(2)利用导数求出函数()g x 在4⎤⎦上的单调区间即得解. (1)解:设切线的方程为y kx =,设切点为(,ln )t t ,因为()1f x x '=,则()1k f t t'== 所以切线方程为()1ln y t x t t -=-即1ln 1y x t t =+-由题得ln 10t -=则e t =∴切线l 的方程为1e y x =.(2)解:()21ln x g x x -'=,e x <<时,()0g x '>;4e e x <<时,()0g x '<,所以函数()g x 在单调递增,在4(e,e )单调递减,∵g =,()44e e 4g =, 因为44e <=所以最小值()44e e 4g =. 4e 4a ∴≤. 10.(1)3,0a b c =-==;(2)(0,2).【解析】【分析】(1)由题得到三个方程,解方程即得解;(2)解不等式()'f x <0即得函数的单调递减区间.(1)解:由题意知(0)0f = ,∴c =0 .∴()f x =x 3+ax 2+bx , 所以()'f x =3x 2+2ax +b由题得(0)f '=b =0,∴()'f x =3x 2+2ax =0,故极小值点为x 23a =-,∴f (23a -)=﹣4,∴323a ⎛⎫-+ ⎪⎝⎭a 223a ⎛⎫-=- ⎪⎝⎭4,解得a =﹣3. 故3,0a b c =-==.(2)解:令()'f x <0 即3x 2﹣6x <0,解得0<x <2, ∴函数的递减区间为(0,2).。
高中数学选修2-2导数导学案加课后作业及参考答案

§1.1.1函数的平均变化率导学案【学习要求】1.理解并掌握平均变化率的概念.2.会求函数在指定区间上的平均变化率.3.能利用平均变化率解决或说明生活中的一些实际问题.【学法指导】从山坡的平缓与陡峭程度理解函数的平均变化率,也可以从图象上数形结合看平均变化率的几何意义.【知识要点】1.函数的平均变化率:已知函数y =f (x ),x 0,x 1是其定义域内不同的两点,记Δx = ,Δy =y 1-y 0=f (x 1)-f (x 0)= ,则当Δx ≠0时,商xx f x x f ∆-∆+)()(00=____叫做函数y =f (x )在x 0到x 0+Δx 之间的 .2.函数y =f (x )的平均变化率的几何意义:ΔyΔx =__________表示函数y =f (x )图象上过两点(x 1,f (x 1)),(x 2,f (x 2))的割线的 .【问题探究】在爬山过程中,我们都有这样的感觉:当山坡平缓时,步履轻盈;当山坡陡峭时,气喘吁吁.怎样用数学反映山坡的平缓与陡峭程度呢?下面我们用函数变化的观点来研究这个问题. 探究点一 函数的平均变化率问题1 如何用数学反映曲线的“陡峭”程度?问题2 什么是平均变化率,平均变化率有何作用?例1 某婴儿从出生到第12个月的体重变化如图所示,试分别计算从出生到第3个月与第6个月到第12个月该婴儿体重的平均变化率. 问题3 平均变化率有什么几何意义?跟踪训练1 如图是函数y =f (x )的图象,则:(1)函数f (x )在区间[-1,1]上的平均变化率为________; (2)函数f (x )在区间[0,2]上的平均变化率为________.探究点二 求函数的平均变化率例2 已知函数f (x )=x 2,分别计算f (x )在下列区间上的平均变化率: (1)[1,3];(2)[1,2];(3)[1,1.1];(4)[1,1.001].跟踪训练2 分别求函数f (x )=1-3x 在自变量x 从0变到1和从m 变到n (m ≠n )时的平均变化率.问题 一次函数y =kx +b (k ≠0)在区间[m ,n ]上的平均变化率有什么特点?探究点三 平均变化率的应用例3 甲、乙两人走过的路程s 1(t ),s 2(t )与时间t 的关系如图,试比较两人的平均速度哪个大?跟踪训练3 甲用5年时间挣到10万元,乙用5个月时间挣到2万元,如何比较和评价甲、乙两人的经营成果?【当堂检测】1.函数f (x )=5-3x 2在区间[1,2]上的平均变化率为__________2.一物体的运动方程是s =3+2t ,则在[2,2.1]这段时间内的平均速度为________3.甲、乙两厂污水的排放量W 与时间t 的关系如图所示,治污效果较好的是________.【课堂小结】1.函数的平均变化率可以表示函数值在某个范围内变化的快慢;平均变化率的几何意义是曲线割线的斜率,在实际问题中表示事物变化的快慢. 2.求函数f (x )的平均变化率的步骤: (1)求函数值的增量Δy =f (x 2)-f (x 1); (2)计算平均变化率Δy Δx =1212)()(xx x f x f --.【拓展提高】1.设函数()y f x =,当自变量x 由0x 改变到0x x +∆时,函数的改变量y ∆为( ) A .0()f x x +∆ B .0()f x x +∆ C .0()f x x ∆ D .00()()f x x f x +∆- 2.质点运动动规律23s t =+,则在时间(3,3)t +∆中,相应的平均速度为( )A .6t +∆B .96t t+∆+∆ C .3t +∆ D .9t +∆【课后作业】一、基础过关1.当自变量从x 0变到x 1时,函数值的增量与相应自变量的增量之比是函数 ( )A .在[x 0,x 1]上的平均变化率B .在x 0处的变化率C .在x 1处的变化率D .以上都不对 2.函数f (x )=2x 2-x 在x =2附近的平均变化率是( ) A .7B .7+ΔxC .7+2ΔxD .7+2(Δx )23.某物体的运动规律是s =s (t ),则该物体在t 到t +Δt 这段时间内的平均速度是 ( ) A .v =s (t +Δt )-s (t )ΔtB .v =s (Δt )ΔtC .v =s (t )tD .v =s (t +Δt )-s (Δt )Δt4. 如图,函数y =f (x )在A ,B 两点间的平均变化率是 ( )A .1B .-1C .2D .-25.一物体的运动方程是s =3+t 2,则在[2,2.1]时间内的平均速度为 ( ) A .0.41B .3C .4D .4.16.过曲线y =f (x )=x 2+1上两点P (1,2)和Q (1+Δx,2+Δy )作曲线的割线, 当Δx =0.1时,割线的斜率k =________. 二、能力提升7.甲、乙二人跑步路程与时间关系如右图所示,则________跑得快. 8.将半径为R 的球加热,若半径从R =1到R =m 时球的体积膨胀 率为28π3,则m 的值为________.9.在x =1附近,取Δx =0.3,在四个函数①y =x ,②y =x 2,③y =x 3,④y =1x 中,平均变化率最大的是________.10.求函数y =sin x 在0到π6之间和π3到π2之间的平均变化率,并比较它们的大小.11.求函数y =-2x 2+5在区间[2,2+Δx ]内的平均变化率.12.已知气球的体积为V (单位:L )与半径r (单位:dm )之间的函数关系是V (r )=43πr 3.(1)求半径r 关于体积V 的函数r (V );(2)比较体积V 从0 L 增加到1 L 和从1 L 增加到2 L 半径r 的平均变化率;哪段半径变化较快(精确到0.01)?此结论可说明什么意义?三、探究与拓展13.巍巍泰山为我国的五岳之首,有“天下第一山”之美誉,登泰山在当地有“紧十八,慢十八,不紧不慢又十八”的俗语来形容爬十八盘的感受,下面是一段登山路线图.同样是登山,但是从A 处到B 处会感觉比较轻松,而从B 处到C 处会感觉比较吃力.想想看,为什么?你能用数学语言来量化BC 段曲线的陡峭程度吗?§1.1.2瞬时速度与导数导学案【学习要求】1.掌握用极限形式给出的瞬时速度及瞬时变化率的精确定义.2.会用瞬时速度及瞬时变化率定义求物体在某一时刻的瞬时速度及瞬时变化率. 3.理解并掌握导数的概念,掌握求函数在一点处的导数的方法. 4.理解并掌握开区间内的导数的概念,会求一个函数的导数.【学法指导】导数是研究函数的有力工具,要认真理解平均变化率和瞬时变化率的关系,体会无限逼近的思想;可以从物理意义,几何意义多角度理解导数.【知识要点】1.瞬时速度:我们把物体在某一时刻的速度称为 .设物体运动路程与时间的关系是s =s (t ),物体在t 0时刻的瞬时速度v 就是运动物体在t 0到t 0+Δt 这段时间内的平均变化率tt s t t s ∆-∆+)()(00,当Δt →0时的极限,即v =lim Δt →0 ΔsΔt =__________________2.瞬时变化率:一般地,函数y =f (x )在x 0处的瞬时变化率是lim Δx →0ΔyΔx=_________________. 3.导数的概念:一般地,函数y =f (x )在x 0处的瞬时变化率是_________________,我们称它为函数y =f (x )在x =x 0处的 ,记为 ,即f ′(x 0)=lim Δx →0 ΔyΔx =________________4.导函数:如果f (x )在开区间(a ,b )内每一点x 都是可导的,则称f (x )在区间(a ,b ) .这样,对开区间(a ,b )内每个值x ,都对应一个确定的导数)(x f ',于是在区间(a ,b )内,)(x f '构成一个新的函数,把这个函数称为函数y =f (x )的 .记为 或y ′(或y ′x ).导函数通常简称为【问题探究】探究点一 瞬时速度问题1 在高台跳水运动中,运动员相对于水面的高度h (单位:m )与起跳后的时间t (单位:s)存在函数关系h (t )=-4.9t 2+6.5t +10.如何用运动员在某些时间段内的平均速度v 粗略地描述其运动状态?问题2 物体的平均速度能否精确反映它的运动状态? 问题3 如何描述物体在某一时刻的运动状态?例1 火箭竖直向上发射.熄火时向上速度达到100 s m /.试问熄火后多长时间火箭向上速度为0? 问题4 火箭向上速度变为0,意味着什么?你能求出此火箭熄火后上升的最大高度吗?跟踪训练1 质点M 按规律s (t )=at 2+1做直线运动(位移单位:m ,时间单位:s ).若质点M 在t =2时的瞬时速度为8s m /,求常数a 的值.探究点二 导 数问题1 从平均速度当Δt →0时极限是瞬时速度,推广到一般的函数方面,我们可以得到什么结论? 问题2 导数和瞬时变化率是什么关系?导数有什么作用? 问题3 导函数和函数在一点处的导数有什么关系?例2 利用导数的定义求函数f (x )=-x 2+3x 在x =2处的导数. 跟踪训练2 已知y =f (x )=x +2,求f ′(2).探究点三 导数的实际应用例3 一正方形铁板在0℃时,边长为10cm ,加热后铁板会膨胀.当温度为C t 0时,边长变为10(1+at )cm ,a 为常数,试求铁板面积对温度的膨胀率. 