指数与指数函数教案
《指数函数》的优秀教案最新9篇

《指数函数》的优秀教案最新9篇高一数学《指数函数》优秀教案篇一我本节课说课的内容是高中数学第一册第二章第六节“指数函数”的第一课时——指数函数的定义,图像及性质。
我将尝试运用新课标的理念指导本节课的教学。
新课标指出,学生是教学的主体,教师的教要应本着从学生的认知规律出发,以学生活动为主线,在原有知识的基础上,建构新的知识体系。
我将以此为基础从教材分析,教学目标分析,教法学法分析和教学过程分析这几个方面加以说明。
一、教材分析1、教材的地位和作用:函数是高中数学学习的重点和难点,函数的贯穿于整个高中数学之中。
本节课是学生在已掌握了函数的一般性质和简单的指数运算的基础上,进一步研究指数函数,以及指数函数的图像与性质,同时也为今后研究对数函数以及等比数列的性质打下坚实的基础。
因此,本节课的内容十分重要,它对知识起到了承上启下的作用。
2、教学的重点和难点:根据这一节课的内容特点以及学生的实际情况,我将本节课教学重点定为指数函数的图像、性质及其运用,本节课的难点是指数函数图像和性质的发现过程,及指数函数图像与底的关系。
二、教学目标分析基于对教材的理解和分析,我制定了以下的教学目标:1、知识目标(直接性目标):理解指数函数的定义,掌握指数函数的图像、性质及其简单应用。
2、能力目标(发展性目标):通过教学培养学生观察、分析、归纳等思维能力,体会数形结合和分类讨论,增强学生识图用图的'能力。
3、情感目标(可持续性目标):通过学习,使学生学会认识事物的特殊性与一般性之间的关系,培养学生勇于提问,善于探索的思维品质。
三、教法学法分析1、教学策略:首先从实际问题出发,激发学生的学习兴趣。
第二步,学生归纳指数的图像和性质。
第三步,典型例题分析,加深学生对指数函数的理解。
2、教学:贯彻引导发现式教学原则,在教学中既注重知识的直观素材和背景材料,又要激活相关知识和引导学生思考、探究、创设有趣的问题。
3、教法分析:根据教学内容和学生的状况,本节课我采用引导发现式的教学方法并充分利用多媒体辅助教学。
指数运算与指数函数(优质课)教案

1.70.3>1.70=1,
0.93.1<0.90=1,
∴1.70.3>0.93.1.
答案:< <
>
练习 1:比较下列各题中两个值的大小.
(1)0.3x 与 0.3x+1;
(2)12-2 与 2.
答案:> >
练习 2: (2014~2015 学年度潍坊四县市高一上学期期中测试)函数 f(x)=ax-1+2(a>0,a≠1)
答案:D 练习 1:若函数 y=ax+m-1(a>0)的图象经过第一、三和第四象限,则( )
A.a>1
B.a>1,且 m<0
C.0<a<1,且 m>0 D.0<a<1
答案:B
练习 2:(2014~2015 学年度山西太原市高一上学期期中测试)在同一坐标系中,函数 y=2x 与 y
=12x 的图象之间的关系是(
形如 a f (x) = ag(x) (a 0, a 1) 的方程,化为 f ( x) = g ( x) 求解。
形如 a2x + b • ax + c = 0 的方程,可令 t = ax 进行换元,转化成 t2 + bt + c = 0(t 0) 一元二次方程
进行求解。 七、指数不等式的解法:
答案:f(23)<f(32)<f(13)
1、把下列各式中的 a 写成分数指数幂的形式 (1) a5 = 256 ;(2) a−4 = 28 ;
1
−1
答案:(1) a = 2565 ;(2) a = 28 4
3
−3
2、计算(1) 9 2 ; (2)16 2
( ) ( ) 3
指数与指数函数复习教案

指数函数要求①了解指数函数模型的实际背景.②理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算.③理解指数函数的概念,理解指数函数的单调性,掌握指数函数图像通过的特殊点.④知道指数函数是一类重要的函数模型.1 根式根式的概念:符号表示备注如果xn=a,那么x叫做a的n次方根n>1且n属于N+ 当n为奇数时,正数的n次方根是一个正数()零的n次方根是零负数的n次方根是一个负数当n为偶数时。