跟踪训练3 将原油精炼为汽油、柴油、塑胶等各种不同产品,需要对原油进行冷却和加热.如果在第x h 时,原油的温度(单位:C 0)为y =f (x )=x 2-7x +15(0≤x ≤8).计算第2 h 和第6 h 时,原油温度的瞬时变化率,并说明它们的意义.【当堂检测】1.函数y =f (x )在x =x 0处的导数定义中,自变量x 在x 0处的增量Δx ( ) A .大于0 B .小于0 C .等于0 D .不等于02.一物体的运动方程是s =12at 2(a 为常数),则该物体在t =t 0时的瞬时速度是 ( )A .at 0B .-at 0C .12at 0D .2at 03.已知f (x )=-x 2+10,则f (x )在x =32处的瞬时变化率是 ( )A .3B .-3C .2D .-24.已知函数f (x )=1x,则)1(f '=________【课堂小结】1.瞬时速度是平均速度当Δt →0时的极限值;瞬时变化率是平均变化率当Δx →0时的极限值.2.利用导数定义求导数的步骤:(1)求函数的增量Δy =f (x 0+Δx )-f (x 0); (2)求平均变化率ΔyΔx ;(2)取极限得导数f ′(x 0)=lim Δx →0Δy Δx. 【拓展提高】1.()()()为则设hf h f f h 233lim ,430--='→( )A .-1B .-2C .-3D .12.一质点做直线运动,由始点起经过t s 后的距离为23416441t t t s +-=,则速度为零的时刻是 ( ) A .4s 末 B .8s 末 C .0s 与8s 末 D .0s ,4s ,8s 末【课后作业】一、基础过关1.一物体的运动方程是s =3+t 2,则在一小段时间[2,2.1]内相应的平均速度为 ( )A .0.41B .3C .4D .4.1 2.函数y =1在[2,2+Δx ]上的平均变化率是( )A .0B .1C .2D .Δx 3.设函数f (x )可导,则lim Δx →0 f (1+Δx )-f (1)3Δx等于( )A .f ′(1)B .3f ′(1)C .13f ′(1)D .f ′(3)4.一质点按规律s (t )=2t 3运动,则t =1时的瞬时速度为( ) A .4 B .6 C .24 D .48 5.函数y =3x 2在x =1处的导数为( )A .12B .6C .3D .26.甲、乙两厂污水的排放量W 与时间t 的关系如图所示,治污效果较好的是( )A .甲B .乙C .相同D .不确定7.函数f (x )=5-3x 2在区间[1,2]上的平均变化率为__________. 二、能力提升8.过曲线y =f (x )=x 2+1上两点P (1,2)和Q (1+Δx,2+Δy )作曲线的割线,当Δx =0.1时, 割线的斜率k =________.9.函数f (x )=1x 2+2在x =1处的导数f ′(1)=________.10.求函数y =-2x 2+5在区间[2,2+Δx ]内的平均变化率.11.求函数y =f (x )=2x 2+4x 在x =3处的导数.12.若函数f (x )=ax 2+c ,且f ′(1)=2,求a 的值.三、探究与拓展13.若一物体运动方程如下:(位移单位:m ,时间单位:s )s =⎩⎪⎨⎪⎧3t 2+2 (t ≥3) ①29+3(t -3)2 (0≤t <3) ② 求:(1)物体在t ∈[3,5]内的平均速度; (2)物体的初速度v 0; (3)物体在t =1时的瞬时速度.§1.1.3导数的几何意义导学案【学习要求】1.了解导函数的概念,理解导数的几何意义. 2.会求导函数.3.根据导数的几何意义,会求曲线上某点处的切线方程.【学法指导】前面通过导数的定义已体会到其中蕴涵的逼近思想,本节再利用数形结合思想进一步直观感受这种思想,并进一步体会另一种重要思想——以直代曲.【知识要点】1.导数的几何意义(1)割线斜率与切线斜率设函数y =f (x )的图象如图所示,AB 是过点A (x 0,f (x 0))与点B (x 0+Δx ,f (x 0+Δx )) 的一条割线,此割线的斜率是ΔyΔx=__________________.当点B 沿曲线趋近于点A 时,割线AB 绕点A 转动,它的最终位置为直线AD ,这条直线AD 叫做此曲线在点A 处的 .于是,当Δx →0时,割线AB 的斜率无限趋向于在点A 的切线AD 的斜率k ,即k = =___________________. (2)导数的几何意义函数y =f (x )在点x 0处的导数的几何意义是曲线y =f (x )在点P (x 0,f (x 0))处的切线的 .也就是说,曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率是 .相应地,切线方程为_______________________. 2.函数的导数当x =x 0时,f ′(x 0)是一个确定的数,则当x 变化时,)(x f '是x 的一个函数,称)(x f '是f (x )的导函数(简称导数).)(x f '也记作y ′,即)(x f '=y ′=_______________【问题探究】探究点一 导数的几何意义问题1 如图,当点P n (x n ,f (x n ))(n =1,2,3,4)沿着曲线f (x )趋近于点P (x 0,f (x 0))时,割线PP n 的变化趋势是什么?问题2 曲线的切线是不是一定和曲线只有一个交点?例1 如图,它表示跳水运动中高度随时间变化的函数h (t )=-4.9t 2+6.5t +10的图象.根据图象,请描述、比较曲线h (t )在t 0,t 1,t 2附近的变化情况.跟踪训练1 (1)根据例1的图象,描述函数h (t )在t 3和t 4附近增(减)以及增(减)快慢的情况.(2)若函数y =f (x )的导函数在区间[a ,b ]上是增函数,则函数y =f (x )在区间[a ,b ]上的图象可能是 ( )探究点二 求切线的方程问题1 怎样求曲线f (x )在点(x 0,f (x 0))处的切线方程?问题2 曲线f (x )在点(x 0,f (x 0))处的切线与曲线过某点(x 0,y 0)的切线有何不同? 例2 已知曲线y =x 2,求:(1)曲线在点P (1,1)处的切线方程; (2)曲线过点P (3,5)的切线方程. 跟踪训练2 已知曲线y =2x 2-7,求:(1)曲线上哪一点的切线平行于直线4x -y -2=0? (2)曲线过点P (3,9)的切线方程.【当堂检测】1.已知曲线f (x )=2x 2上一点A (2,8),则点A 处的切线斜率为 ( ) A .4 B .16 C .8 D .22.若曲线y =x 2+ax +b 在点(0,b )处的切线方程是x -y +1=0,则 ( )A .a =1,b =1B .a =-1,b =1C .a =1,b =-1D .a =-1,b =-1 3.已知曲线y =2x 2+4x 在点P 处的切线斜率为16,则P 点坐标为_______【课堂小结】1.导数f ′(x 0)的几何意义是曲线y =f (x )在点(x 0,f (x 0))处的切线的斜率,即k =lim Δx →0f (x 0+Δx )-f (x 0)Δx=f ′(x 0),物理意义是运动物体在某一时刻的瞬时速度.2.“函数f (x )在点x 0处的导数”是一个数值,不是变数,“导函数”是一个函数,二者有本质的区别,但又有密切关系,f ′(x 0)是其导数y =f ′(x )在x =x 0处的一个函数值.3.利用导数求曲线的切线方程,要注意已知点是否在曲线上.如果已知点在曲线上,则以该点为切点的切线方程为y -f (x 0)=f ′(x 0)(x -x 0);若已知点不在切线上,则设出切点(x 0,f (x 0)),表示出切线方程,然后求出切点.【拓展提高】1.已知函数()y f x =的图象在点(1(1))M f ,处的切线方程是122y x =+,则(1)(1)f f '+= 2.设P 为曲线C :223y x x =++上的点,且曲线C 在点P 处切线倾斜角的取值范围为04π⎡⎤⎢⎥⎣⎦,,则点P 横坐标的取值范围为【课后作业】一、基础过关 1.下列说法正确的是( )A .若f ′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处就没有切线B .若曲线y =f (x )在点(x 0,f (x 0))处有切线,则f ′(x 0)必存在C .若f ′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处的切线斜率不存在D .若曲线y =f (x )在点(x 0,f (x 0))处没有切线,则f ′(x 0)有可能存在 2.已知y =f (x )的图象如图所示,则f ′(x A )与f ′(x B )的大小关系是 ( ) A .f ′(x A )>f ′(x B ) B .f ′(x A )<f ′(x B ) C .f ′(x A )=f ′(x B ) D .不能确定3.在曲线y =x 2上切线倾斜角为π4的点是 ( )A .(0,0)B .(2,4)C .(14,116)D .(12,14)4.设曲线y =ax 2在点(1,a )处的切线与直线2x -y -6=0平行,则a 等于( )A .1B .12C .-12 D .-15.曲线y =-1x 在点(1,-1)处的切线方程为( ) A .y =x -2B .y =xC .y =x +2D .y =-x -26.已知函数y =f (x )的图象在点M (1,f (1))处的切线方程是y =12x +2,则f (1)+f ′(1)=________.二、能力提升7.设f (x )为可导函数,且满足lim x →0f (1)-f (1-x )x =-1,则曲线y =f (x )在点(1,f (1))处的切线的斜率是 ( ) A .1B .-1C .12D .-28.若曲线y =2x 2-4x +P 与直线y =1相切,则P =________.9.设P 为曲线C :y =x 2+2x +3上的点,且曲线C 在点P 处的切线倾斜角的范围为⎣⎡⎦⎤0,π4,则点P 横坐标的取值范围为________.10.求过点P (-1,2)且与曲线y =3x 2-4x +2在点M (1,1)处的切线平行的直线.11.已知抛物线y =x 2+4与直线y =x +10.求:(1)它们的交点;(2)抛物线在交点处的切线方程.12.设函数f (x )=x 3+ax 2-9x -1(a <0),若曲线y =f (x )的斜率最小的切线与直线12x +y =6平行,求a 的值.三、探究与拓展13.根据下面的文字描述,画出相应的路程s 关于时间t 的函数图象的大致形状:(1)小王骑车一路匀速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; (2)小华早上从家出发后,为了赶时间开始加速; (3)小白早上从家出发后越走越累,速度就慢下来了§1.2.1 常数函数与幂函数的导数导学案 §1.2.2 导数公式表及数学软件的应用导学案【学习要求】1.能根据定义求函数y =c ,y =x ,y =x 2,y =1x的导数.2.能利用给出的基本初等函数的导数公式求简单函数的导数.【学法指导】1.利用导数的定义推导简单函数的导数公式,类推一般多项式函数的导数公式,体会由特殊到一般的思想.通过定义求导数的过程,培养归纳、探求规律的能力,提高学习兴趣. 2.本节公式是下面几节课的基础,记准公式是学好本章内容的关键.记公式时,要注意观察公式之间的联系.【知识要点】1原函数 导函数 f (x )=c f ′(x )=___ f (x )=x f ′(x )=___ f (x )=x 2 f ′(x )=___ f (x )=1xf ′(x )=_____ f (x )=xf ′(x )=_______2.基本初等函数的导数公式【问题探究】探究点一 求导函数问题1 怎样利用定义求函数y =f (x )的导数? 问题2 利用定义求下列常用函数的导数: (1)y =c ;(2)y =x ;(3)y =x 2;(4)y =1x;(5)y =x . 问题3 利用导数的定义可以求函数的导函数,但运算比较繁杂,有些函数式子在中学阶段无法变形,怎样解决这个问题?例1 求下列函数的导数:(1)y =sin π3;(2)y =5x ;(3)y =1x3;(4)y =4x 3;(5)y =log 3x .跟踪训练1 求下列函数的导数:(1)y =x 8;(2)y =(12)x ;(3)y =x x ;(4)x y 31log =探究点二 求某一点处的导数 例2 判断下列计算是否正确.求f (x )=cos x 在x =π3处的导数,过程如下:f ′⎝⎛⎭⎫π3=⎝⎛⎭⎫cos π3′=-sin π3=-32. 跟踪训练2 求函数f (x )=13x在x =1处的导数.探究点三 导数公式的综合应用例3 已知直线x -2y -4=0与抛物线y 2=x 相交于A 、B 两点,O 是坐标原点,试在抛物线的弧 上求一点P ,使△ABP 的面积最大.跟踪训练3 点P 是曲线y =e x 上任意一点,求点P 到直线y =x 的最小距离.【当堂检测】1.给出下列结论:①若y =1x 3,则y ′=-3x 4;②若y =3x ,则y ′=133x ;③若y =1x 2,则y ′=-2x -3;④若f (x )=3x ,则f ′(1)=3.其中正确的个数是 ( ) A .1 B .2C .3D .42.函数f (x )=x ,则f ′(3)等于 ( )A .36B .0C .12xD .323.设正弦曲线y =sin x 上一点P ,以点P 为切点的切线为直线l ,则直线l 的倾斜角的范围是 ( )A .[0,π4]∪[3π4,π)B .[0,π)C .[π4,3π4]D .[0,π4]∪[π2,3π4]4.曲线y =e x 在点(2,e 2)处的切线与坐标轴所围三角形的面积为________【课堂小结】1.利用常见函数的导数公式可以比较简捷的求出函数的导数,其关键是牢记和运用好导数公式.解题时,能认真观察函数的结构特征,积极地进行联想化归. 2.有些函数可先化简再应用公式求导.如求y =1-2sin 2x 2的导数.因为y =1-2sin 2x2=cos x ,所以y ′=(cos x )′=-sin x .3.对于正、余弦函数的导数,一是注意函数的变化,二是注意符号的变化.【拓展提高】1.若函数f (x )=e x cos x ,则此函数的图象在点(1,f (1))处的切线的倾斜角为( ) A .0° B .锐角C .直角 D .钝角2.曲线y =x 3+3x 2+6x -10的切线中,斜率最小的切线方程为___________【课后作业】一、基础过关1.下列结论中正确的个数为( )①y =ln 2,则y ′=12 ②y =1x 2,则y ′|x =3=-227③y =2x ,则y ′=2x ln 2 ④y =log 2x ,则y ′=1x ln 2A .0B .1C .2D .3 2.过曲线y =1x上一点P 的切线的斜率为-4,则点P 的坐标为( )A .⎝⎛⎭⎫12,2B .⎝⎛⎭⎫12,2或⎝⎛⎭⎫-12,-2C .⎝⎛⎭⎫-12,-2D .⎝⎛⎭⎫12,-2 3.已知f (x )=x a ,若f ′(-1)=-4,则a 的值等于 ( ) A .4 B .-4C .5D .-54.函数f (x )=x 3的斜率等于1的切线有( )A .1条B .2条C .3条D .不确定5.若曲线y =x -12在点(a ,a -12)处的切线与两个坐标轴围成的三角形的面积为18,则a 等于 ( )A .64B .32C .16D .86.若y =10x,则y ′|x =1=________.7.曲线y =14x 3在x =1处的切线的倾斜角的正切值为______.二、能力提升8.已知直线y =kx 是曲线y =e x 的切线,则实数k 的值为( )A .1eB .-1eC .-eD .e9.直线y =12x +b 是曲线y =ln x (x >0)的一条切线,则实数b =________.10.求下列函数的导数:(1)y =x x ;(2)y =1x4;(3)y =5x 3;(4)y =log 2x 2-log 2x ;(5)y =-2sin x2⎝⎛⎭⎫1-2cos 2x 4.11.求与曲线y =3x 2在点P (8,4)处的切线垂直于点P 的直线方程.12.已知抛物线y =x 2,直线x -y -2=0,求抛物线上的点到直线的最短距离.三、探究与拓展13.设f 0(x )=sin x ,f 1(x )=f ′0(x ),f 2(x )=f ′1(x ),…,f n +1(x )=f ′n (x ),n ∈N ,试求f 2 012(x ).§1.2.3导数的四则运算法则(一)导学案【学习要求】1.理解函数的和、差、积、商的求导法则.2.理解求导法则的证明过程,能够综合运用导数公式和导数运算法则求函数的导数.【学法指导】应用导数的四则运算法则和已学过的常用函数的导数公式可迅速解决一类简单函数的求导问题.要透彻理解函数求导法则的结构内涵,注意挖掘知识的内在联系及其规律,通过对知识的重新组合,达到巩固知识、提升能力的目的.【知识要点】导数的运算法则设两个可导函数分别为f (x )和g (x )【问题探究】探究点一 导数的运算法则问题1 我们已经会求f (x )=5和g (x )=1.05x 等基本初等函数的导数,那么怎样求f (x )与g (x )的和、差、积、商的导数呢?问题2 应用导数的运算法则求导数有哪些注意点? 例1 求下列函数的导数: (1)y =3x-lg x ;(2)y =(x 2+1)(x -1);(3)y =x 5+x 7+x 9x.跟踪训练1 求下列函数的导数:(1)f (x )=x ·tan x ; (2)f (x )=2-2sin 2x 2; (3)f (x )=x -1x +1; (4)f (x )=sin x1+sin x.探究点二 导数的应用例2 (1)曲线y =x e x +2x +1在点(0,1)处的切线方程为_______________(2)在平面直角坐标系xOy 中,点P 在曲线C :y =x 3-10x +3上,且在第二象限内,已知曲线C 在点P 处的切线斜率为2,则点P 的坐标为________(3)已知某运动着的物体的运动方程为s (t )=t -1t 2+2t 2(位移单位:m ,时间单位:s),求t =3 s 时物体的瞬时速度.跟踪训练2 (1)曲线y =sin x sin x +cos x -12在点M ⎝⎛⎭⎫π4,0处的切线的斜率为 ( ) A .-12B.12C .-22 D .22(2)设函数f (x )=13x 3-a2x 2+bx +c ,其中a >0,曲线y =f (x )在点P (0,f (0))处的切线方程为y =1,确定b 、c的值.【当堂检测】1.设y =-2e x sin x ,则y ′等于 ( )A .-2e x cos xB .-2e x sin xC .2e x sin xD .-2e x (sin x +cos x )2.曲线f (x )=xx +2在点(-1,-1)处的切线方程为( )A .y =2x +1B .y =2x -1C .y =-2x -3D .y =-2x +2 3.已知f (x )=ax 3+3x 2+2,若f ′(-1)=4,则a 的值是( ) A .193B .163C .133D .1034.已知f (x )=13x 3+3xf ′(0),则f ′(1)=_______5.已知抛物线y =ax 2+bx +c 过点(1,1),且在点(2,-1)处与直线y =x -3相切,求a 、b 、c 的值.【课堂小结】求函数的导数要准确把函数分割为基本函数的和、差、积、商,再利用运算法则求导数.在求导过程中,要仔细分析出函数解析式的结构特征,根据导数运算法则,联系基本函数的导数公式.对于不具备导数运算法则结构形式的要适当恒等变形,转化为较易求导的结构形式,再求导数,进而解决一些切线斜率、瞬时速度等问题.【课后作业】一、基础过关1.下列结论不正确的是( )A .若y =3,则y ′=0B .若f (x )=3x +1,则f ′(1)=3C .若y =-x +x ,则y ′=-12x+1 D .若y =sin x +cos x ,则y ′=cos x +sin x2.函数y =x1-cos x 的导数是 ( )A .1-cos x -x sin x 1-cos xB .1-cos x -x sin x (1-cos x )2C .1-cos x +sin x (1-cos x )2D .1-cos x +x sin x (1-cos x )23.若函数f (x )=ax 4+bx 2+c 满足f ′(1)=2,则f ′(-1)等于( )A .-1B .-2C .2D .04.设曲线y =x +1x -1在点(3,2)处的切线与直线ax +y +1=0垂直,则a 等于( )A .2B .12C .-12 D .-25.设函数f (x )=g (x )+x 2,曲线y =g (x )在点(1,g (1))处的切线方程为y =2x +1,则曲线y =f (x )在点(1,f处切线的斜率为( )A .4B .-14C .2D .-126.已知a 为实数,f (x )=(x 2-4)(x -a ),且f ′(-1)=0,则a =________. 7.若某物体做s =(1-t )2的直线运动,则其在t =1.2 s 时的瞬时速度为________. 二、能力提升8.