正数的n次方根有两个,()负数没有偶次方根他们互为相反数两个重要公式:1()备课笔记2()2 分数指数幂1 正数的正分数指数幂是()2 正数的负分数指数幂是()3 0的正分数指数幂是0,0的复分数指数幂无意义4 有理指数幂的运算性质:ar。
as=ar+s (a>0,r,s属于Q)(ar)s=ars (a>0,r,s属于Q)(ab)r= ar as (a>0,b>0,r属于Q)3 指数函数的定义:y=ax (a>0 且a不等于1)叫指数函数,定义域:实数集R性质1 y>0图像经过(0,1)非奇非偶函数a>1,当x>0时,y>1;当x<0时,0<y<1a>1,y=ax为增函数,0<a<1时,y=ax为减函数画指数函数y=ax图像,应抓住3个关键点:(1,a),(0,a),(-1,1/a)熟记指数函数y=10x,y=2x,y=(1 / 10)x,y=(1 /2)x在同一坐标系中图像的相对位置4 指数函数的类型及解法(在指数里含有未知数的方程叫指数方程)指数方程的可解类型可分为 1 形如af(x)=ag(x)(a>0 且a不等于1)化为f(x)=g(x)求解2形如af(x)=bg(x)(a>0 ,b>0且a,b均不等于1)的方程,两边同时取对数3 形如a2x+b。
ax+c=0的方程,换元法求解5 指数函数的有关复合函数问题1 函数y= af(x)的定义域与f(x)的定义域相同2 求y= af(x)的值域:先确定f(x)的值域,再根据指数函数的值域,单调性求解3 求单调性先分析,再求解。
《2.6指数与指数函数》 教案

教学过程一、课堂导入英国的马尔萨斯曾提出“人口增长模型”。
他指出,如果人口按照指数函数的规律增长,那么100年后地球上的每个人肩上都会站着一个人。
“人口按指数增长会有那么快吗?指数函数是怎样的函数二、复习预习1.二次函数的图像与性质2.二次函数在闭区间上的最值3.二次函数、一元二次方程、一元二次不等式的关系4.幂函数的概念、幂函数的图象和性质三、知识讲解考点1 根式(1)根式的概念:(2)两个重要公式:①na n=⎩⎪⎨⎪⎧a,n为奇数,|a|=⎩⎨⎧a(a≥0),-a(a<0),n为偶数;②(na)n=a(注意a必须使na有意义).考点2 有理数指数幂(1)幂的有关概念:①正分数指数幂:a mn=na m(a>0,m,n∈N*,且n>1);②负分数指数幂:amn=1amn=1na m(a>0,m,n∈N*,且n>1);③0的正分数指数幂等于0,0的负分数指数幂无意义.(2)有理数指数幂的性质:①a r a s=a r+s(a>0,r,s∈Q);②(a r)s=a rs(a>0,r,s∈Q);③(ab)r=a r b r(a>0,b>0,r∈Q).考点3 指数函数的图象与性质四、例题精析 【例题1】【题干】化简下列各式(其中各字母均为正数).121121332··a b a b ---⎛⎫ ⎪; (2)56a 13·b -2·⎝⎛⎭⎫-3a 12-b -1÷⎝⎛⎭⎫4a 23·b -312.【答案】(1)110(2)a 4a(3)a【解析】(1)原式=111133221566·a b a ba b--==a111326---·b115236+-=1a.(2)原式=-52a16-b-3÷⎝⎛⎭⎫4a23·b-312=-54a16-·b-3÷⎝⎛⎭⎫a13b32-=-54a12-·b32-.=-54·1ab3=-5ab4ab2.【例题2】【题干】函数y=a x-a(a>0,且a≠1)的图象可能是()【答案】 C【解析】当x=1时,y=a1-a=0,∴函数y=a x-a的图象过定点(1,0),结合图象可知选C.【例题3】【题干】设a>0且a≠1,函数y=a2x+2a x-1在[-1,1]上的最大值是14,求a的值.【解析】令t =a x (a >0且a ≠1),则原函数化为y =(t +1)2-2(t >0).