设函数f (x )=sin θ3x 3+3cos θ2x 2+tan θ,其中θ∈[0,5π12],则导数f ′(1)的取值范围是( )A .[-2,2]B .[2,3]C .[3,2]D .[2,2]9.若函数f (x )=13x 3-f ′(-1)·x 2+x +5,则f ′(1)=________.10.求下列函数的导数:(1)y =(2x 2+3)(3x -1);(2)y =(x -2)2; (3)y =x -sin x 2cos x2.11.设y =f (x )是二次函数,方程f (x )=0有两个相等实根,且f ′(x )=2x +2,求f (x )的表达式.12.设函数f (x )=ax -bx ,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.(1)求f (x )的解析式;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形的面积为定值,并求此定值.三、探究与拓展13.已知曲线C 1:y =x 2与曲线C 2:y =-(x -2)2,直线l 与C 1和C 2都相切,求直线l 的方程.§1.2.3导数的四则运算法则(二)导学案【学习要求】1.了解复合函数的概念,掌握复合函数的求导法则.2.能够利用复合函数的求导法则,并结合已经学过的公式、法则进行一些复合函数的求导(仅限于形如f (ax +b )的导数).【学法指导】复合函数的求导将复杂的问题简单化,体现了转化思想;学习中要通过中间变量的引入理解函数的复合过程.【问题探究】探究点一 复合函数的定义问题1 观察函数y =2x cos x 及y =ln(x +2)的结构特点,说明它们分别是由哪些基本函数组成的? 问题2 对一个复合函数,怎样判断函数的复合关系?问题3 在复合函数中,内层函数的值域A 与外层函数的定义域B 有何关系? 例1 指出下列函数是怎样复合而成的:(1)y =(3+5x )2; (2)y =log 3(x 2-2x +5); (3)y =cos 3x . 跟踪训练1 指出下列函数由哪些函数复合而成:(1)y =ln x ; (2)y =e sin x ; (3)y =cos (3x +1).探究点二 复合函数的导数 问题 如何求复合函数的导数? 例2 求下列函数的导数:(1)y =(2x -1)4; (2)y =11-2x ; (3)y =sin(-2x +π3); (4)y =102x +3.跟踪训练2 求下列函数的导数.(1)y =ln 1x; (2)y =e 3x ; (3)y =5log 2(2x +1).探究点三 导数的应用 例3 求曲线y =e 2x+1在点(-12,1)处的切线方程.跟踪训练3 曲线y =e 2x cos 3x 在(0,1)处的切线与直线l 平行,且与l 的距离为5,求直线l 的方程.【当堂检测】1.函数y =(3x -2)2的导数为 ( )A .2(3x -2)B .6xC .6x (3x -2)D .6(3x -2) 2.若函数y =sin 2x ,则y ′等于 ( ) A .sin 2x B .2sin x C .sin x cos x D .cos 2x 3.若y =f (x 2),则y ′等于 ( ) A .2xf ′(x 2) B .2xf ′(x ) C .4x 2f (x ) D .f ′(x 2)4.设曲线y =e ax 在点(0,1)处的切线与直线x +2y +1=0垂直,则a =________.【课堂小结】求简单复合函数f (ax +b )的导数 求简单复合函数的导数,实质是运用整体思想,先把简单复合函数转化为常见函数y =f (u ),u =ax +b 的形式,然后再分别对y =f (u )与u =ax +b 分别求导,并把所得结果相乘.灵活应用整体思想把函数化为y =f (u ),u =ax +b 的形式是关键.【拓展提高】1 .已知函数2)1ln()(x x a x f -+=在区间)1,0(内任取两个实数q p ,,且q p ≠,不等式1)1()1(>-+-+qp q f p f 恒成立,则实数a 的取值范围为____________ 【课后作业】一、基础过关1.下列函数不是复合函数的是( )A .y =-x 3-1x +1B .y =cos(x +π4)C .y =1ln x D .y =(2x +3)42.函数y =1(3x -1)2的导数是( )A .6(3x -1)3B .6(3x -1)2C .-6(3x -1)3D .-6(3x -1)23.y =e x 2-1的导数是( )A .y ′=(x 2-1)e x 2-1B .y ′=2x e x 2-1C .y ′=(x 2-1)e xD .y ′=e x 2-1 4.函数y =x 2cos 2x的导数为( )A .y ′=2x cos 2x -x 2sin 2xB .y ′=2x cos 2x -2x 2sin 2xC .y ′=x 2cos 2x -2x sin 2xD .y ′=2x cos 2x +2x 2sin 2x5.函数y =(2 011-8x )3的导数y ′=________.6.曲线y =cos(2x +π6)在x =π6处切线的斜率为________.7.函数f (x )=x (1-ax )2(a >0),且f ′(2)=5,则实数a 的值为________. 二、能力提升8.已知直线y =x +1与曲线y =ln(x +a )相切,则a 的值为( )A .1B .2C .-1D .-29.曲线y =e 12x 在点(4,e 2)处的切线与坐标轴所围三角形的面积为( )A .92e 2B .4e 2C .2e 2D .e 210.求下列函数的导数:(1)y =(1+2x 2)8; (2)y =11-x 2; (3)y =sin 2x -cos 2x ; (4)y =cos x 2.11.已知a >0,f (x )=ax 2-2x +1+ln(x +1),l 是曲线y =f (x )在点P (0,f (0))处的切线.求切线l 的方程.12.有一把梯子贴靠在笔直的墙上,已知梯子上端下滑的距离s (单位:m )关于时间t (单位:s)的函数为s =s (t )=5-25-9t 2.求函数在t =715 s 时的导数,并解释它的实际意义.三、探究与拓展13.求证:可导的奇函数的导函数是偶函数.§1.3.1利用导数判断函数的单调性导学案【学习要求】1.结合实例,直观探索并掌握函数的单调性与导数的关系.2.能利用导数研究函数的单调性,并能够利用单调性证明一些简单的不等式. 3.会求函数的单调区间(其中多项式函数一般不超过三次).【学法指导】结合函数图象(几何直观)探讨归纳函数的单调性与导函数正负之间的关系,体会数形结合思想,以直代曲思想.【知识要点】一般地,在区间(a ,b )内函数的单调性与导数有如下关系:f′(x)>0单调递___f′(x)<0单调递____f′(x)=0常函数【问题探究】探究点一函数的单调性与导函数正负的关系问题1观察下面四个函数的图象,回答函数的单调性与其导函数的正负有何关系?问题2若函数f(x)在区间(a,b)内单调递增,那么f′(x)一定大于零吗?问题3(1)如果一个函数具有相同单调性的单调区间不止一个,那么如何表示这些区间?试写出问题1中(4)的单调区间.(2)函数的单调区间与其定义域满足什么关系?例1已知导函数f′(x)的下列信息:当1<x<4时,f′(x)>0;当x>4或x<1时,f′(x)<0;当x=4或x=1时,f′(x)=0.试画出函数f(x)图象的大致形状.跟踪训练1函数y=f(x)的图象如图所示,试画出导函数f′(x)图象的大致形状.例2求下列函数的单调区间:(1)f(x)=x3-4x2+x-1;(2)f(x)=2x(e x-1)-x2;(3)f(x)=3x2-2ln x.跟踪训练2求下列函数的单调区间:(1)f(x)=x2-ln x;(2)f(x)=e xx-2;(3)f(x)=sin x(1+cos x)(0≤x<2π).探究点二函数的变化快慢与导数的关系问题我们知道导数的符号反映函数y=f(x)的增减情况,怎样反映函数y=f(x)增减的快慢呢?你能否从导数的角度解释变化的快慢呢?例3如图,设有圆C和定点O,当l从l0开始在平面上绕O匀速旋转(旋转角度不超过90°)时,它扫过的圆内阴影部分的面积S是时间t的函数,它的图象大致是下图所示的四种情况中的哪一种?() 跟踪训练3(1)如图,水以常速(即单位时间内注入水的体积相同)注入下面四种底面积相同的容器中,请分别找出与各容器对应的水的高度h与时间t的函数关系图象.(2)已知f′(x)是f(x)的导函数,f′(x)的图象如图所示,则f(x)的图象只可能是()【当堂检测】1.函数f(x)=x+ln x在(0,6)上是()A.单调增函数B.单调减函数C.在⎝⎛⎭⎫0,1e上是减函数,在⎝⎛⎭⎫1e,6上是增函数D.在⎝⎛⎭⎫0,1e上是增函数,在⎝⎛⎭⎫1e,6上是减函数2.f′(x)是函数y=f(x)的导函数,若y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是()。
最新人教版高二下册数学必修2全册导学案及答案

七、小结与反思: 【励志良言】不为失败找理由,只为成功找方法。
2
1.1.2 圆柱、锥、台、球、组合体的结构特征
一、学习目标: 1、知识与技能:能根据几何结构特征对空间物体进行分类。会用语言概述圆柱、锥、台、组合体的 结构特征。会表示圆柱、锥、台的分类。 2、过程与方法:通过直观感受空间物体,概括出柱、锥、台的几何结构特征。观察、讨论、归纳、 概括所学的知识。 3、情感态度与价值观:感受空间几何体存在于现实生活周围,增强学习的积极性,同时提高观察能 力。培养空间想象能力和抽象概括能力。 二、学习重点、难点: 学习重点:感受大量空间实物及模型、概括出圆柱、锥、台的结构特征。 学习难点:圆柱、锥、台的结构特征的概括。 三、使用说明及学法指导: 1、先浏览教材,再逐字逐句仔细审题,认真思考、独立规范作答,不会的先绕过,做好记号。 2、要求小班、重点班学生全部完成,平行班学生完成 A、B 类问题。 3、A 类是自主探究,B 类是合作交流。 四、知识链接: 棱柱: 棱锥: 棱台: 五、学习过程: A 问题 1:观察下列图形探究各自的特点及共同点
七、小结与反思:
【励志良言】当你感到悲哀痛苦时,最好是去学些什么东西。学习会使你永远立于不败之地。
6
高一数学必修 2 导学案
主备人:
备课时间:
备课组长:
1.2.2 空间几何体的直观图