①当0<a <1时,x ∈[-1,1],t =a x∈⎣⎢⎡⎦⎥⎤a ,1a , 此时f (t )在⎣⎢⎡⎦⎥⎤a ,1a 上为增函数. 所以f (t )max =f ⎝ ⎛⎭⎪⎫1a =⎝ ⎛⎭⎪⎫1a +12-2=14. 所以⎝ ⎛⎭⎪⎫1a +12=16,即a =-15或a =13. 又因为a >0,所以a =13.②当a >1时,x ∈[-1,1],t =a x ∈⎣⎢⎡⎦⎥⎤1a ,a , 此时f (t )在⎣⎢⎡⎦⎥⎤1a ,a 上是增函数.所以f (t )max =f (a )=(a +1)2-2=14, 解得a =3(a =-5舍去).综上得a =13或a =3.五、课堂运用【基础】1.化简-x3x的结果是()A.--x B.x C.-x D.-x-x3x=--x3x2=--x.解析:选A依题意知x<0,∴2.函数y =⎝ ⎛⎭⎪⎫13x 2 的值域是( ) A .(0,+∞) B .(0,1)C .(0,1]D .[1,+∞)解析:选C ∵x 2≥0,∴⎝ ⎛⎭⎪⎫13x 2≤1,即值域是(0,1].3.设函数f (x )定义在实数集上,它的图象关于直线x =1对称,且当x ≥1时,f (x )=3x -1,则有( )A .f ⎝ ⎛⎭⎪⎫13<f ⎝ ⎛⎭⎪⎫32<f ⎝ ⎛⎭⎪⎫23B .f ⎝ ⎛⎭⎪⎫23<f ⎝ ⎛⎭⎪⎫32<f ⎝ ⎛⎭⎪⎫13C .f ⎝ ⎛⎭⎪⎫23<f ⎝ ⎛⎭⎪⎫13<f ⎝ ⎛⎭⎪⎫32D .f ⎝ ⎛⎭⎪⎫32<f ⎝ ⎛⎭⎪⎫23<f ⎝ ⎛⎭⎪⎫13解析:选B 由题设知,当x ≥1时,f (x )=3x -1单调递增,因其图象关于直线x =1对称,∴当x ≤1时,f (x )单调递减.∴f ⎝ ⎛⎭⎪⎫32=f ⎝ ⎛⎭⎪⎫2-32=f ⎝ ⎛⎭⎪⎫12.∴f ⎝ ⎛⎭⎪⎫23<f ⎝ ⎛⎭⎪⎫12<f ⎝ ⎛⎭⎪⎫13,即f ⎝ ⎛⎭⎪⎫23<f ⎝ ⎛⎭⎪⎫32<f ⎝ ⎛⎭⎪⎫13.【巩固】4.已知函数f(x)=4+a x-1的图象恒过定点P,则点P的坐标是________.解析:令x-1=0,即x=1,则f(1)=5. ∴图象恒过定点P(1,5).答案:(1,5)5.对于函数f(x),如果存在函数g(x)=ax+b(a,b为常数),使得对于区间D上的一切实数x都有f(x)≤g(x)成立,则称函数g(x)为函数f(x)在区间D上的一个“覆盖函数”,设f(x)=2x,g(x)=2x,若函数g(x)为函数f(x)在区间[m,n]上的一个“覆盖函数”,则|m-n|的最大值为________.解析:因为函数f(x)=2x与g(x)=2x的图象相交于点A(1,2),B(2,4),由图可知,[m,n]⊆[1,2],故|m-n|max=2-1=1.答案:1【拔高】6.已知定义域为R的函数f(x)=-2x+b2x+1+a是奇函数.(1)求a,b的值;(2)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范围.解:(1)因为f(x)是R上的奇函数,所以f(0)=0,即-1+b2+a=0,解得b=1.从而有f(x)=-2x+1 2x+1+a.又由f(1)=-f(-1)知-2+14+a=--12+11+a,解得a=2.(2)由(1)知f(x)=-2x+12x+1+2=-12+12x+1,由上式易知f(x)在R上为减函数,又因为f(x)是奇函数,从而不等式f(t2-2t)+f(2t2-k)<0等价于f(t2-2t)<-f(2t2-k)=f(-2t2+k).因为f(x)是R上的减函数,由上式推得t2-2t>-2t2+k.即对一切t∈R有3t2-2t-k>0,从而Δ=4+12k<0,解得k<-1 3.7.若函数y=lg(3-4x+x2)的定义域为M.当x∈M时,求f(x)=2x+2-3×4x的最值及相应的x的值.解:y =lg (3-4x +x 2),∴3-4x +x 2>0,解得x <1或x >3.∴M ={x |x <1,或x >3}.f (x )=2x +2-3×4x =4×2x -3×(2x )2.