一、学习目标: 知识与技能: (1)掌握斜二测画法画水平设置的平面图形的直观图。 (2)采用对比的方法了解在平行 投影下画空间图形与在中心投影下画空间图形两种方法的各自特点。 过程与方法:通过观察和类比,利用斜二测画法画出空间几何体的直观图。 情感态度与价值观: (1)提高空间想象力与直观感受。 (2)体会对比在学习中的作用。 (3)感受几何 作图在生产活动中的应用。 二、学习重点、难点: 学习重点:用斜二测画法画空间几何体的直观图。 学习难点:用斜二测画法画空间几何体的直观图。 三、 使用说明及学法指导: 1、先浏览教材,再逐字逐句仔细审题,认真思考、独立规范作答,不会的先绕过,做好记号。 2、要求小班、重点班学生全部完成,平行班学生完成 A、B 类问题。 3、A 类是自主探究,B 类是合作交流。 四、知识链接: 正视图: 侧视图: 俯视图: 五、学习过程: A 例 1.用斜二测画法画水平放置的正六边形的直观图。
2022-2023学年江苏省南通市高二年级下册学期6月学情调研数学试题【含答案】

2022-2023学年江苏省南通市高二下学期6月学情调研数学试题一、单选题1.满足等式{}{}30,1R X x x x ⋃=∈=的集合X 共有()A .1个B .2个C .3个D .4个【答案】D【分析】根据方程3x x =的实数根可得集合,则{}{}0,10,1,1X ⋃=-,由集合的并集与元素的关系即可得符合条件的所有集合X .【详解】解:方程3x x =的实数根有0,1,1x x x ===-,解集构成的集合为{}0,1,1-,即{}{}0,10,1,1X ⋃=-,则符合该等式的集合X 为{}1X =-,{}1,1X =-,{}0,1X =-,{}0,1,1X =-,故这样的集合X 共有4个.故选:D.2.若复数34i z =-,则zz=()A .34i55+B .34i55-C .34i55-+D .34i 55--【答案】A【分析】根据给定条件,求出复数z 的共轭复数及模,即可计算作答.【详解】复数34i z =-,则i 34z =+,22||3(4)5z =+-=,所以34i 55z z =+.故选:A3.若()()313x a x --的展开式的各项系数和为8,则=a ()A .1B .1-C .2D .2-【答案】C【分析】直接令1x =计算可得答案.【详解】令1x =得()()31138a --=,解得2a =故选:C.4.函数()3sin xf x x x =-在[]π,π-上的图像大致为()A .B .C .D .【答案】B【分析】根据给定的函数,由奇偶性排除两个选项,再取特值即可判断作答.【详解】函数3sin ()xf x x x =-定义域为(,0)(0,)-∞+∞ ,而33sin()sin ()()()x xf x x x f x x x --=--=--≠-,且()()f x f x -≠-,即函数()f x 既不是奇函数也不是偶函数,其图象关于原点不对称,排除选项CD ;而当πx =时,()(π)πf x f ==,排除选项A ,选项B 符合要求.故选:B5.点P 是正八边形ABCDEFGH 内一点(包括边界),且AB =1,则AB AP ⋅的最大值为()A .1B .222-C .222+D .12+【答案】C【分析】以AB 所在直线为x 轴,AF 所在直线为y 轴,建立平面直角坐标系,先求出AP 在AB方向上的投影的取值范围,再由数量积的定义求出AP AB ⋅的最大值即可.【详解】连接AF ,因为45AOB ∠=︒,故1804567.52OAB ︒-︒∠==︒,因为345135AOF ∠=⨯︒=︒,故18013522.52OAF ︒-︒∠==︒,故67.522.590BAF ∠=︒+︒=︒,以AB 所在直线为x 轴,AF 所在直线为y轴,建立平面直角坐标系,则()()()22220,0,1,0,,,0,21,1,2222A B H F C⎛⎫⎛⎫-++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭AP 在AB 方向上的投影的取值范围为22[,1]22-+,结合向量数量积的定义可知,AP AB ⋅ 等于AB 的模与AP 在AB方向上的投影的乘积,又1AB = ,∴AP AB ⋅的最大值为2222111222⎛⎫+⨯+=+= ⎪ ⎪⎝⎭,故选:C .6.某中学的“信息”“足球”“摄影”三个社团考核挑选新社员,已知高一某新生对这三个社团都很感兴趣,决定三个考核都参加,假设他通过“信息”“足球”“摄影”三个社团考核的概率依次为13,m ,n ,且他是否通过每个考核相互独立,若三个社团考核他都通过的概率为130,至少通过一个社团考核的概率为1115,则m n +=()A .45B .710C .23D .35【答案】B【分析】根据独立事件同时发生的概率公式,列式求解.【详解】因至少通过一个社团考核的概率为1115,则三个社团都没有通过的概率为415,依题意,得()()1133014111315mn m n ⎧=⎪⎪⎨⎛⎫⎪---= ⎪⎪⎝⎭⎩即()110215mn m n mn ⎧=⎪⎪⎨⎪-++=⎪⎩,解得710m n +=.故选:B.7.若存在斜率为3a (a >0)的直线l 与曲线()21222f x x ax b =+-与()23lng x a x =都相切,则实数b 的取值范围为()A .233,e 4⎛⎤-∞ ⎥⎝⎦B .233,e 4⎛⎫-∞ ⎪⎝⎭C .232e ,3⎡⎫+∞⎪⎢⎣⎭D .233e ,2⎛⎫⎪⎝+⎭∞【答案】A【分析】由导数的几何意义得出,两个函数有共公切点,且求得切点横坐标为a ,从而用a 表示出b ,引入新函数2253()ln 42a h a a a =-,再由导数求其最大值,从而得b 的范围.【详解】由题意()2f x x a '=+,由()23f x x a a '=+=得x a =,23()a g x x'=,由23()3a g x a x '==得x a =,因此两个函数图象有公共切点,切点横坐标为a ,所以()()f a g a =,即2221223ln 2a a b a a +-=,2253ln 42a b a a =-,令2253()ln 42a h a a a =-,则53()3ln 3ln (13ln )22h a a a a a a a a a a '=--=-=-,130e a <<时,()0'>h a ,()h a 递增,13e a >时,()0h a '<,()h a 递减,所以1233max3()(e )e 4h a h ==,显然a →+∞时,()h a →-∞,所以233e 4b ≤,故选:A .8.已知三棱锥-P ABC 的四个顶点都在球O 的球面上,25,4PB PC AB AC ====,2PA BC ==,则球O 的表面积为()A .316π15B .79π15C .158π5D .79π5【答案】A【分析】根据给定条件,证明PA ⊥平面ABC ,再确定球心O 的位置,求出球半径作答.【详解】在三棱锥-P ABC 中,如图,22220AB PA PB +==,则PA AB ⊥,同理PA AC ⊥,而,,AB AC A AB AC =⊂ 平面ABC ,因此PA ⊥平面ABC ,在等腰ABC 中,4,2AB AC BC ===,则112cos 4BCABC AB ∠==,215sin 1cos 4ABC ABC ∠=-∠=,令ABC 的外接圆圆心为1O ,则1OO ⊥平面ABC ,1182sin 15AC O A ABC =⋅=∠,有1//OO PA ,取PA 中点D ,连接OD ,则有OD PA ⊥,又1⊂O A 平面ABC ,即1O A PA ⊥,从而1//O A OD ,四边形1ODAO 为平行四边形,11OO AD ==,又11OO O A ⊥,因此球O 的半径22222211879()11515R OA O A O O ==+=+=,所以球O 的表面积23164ππ15S R ==.故选:A二、多选题9.若5250125(1)(1)(1)x a a x a x a x =+-+-+⋅⋅⋅+-,其中()0,1,5i a i =⋅⋅⋅为实数,则()A .00a =B .310a =-C .13516a a a ++=-D .1251a a a ++⋅⋅⋅+=【答案】BC【分析】根据给定的条件,把5x 写成5[1(1)]x --,再利用二项式定理结合赋值法,逐项计算判断作答.【详解】依题意,令52502551(1)((()[1(1)]1)1)a a x f a x a x x x x =+--+-+⋅⋅=+-=-⋅,对于A ,0(1)1a f ==,A 错误;对于B ,3a 是5[1(1)]x --按(1)x -展开的第4项系数,因此3335C (1)10a =⋅-=-,B 正确;对于C ,012345(0)a a a a a a f +++++=,012345(2)a a a a a a f -+-+-=,所以5135(0)(2)021622f f a a a --++===-,C 正确;对于D ,()1234500011a a a a a f a ++++=-=-=-,D 错误.故选:BC10.有3台车床加工同一型号的零件,第1台加工的次品率为8%,第2台加工的次品率为3%,第3台加工的次品率为2%,加工出来的零件混放在一起.已知第1,2,3台车床加工的零件数分别占总数的10%,40%,50%,从混放的零件中任取一个零件,则下列结论正确的是()A .该零件是第1台车床加工出来的次品的概率为0.08B .该零件是次品的概率为0.03C .如果该零件是第3台车床加工出来的,那么它不是次品的概率为0.98D .如果该零件是次品,那么它不是第3台车床加工出来的概率为13【答案】BC【分析】利用乘法公式、互斥事件加法求概率即可判断A ,B ;利用条件概率公式、对立事件即可判断C ,D .【详解】记事件A :车床加工的零件为次品,记事件i B :第i 台车床加工的零件,则1(|)8%P A B =,2(|)3%P A B =,3(|)2%P A B =,1()10%P B =,2()40%P B =,3()50%P B =,对于A ,任取一个零件是第1台生产出来的次品概率为111()(|)()8%10%0.008P AB P A B P B ==⨯=,故A 错误;对于B ,任取一个零件是次品的概率为123()()()()8%10%3%40%2%50%0.03P A P AB P AB P AB =++=⨯+⨯+⨯=,故B 正确;对于C ,如果该零件是第3台车床加工出来的,那么它不是次品的概率为33()1()12%0.98P A B P A B =-=-=,故C 正确;对于D ,如果该零件是次品,那么它不是第3台车床加工出来的概率为()()()()3333(|)2%50%21(|)1110.033P AB P A B P B P B A P A P A ⨯-=-=-=-=,故D 错误.故选:BC .11.已知定义在R 上的函数()f x 满足:()f x 关于()0,0中心对称,()f x 关于1x =对称,且312f ⎛⎫-= ⎪⎝⎭.则下列选项中说法正确的有()A .()f x 为奇函数B .()f x 周期为2C .912f ⎛⎫= ⎪⎝⎭D .()2f x -是奇函数【答案】AD【分析】由于()f x 的定义域为R ,且关于()0,0中心对称,可知()f x 是奇函数,又()f x 关于1x =对称,由此即可求出函数的周期,根据函数的奇偶性及周期性判断各项的正误.【详解】由于()f x 的定义域为R ,且关于()0,0中心对称,可得()f x 是奇函数,故A 项正确;因为()f x 关于直线1x =对称,即()(2)f x f x =-,所以()()(2)4f x f x f x =--=-,所以函数()f x 的周期4T =,故B 项错误;119133*********f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+==-==--=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,故C 项错误;()()()()22242f x f x f x f x -=--+=--+-=---,所以(2)f x -是奇函数,故D 项正确.故选:AD.12.已知正四面体A BCD -的棱长为2,点M ,N 分别为ABC 和ABD △的重心,P 为线段CN 上一点,则下列结论正确的是()A .若AP BP +取得最小值,则CP PN =B .若3CP PN =,则DP ⊥平面ABCC .若DP ⊥平面ABC ,则三棱锥-P ABC 外接球的表面积为27π2D .直线MN 到平面ACD 的距离为269【答案】BCD【分析】将正四面体A BCD -放入正方体DEBF GAHC -中,建立空间直角坐标系,对每个选项逐一分析即可.【详解】将正四面体A BCD -放入正方体DEBF GAHC -中,以点D 为原点,以DE ,DF ,DG 所在直线为x 轴,y 轴,z 轴,如图所示,因为正四面体A BCD -的长为2,所以正方体的棱长为2,则(2,0,2)A ,(2,2,0)B ,(0,2,2)C ,因为点M ,N 分别为ABC 和ABD △的重心,所以点N 的坐标为2222(,,)333,点M 的坐标为222222(,,)333所以222222(,,)333NC =-设NP NC λ= ,则NP = 222222(,,)333λλλ-,所以2222222222(,,)333333OP ON NP λλλ=+=-++ ,所以2222222222(,,)333333AP λλλ=--+-+ ,2222222222(,,)333333BP λλλ=---++ ,对于A:因为2222214(2882888168)(21)93AP λλλλλλλ=++++++-+=+ ,2222214(2888168288)(21)93BP λλλλλλλ=+++-++++=+ ,所以2224443(21)(21)21333AP BP λλλ+=+++=+ ,当0λ=时,即CP CN =,0PN =,取得最小值433,故A 错误;对于B :若3CP PN =,则14NP NC =,所以222(,,)222OP = ,因为(0,2,2)BA =- ,(2,0,2)BC =-,设平面ABC 的一个法向量为1(,,)n x y z = ,则220220y z x z ⎧-+=⎪⎨-+=⎪⎩,取1x =,则1(1,1,1)n = ,因为122OP n = ,所以OP ⊥平面ABC ,即DP ⊥平面ABC ,故B 正确;对于C :若DP ⊥平面ABC ,则NP = 222(,,)666-,即66NP =,2222(,,)333AN =- ,即233AN = ,设平面ABO 的一个法向量为2(,,)n x y z = ,因为(2,0,2)OA = ,(2,2,0)OB = ,则220220x z x y ⎧+=⎪⎨+=⎪⎩,取1x =,则2(1,1,1)n =-- ,因为226NP n =- ,所以NP ⊥平面ABO ,则三棱锥-P ABC 外接球的球心在直线NP 上,又因为点N 为等边三角形ABO 的重心,所以点N 为等边三角形ABO 的外心,ABO 外接圆半径为233AN = ,设三棱锥-P ABC 外接球的半径为R ,则222()R R NP AN =-+,即2264()63R R =-+,解得364R =,所以三棱锥P -ABC 外接球的表面积为227π4π2R =,故C 选项正确;对于D :因为点N 的坐标为2222(,,)333,点M 的坐标为222222(,,)333,所以22(0,,)33MN =-- ,设平面ACD 的一个法向量为3(,,)n x y z =,因为(2,0,2)OA = ,(0,2,2)OC =,所以220220x z y z ⎧+=⎪⎨+=⎪⎩,取1x =,则3(1,1,1)n =- ,因为30MN n ⋅=,且直线MN ⊄平面ACD ,所以直线//MN 平面ACD ,所以点N 到平面ACD 的距离就是直线MN 到平面ACD 的距离,则点N 到平面ACD 的距离332226393ON n d n ⋅===,即直线MN 到平面ACD 的距离为269,故D 正确,故选:BCD .三、填空题13.某班有48名学生,一次考试的数学成绩X (单位:分)服从正态分布()280,N σ,且成绩在[]80,90上的学生人数为16,则成绩在90分以上的学生人数为.【答案】8【分析】根据正态分布的对称性即可求解.【详解】由X (单位:分)服从正态分布()280,N σ,知正态密度曲线的对称轴为80x =,成绩在[]80,90上的学生人数为16,由对称性知成绩在80分上的学生人数为24人,所以90分以上的学生人数为24168-=.故答案为:814.现有甲、乙、丙、丁在内的6名同学在比赛后合影留念,若甲、乙二人必须相邻,且丙、丁二人不能相邻,则符合要求的排列方法共有种.(用数字作答)【答案】144【分析】根据题意,分2步进行分析:①将甲乙看成一个整体,与甲、乙、丙、丁之外的两人全排列,②排好后,有4个空位,在其中任选2个,安排丙、丁,由分步计数原理计算可得答案.【详解】根据题意,分2步进行分析:①将甲乙看成一个整体,与甲、乙、丙、丁之外的两人全排列,有2323A A 12=种情况,②排好后,有4个空位,在其中任选2个,安排丙、丁,有24A 12=种情况,则有1212144⨯=种排法,故答案为:144.15.近年来,纳米品的多项技术和方法在水软化领域均有重要应用.纳米晶体结构众多,如图是一种纳米晶的结构示意图,其是由正四面体沿棱的三等分点作平行于底面的截面得到所有棱长均为n 的几何体,则该结构的纳米晶个体的体积为.【答案】323212n 【分析】先推出正四面体的棱长与体积的关系,然后根据此关系可求得结果.【详解】设正四面体ABCD 的棱长为a ,如图O 为BCD △的中心,则AO ⊥平面BCD ,因为BO ⊂平面BCD ,所以AO BO ⊥,因为正BCD △的边长为a ,所以233323BO a a =⨯=,所以22223693AO AB BO a a a =-=-=,所以正四面体ABCD 的体积为2311362334312BCD V S AO a a a =⋅=⨯⨯= ,因为此纳米晶个体是由棱长为3n 的正四面体的四个顶点处各截去一个棱长为n 的正四面体,所以该结构的纳米晶个体的体积为()3332223234121212n n n ⨯-⨯=,故答案为:323212n 16.已知函数2()2(0),()e (0)x f x x x g x a a -=+≥=>,点P ,Q 分别在函数()y f x =的()y g x =的图像上,若存在P ,Q 关于y 轴对称,则实数a 的取值范围是.【答案】02a <≤【分析】构造函数()2()2e (0,0)xk x x a a x =+->≤,将题给条件转化为()k x 存在零点,利用导数求得()k x 值域,列出关于a 的不等式,解之即可求得a 的取值范围.【详解】函数2()2(0)f x x x =+≥关于y 轴对称的函数为2()2(0)h x x x =+≤,则2()2(0)h x x x =+≤与()e (0)x g x a a -=>有公共点,则方程22e (0,0)x x a a x -+=>≤有根,即()22e (0,0)xx a a x +=>≤有根,令()2()2e (0,0)xk x x a a x =+->≤,则()()22()2e 2e 22e 0x x xk x x x x x '=++=++>在(],0-∞恒成立,则()2()2e (0,0)xk x x a a x =+->≤为增函数,又(0)2k a =-,则()k x 值域为(],2a a --,由题意可得()k x 存在零点,则有020a a -<⎧⎨-≥⎩,解之得02a <≤则实数a 的取值范围是02a <≤故答案为:02a <≤四、解答题17.已知幂函数()21()22m f x m m x -=--的定义域为R .(1)求实数m 的值;(2)若函数()()123ag x x f x =-在1,122⎡⎤⎢⎥⎣⎦上不单调,求实数a 的取值范围.【答案】(1)3m =;(2)2log 33a -<<.【分析】(1)由幂函数定义求得参数m 值;(2)由二次函数的单调性知对称轴在开区间(1,122)上,再由指数函数性质,对数的定义得结论.【详解】(1)由题意2221m m --=且10m ->,解得3m =;(2)由(1)21()23ag x x x =-+,()g x 的对称轴132a x -=⋅,因为()g x 在1[,12]2上不单调,所以1132122a -<⋅<,解得2log 33a -<<.18.飞盘运动是一项入门简单,又具有极强的趣味性和社交性的体育运动,目前已经成为了年轻人运动的新潮流.某俱乐部为了解年轻人爱好飞盘运动是否与性别有关,对该地区的年轻人进行了简单随机抽样,得到如下列联表:性别飞盘运动合计不爱好爱好男61622女42428合计104050(1)在上述爱好飞盘运动的年轻人中按照性别采用分层抽样的方法抽取10人,再从这10人中随机选取3人访谈,记参与访谈的男性人数为X ,求X 的分布列和数学期望;(2)依据小概率值0.01α=的独立性检验,能否认为爱好飞盘运动与性别有关联?如果把上表中所有数据都扩大到原来的10倍,在相同的检验标准下,再用独立性检验推断爱好飞盘运动与性别之间的关联性,结论还一样吗?请解释其中的原因.附:()()()()()22n ad bc a b c d a c b d χ-=++++,其中n a b c d =+++.α0.10.010.001x α 2.706 6.63510.828【答案】(1)答案见解析(2)答案见解析【分析】(1)分别写出对相应概率列分布列求数学期望即可;(2)先求2χ再根据数表对应判断相关性即可,对比两次2χ的值可以得出结论说明原因.【详解】(1)样本中爱好飞盘运动的年轻人中男性16人,女性24人,比例为4:6,按照性别采用分层抽样的方法抽取10人,则抽取男性4人,女性6人.随机变量X 的取值为:0,1,2,3.()36310C 10C 6P X ===,()2614310C C 11C 2P X ===,()2146310C C 32,C 10P X ===()34310C 13,C 30P X ===随机变量X 的分布列为X123P1612310130随机变量X 的数学期望()1131601236210305E X =⨯+⨯+⨯+⨯=.(2)零假设为0H :爱好飞盘运动与性别无关联.根据列联表重的数据,经计算得到()220.0150624416 1.299 6.635,10402228x χ⨯⨯-⨯=≈<=⨯⨯⨯根据小概率值0.01α=的独立性检验,没有充分证据推断0H 不成立,因此可以认为0H 成立,即认为爱好飞盘运动与性别无关联.列联表中所有数据都扩大到原来的10倍后,()220.01500602404016012.99 6.635,100400220280x χ⨯⨯-⨯=≈>=⨯⨯⨯根据小概率值0.01α=的独立性检验,推断0H 不成立,即认为爱好飞盘运动与性别有关联.所以结论不一样,原因是每个数据都扩大为原来的10倍,相当于样本量变大为原来的10倍,导致推断结论发生了变化.19.某创业者计划在某旅游景区附近租赁一套农房发展成特色“农家乐”,为了确定未来发展方向,此创业者对该景区附近五家“农家乐”跟踪调查了100天,这五家“农家乐”的收费标准互不相同,得到的统计数据如下表,x 为收费标准(单位:元/日),t 为入住天数(单位:天),以频率作为各自的“入住率”,收费标准x 与“入住率”y 的散点图如图.x 100150200300450t9065453020(1)令z =ln x ,由散点图判断 y bxa =+ 与 y bz a =+ ,哪个更合适于此模型(给出判断即可,不必说明理由)?并根据你的判断结果求回归方程;( a,b 的结果精确到0.1)(2)根据第(1)问所求的回归方程,试估计收费标准为多少时,100天销售额L 最大?(100天销售额L =100×入住率×收费标准x )参考数据: 552122111,240,365000,457.5ni ii i i i n i i i i x ynx yba yb x x x x y x nx====-⋅==-⋅===-∑∑∑∑ ,,55225 5.4115.35,28.57,144.24,12.72,150,220ii i i i z z z z y e e ==≈≈≈≈≈≈∑∑【答案】(1) y bz a =+ , 0.5ln 3.0x y =-+(2)150元/天【分析】(1)由散点图判断出更适模型的回归方程,分别求出b和 a ,求出回归方程.(2)写出100天销售额L 的表达式,再根据导数求得最大值,即可得出收费标准.【详解】(1)由散点图可知,散点并非均匀分布在一条直线的两侧,而是大致分布在一条曲线的两侧,不符合线性回归模型要求,∴ y bza =+ 更合适于此模型,()10.90.650.450.30.20.55y =⨯++++=122112.725 5.350.5ˆ0.470.5144.24528.57ni ii nii z y nz ybznz ==-⋅-⨯⨯===-≈--⨯-∑∑∵ 5.35z ≈∴ ()0.50.47 5.35 3.0145 3.0ay b z =-⋅=--⨯=≈ ∴回归方程为: 0.5ln 3.0x y =-+;(2)由题意得,()()1000.5ln 3.050ln 300L x x x x x x =-+=-+,在()50ln 300L x x x x =-+中,()50ln 250L x x =-+'当()0L x '=时,解得:5e x =,当()0L x '<即5e x >时,函数单调递减,当()0L x '>即50e x <<时,函数单调递增,∴函数在5e 150x =≈处取最大值,∴收费标准为150元/天时,100天销售额L 最大.20.某企业因技术升级,决定从2023年起实现新的绩效方案.方案起草后,为了解员工对新绩效方案是否满意,决定采取如下“随机化回答技术”进行问卷调查:一个袋子中装有三个大小相同的小球,其中1个黑球,2个白球.企业所有员工从袋子中有放回的随机摸两次球,每次摸出一球.约定“若两次摸到的球的颜色不同,则按方式Ⅰ回答问卷,否则按方式Ⅱ回答问卷”.方式Ⅰ:若第一次摸到的是白球,则在问卷中画“○”,否则画“×”;方式Ⅱ:若你对新绩效方案满意,则在问卷中画“○”,否则画“×”.当所有员工完成问卷调查后,统计画○,画×的比例.用频率估计概率,由所学概率知识即可求得该企业员工对新绩效方案的满意度的估计值.其中满意度100%=⨯企业所有对新绩效方案满意的员工人数企业所有员工人数.(1)若该企业某部门有9名员工,用X 表示其中按方式Ⅰ回答问卷的人数,求X 的数学期望;(2)若该企业的所有调查问卷中,画“○”与画“×”的比例为4:5,试估计该企业员工对新绩效方案的满意度.【答案】(1)4(2)40%.【分析】(1)根据题意分析可得方式Ⅰ回答问卷的人数4~9,9X B ⎛⎫⎪⎝⎭,利用二项分布的期望的公式运算求解;(2)根据题意结合条件概率公式和全概率公式运算求解【详解】(1)每次摸到白球的概率23,摸到黑球的概率为13,每名员工两次摸到的球的颜色不同的概率12214C 339P =⨯⨯=,由题意可得:该部门9名员工中按方式Ⅰ回答问卷的人数4~9,9X B ⎛⎫⎪⎝⎭,所以X 的数学期望()4949E X =⨯=.(2)记事件A 为“按方式Ⅰ回答问卷”,事件B 为“按方式Ⅱ回答问卷”,事件C 为“在问卷中画○”.由(1)知()49P A =,()()519P B P A =-=,()()()212339P A P C A P AC ==⨯=.∵()44459P C ==+,由全概率公式()()()()()P C P A P C A P B P C B =+,则()425999P C B =+,解得()20.45P C B ==,故根据调查问卷估计,该企业员工对新绩效方案的满意度为40%.21.如图,已知四棱台1111ABCD A B C D -的上、下底面分别是边长为2和4的正方形,14A A =,且1A A ⊥底面ABCD ,点,P Q 分别在棱1DD 、BC 上·(1)若P 是1DD 的中点,证明:1AB PQ ⊥;(2)若//PQ 平面11ABB A ,二面角P QD A --的余弦值为49,求四面体ADPQ 的体积.【答案】(1)证明见解析(2)83【分析】(1)建立空间直角坐标系,利用空间向量的坐标运算知10AB PQ ⋅=,即可证得结论;(2)利用空间向量结合已知的面面角余弦值可求得74,,02Q ⎛⎫⎪⎝⎭,再利用线面平行的已知条件求得70,,12P ⎛⎫⎪⎝⎭,再将四面体ADPQ 视为以ADQ △为底面的三棱锥P ADQ -,利用锥体的体积公式即可得解.【详解】(1)以A 为坐标原点,AB ,AD ,1AA 所在直线分别为x ,y ,z 轴建立空间直角坐标系,则()0,0,0A ,()12,0,4B ,()0,4,0D ,()10,2,4D ,设()4,,0Q m ,其中m BQ =,04m ≤≤,若P 是1DD 的中点,则()0,3,2P ,()12,0,4AB = ,()4,3,2PQ m =--,于是1880AB PQ ⋅=-= ,∴1AB PQ ⊥,即1AB PQ ⊥.(2)由题设知,()4,4,0DQ m =-,()10,2,4DD =- ,是平面PDQ 内的两个不共线向量.设()1,,n x y z = 是平面PDQ 的一个法向量,则()111440,0240,0x m y n DQ y z n DD ⎧⎧+-=⋅=⎪⇒⎨⎨-+=⋅=⎪⎩⎩,取4y =,得()14,4,2n m =-u r .又平面AQD 的一个法向量是()20,0,1n =u u r,∴()()121222221222cos ,442420n n n n n n m m ⋅===⋅-++-+u r u u ru r u u r u r u u r ,而二面角P QD A --的余弦值为49,因此()2249420m =-+,解得72m =或92m =(舍去),此时74,,02Q ⎛⎫ ⎪⎝⎭.设()101DP DD λλ=<≤ ,而()10,2,4DD =- ,由此得点()0,42,4P λλ-,14,2,42PQ λλ⎛⎫=-- ⎪⎝⎭,∵PQ ∥平面11ABB A ,且平面11ABB A 的一个法向量是()30,1,0n =,∴30PQ n ⋅= ,即1202λ-=,解得14λ=,从而70,,12P ⎛⎫ ⎪⎝⎭.将四面体ADPQ 视为以ADQ △为底面的三棱锥P ADQ -,则其高1h =,故四面体ADPQ 的体积11184413323ADQ V S h =⋅=⨯⨯⨯⨯=.【点睛】方法点睛:求空间角的常用方法:(1)定义法:由异面直线所成角、线面角、二面角的定义,结合图形,作出所求空间角,再结合题中条件,解对应的三角形,即可求出结果;(2)向量法:建立适当的空间直角坐标系,通过计算向量的夹角(两直线的方向向量、直线的方向向量与平面的法向量、两平面的法向量)的余弦值,即可求得结果.22.已知函数1()ln ()e xf x k x k =+∈R .(1)若函数()y f x =为增函数,求k 的取值范围;(2)已知120x x <<.(i)证明:1221e e1e e x x x x -->;(ii)若1212x x x x k e e ==,证明:()()121f x f x -<.【答案】(1)1,e ∞⎡⎫+⎪⎢⎣⎭(2)(i )证明见解析;(ii )证明见解析【分析】(1)分析可得原题意等价于e x x k ≥对0x ∀>恒成立,构建()(0)e xxx x ϕ=>,利用导数求最值结合恒成立问题运算求解;(2)(i )取1ek =,根据题意分析可得2121e e e ln e x x x x ->-,构建()ln 1g x x x =--,结合导数证明2211ln 1x xx x ->-即可;(ii )根据题意分析可得1201x x <<<,()1111ln e 1x x x f x +=,()2222ln e 1x x x f x +=,构建ln 1())e (0x x x g x x +=>,结合导数证明()()12101ef x f x <<<<,即可得结果.【详解】(1)∵1()ln ()exf x k x k =+∈R ,则1()(0)e x k f x x x '=->,若()f x 是增函数,则1()0e xk f x x '=-≥,且0x >,可得e xx k ≥,故原题意等价于e xxk ≥对0x ∀>恒成立,构建()(0)e xxx x ϕ=>,则()1()0e x x x x ϕ-'=>,令()0x ϕ'>,解得01x <<;令()0x ϕ'<,解得1x >;则()ϕx 在(0,1)上单调递增,在(1,)+∞上单调递减,故()1()1ex ϕϕ≤=,∴k 的取值范围为1,e ∞⎡⎫+⎪⎢⎣⎭.(2)(i )由(1)可知:当1e k =时,ln 1()e e x x f x =+单调递增,∵120x x <<,则()()21f x f x >,即21211111ln ln e e e e x x x x +>+,整理得211212e eln ln e e ln x x x x x x =-->-,构建()ln 1g x x x =--,则()()1110x g x x x x-'=-=>,令()0g x '<,解得01x <<;令()0g x '>,解得1x >;则()g x 在(0,1)上单调递减,在(1,)+∞上单调递增,故()()ln 110g x x x g =--≥=,即ln 1x x -≥-,当且仅当1x =时等号成立,令211x x x =>,可得2211ln 1x x x x ->-,故21211x x x e e e e x ->-;(ii )∵1212x x x x k e e ==,则1212110e e x x k k x x -=-=,可知1()0e xk f x x '=-=有两个不同实数根12,x x ,由(1)知1201x x <<<,可得()1111111111ln 111ln l e e e n e x x x x x x x f x k x x +=+=+=,同理可得()2222ln e 1x x x f x +=,构建ln 1())e (0x x x g x x +=>,则()e (1)ln ()0xx xg x x -'=>,当01x <<时,(1)ln 0x x -<;当1x >时,(1)ln 0x x -<;当1x =时,(1)ln 0x x -=;且e 0x >,故()0g x '≤对()0,x ∀∈+∞恒成立,故()g x 在(0,)+∞上单调递减,∵1201x x <<<,则()()21()1g x g g x <<,即()()21e1f x f x <<,且11ln 0,e 0xx >>,则11ln 10x x +>,故2222ln 1)0e (x x x g x +=>,可得()210ef x <<;又∵101x <<,由(i )可得11ln 1x x ->-,即11ln 1x x <-,则()11111ln 1111e xx x x x +<-+<<,且1e 0x >,则111ln 11e x x x +<,可得()111ef x <<;综上所述:()()12101ef x f x <<<<.可得()21e0f x -<-<,则()()1201f x f x <-<故()()()()12121f x f x f x f x -=-<.【点睛】方法点睛:利用导数证明不等式的基本步骤(1)作差或变形.(2)构造新的函数()h x .(3)利用导数研究()h x 的单调性或最值.(4)根据单调性及最值,得到所证不等式.特别地:当作差或变形构造的新函数不能利用导数求解时,一般转化为分别求左、右两端两个函数的最值问题.。
高二数学(理科)答案

2016—2017学年度下期教学质量监测高中二年级数学参考答案(理科)一㊁选择题1.A2.B3.D4.B5.B6.C7.A8.D9.B 10.D 11.C 12.A 二㊁填空题13.35 14.(-∞,-2)∪(1,+∞) 15.12 16.12三㊁解答题17.解:(Ⅰ)设等差数列{a n }的公差为d ,因为a 3=0,S 6=6,所以a 1+2d =06a 1+6×52d ìîíïïï=6 解得a 1=-4,d =2.3分…………………………………………………所以a n =-4+(n -1)×2=2n -66分……………………………………………………………(Ⅱ)因为b n =(2)a n =2n -3=14×2n -1所以数列{b n }是以14为首项,2为公比的等比数列,所以T n =14(1-2n )1-2=2n -1412分………………………………………………………………18.解:(Ⅰ)根据题意,列出2×2列联表如下: 年龄段答对与否 21~3031~40总计正确101020错误3070100总计40801202分………………………由列联表计算得k =120×(10×70-10×30)220×100×40×80=3因为3>2.706,所以有90%的把握认为答对歌曲名称与否和年龄有关.4分……………(Ⅱ)由于21~30岁年龄段的人数与在31~40岁年龄段的人数之比为1:2,因此按年龄段选取9名选中在21~30岁年龄段的人数为3,在31~40岁年龄段的人数为6.6分…… 设抽取的3名幸运选手中在21~30岁年龄段的人数为X ,则随机变量X 的取值可以是0,1,2,3,且相应概率为P (X =0)=C 03㊃C 36C 39=521,P (X =1)=C 13㊃C 26C 39=1528,P (X =2)=C 23㊃C 16C 39=314,P (X =3)=C 33㊃C 06C 39=184.所以,X 的分布列为X0123P 521152831418410分………………………………………随机变量X 的数学期望为E (X )=0×512+1×1528+2×314+3×184=112分……………………………………………………19.解:以D 为原点,DA ,DC ,DD 1分别为x 轴,y 轴,z 轴建立空间直角坐标系,设正方体的棱长为4,则E (0,0,2),F (2,2,0),C (0,4,0),B (4,4,0),C 1(0,4,4),B 1(4,4,4),G (0,3,0)2分………………………………………………………………………………(Ⅰ)→EF =(2,2,-2),B 1→C =(-4,0,-4)所以→EF ㊃B 1→C =2×(-4)+2×0+(-2)×(-4)=0所以→EF ⊥B 1→C所以EF ⊥B 1C 7分……………………………………………………………………………(Ⅱ)平面D 1DCC 1的一个法向量为→BC =(-4,0,0),设平面EFG 的一个法向量为n =(x ,y ,z ).所以n ㊃→EF =0n ㊃→FG {=0 即x +y -z =0-2x +y {=0令x =1,则y =2,z =3.所以n =(1,2,3).所以cos<n ,→BC >=n ㊃→BC |n ||→BC |=-414×16=-1414故二面角F -EG -C 1的余弦值为-1414.12分………………………………………………20.解:(Ⅰ)依题意知:c =1,-a 2c=-2,所以a 2=2.所以e =c a =12=224分………………………………………………………………………(Ⅱ)由y =x -c x 2a 2+y 2b 2ìîíïïï=1 得(b 2+a 2)x 2-2a 2cx +a 2(c 2-b 2)=0,所以x 1+x 2=2a 2c a 2+b 2,从而y 1+y 2=-2b 2c a 2+b26分……………………………………………………所以→OA +→OB =(2a 2c a 2+b 2,-2b 2c a 2+b 2)→OP =λ(→OA +→OB )=(2λa 2c a 2+b 2,-2λb 2c a 2+b 2)因为P 在椭圆上所以(2λa 2c a 2+b 2)2a 2+(-2λb 2c a 2+b 2)2b 2=18分……………………………………………………………即(2λac a 2+b 2)2+(-2λbc a 2+b 2)2=14λ2a 2c 2+4λ2b 2c 2=(a 2+b 2)24λ2c 2(a 2+b 2)=(a 2+b 2)210分………………………………………………………………所以λ2=a 2+b 24c 2,又因为c 2+b 2=a 2,e =c a 且0<e <1所以λ2=a 2+b 24c 2=2a 2-c 24c 2=12e 2-14>14所以λ>12.故λ的取值范围是(12,+∞).12分…………………………………………………………21.解:(Ⅰ)h (x )的定义域为(0,+∞),h′(x )=-1x 2+3x -2=-2x 2-3x +1x 2=-(2x -1)(x -1)x 23分………………………………………令h′(x )<0,得h (x )的单调递减区间是(0,12)和(1,+∞).5分…………………………(Ⅱ)f (x )有唯一零点⇔alnx =1x有唯一实根.显然a ≠0,则关于x 的方程xlnx =1a有唯一实根.7分………………………………………设φ(x )=xlnx ,则φ′(x )=1+lnx =0得x =e -1.当0<x <e -1时,φ′(x )<0,φ(x )单调递减;当x >e -1时,φ′(x )>0,φ(x )单调递增.所以φ(x )的极小值为φ(e -1)=-e -1.10分…………………………………………………要使方程xlnx =1a 有唯一实根,只需直线y =1a 与曲线y =φ(x )有唯一的交点,则1a =-e -1或1a >0.解得:a =-e 或a >0.故:a 的范围是{-e }∪{a |a >0}.12分………………………………………………………22.证明:(1)当n =1时,左边=12=1,右边=1×(1+1)(2×1+1)6=1,等式成立.2分…………………………………………………………………………………(2)假设n =k (k ∈N *)时等式成立,即12+22+ +k 2=k (k +1)(2k +1)6,4分…………………………………………………………那么,12+22+ +k 2+(k +1)2=k (k +1)(2k +1)6+(k +1)2=k (k +1)(2k +1)+6(k +1)26=(k +1)(2k 2+7k +6)66分…………………………………………………………………=(k +1)(k +2)(2k +3)6=(k +1)[(k +1)+1][2(k +1)+1]6,8分…………………………………………………即当n =k +1时等式成立.由(1)和(2),可知等式对任何n ∈N *都成立㊂10分………………………………………23.解:设销售价为x 元/件,则利润l (x )=(x -a )(c +c ×b -x b ×4)=c (x -a )(5-4b x ),(a <x <5b 4)5分………………………………………………………令l′(x )=-8c b x +4ac +5bc b =0,得x =4a +5b 8.当x ∈(a ,4a +5b 8)时,l′(x )>0;当x ∈(4a +5b 8,5b 4)时,l′(x )<0.因此,x =4a +5b 8是函数l (x )的极大值点,也是最大值点.所以,销售价为4a +5b 8元/件时,可获得最大利润.10分……………………………………。