令2x =t ,∵x <1或x >3,∴t >8或0<t <2.∴y =4t -3t 2=-3⎝ ⎛⎭⎪⎫t -232+43(t >8或0<t <2). 由二次函数性质可知:当0<t <2时,f (t )∈⎝ ⎛⎦⎥⎤-4,43, 当t >8时,f (t )∈(-∞,-160),∴当2x =t =23,即x =log 223时,f (x )max =43.综上可知,当x =log 223时,f (x )取到最大值为43,无最小值.课程小结1.分数指数幂与根式的关系:分数指数幂与根式可以相互转化,通常利用分数指数幂的意义把根式的运算转化为幂的运算,从而简化计算过程.2.指数函数的单调性是由底数a的大小决定的,因此解题时通常对底数a按0<a<1和a>1进行分类讨论.。
高中数学指数与指数函数教案

指数与指数函数一、学习目标1、理解n资助方根、根式、分数指数幂概念,会对根式、分数指数幂进行互化;2、掌握分数指数幂的运算性质,熟练运用性质进行化简、求值;3、培养化归意识,思维的灵活性和严密性;4、掌握指数函数的根念;5、掌握指数函数的图像、性质;6、能利用指数函数的性质比较幂的大小;7、培养学生的应用意识。
二、例题分析第一阶梯[例1]求下列各式的值;分析:根式可化为分数指数幂形式,利用分数指数幂运算性质计算。
解:说明:既含有分数指数幂,又有根式,一般把根式统一化成分数指数幂的形式,便于计算,如果根式中根指数不同,也应化成分数指数幂的形式。
例2、指出下列函数中哪些是指数函数;(1)y=4x; (2)y=x4; (3)y=-4x; (4)y=(-4)x; (5)y=πx;(7)y=xx;分析:根据指数函数定义进行判断。
解:(1)、(5)为指数函数;(2)不是指数函数;(3)是-1与指数函数4x的乘积;(4)中底数-4<0,∴不是指数函数;(6)中指数不是自变量x,而是x的函数x2;(7)中底数x不是常数。
它们都不符合指数函数的定义。
说明:指数函数严格限定在y=ax(a>0且a≠1)这一结构,(2)(3)(4)(6)(7)均不是指数函数,不具备指数函数的基本性质。
第二阶梯例3、A、1B、2a-1C、1或2a-1D、0思路分析:根据根式的意义直接进行判断.解:(2)取a=0,b=1,A不成立;取a=0,b=-1,C不成立;取a=-1,b=-1,D不成立;因为a2+b2≥0,所以B正确,故选B.答案:(1)C (2)B例4、函数f(x)=x2-bx+c满足f(1+x)=f(1-x),且f(0)=3,则f(bx)与f(cx)的大小关系是_______。
思路分析:利用二次函数、指数函数的单调性,结合函数的有关知识进行解答。
解答:∵f(1+x)=f(1-x),∴f(x)的对称轴为x=1,由此得b=2,又∵f(0)=3,∴c=3.∴f(x)=x2-2x+3在(-∞,1)内递减,在(1,+∞)内递增。
指数与指数函数教案

指数与指数函数教案教案标题:指数与指数函数教案教案目标:1. 理解指数的概念和基本性质;2. 掌握指数运算的基本法则;3. 理解指数函数的定义和特点;4. 能够应用指数函数解决实际问题。
教学重点:1. 指数的定义和基本性质;2. 指数运算的基本法则;3. 指数函数的定义和特点。
教学难点:1. 指数函数的应用问题解决。
教学准备:1. 教材:包含有关指数和指数函数的相关知识的教材;2. 教具:计算器、白板、彩色粉笔等。
教学过程:一、导入(5分钟)1. 引入指数的概念,通过实例解释指数的含义和作用;2. 提问学生对指数的了解程度,激发学生的学习兴趣。
二、讲解指数的定义和基本性质(15分钟)1. 讲解指数的定义,包括底数、指数和幂的概念;2. 介绍指数的基本性质,如指数为0时的计算规则、指数为正数时的计算规则等;3. 通过例题演示指数运算的基本法则。
三、指数运算练习(15分钟)1. 给学生分发练习题,要求他们完成指数运算的计算和简化;2. 引导学生互相讨论解题思路和方法;3. 随堂检查学生的练习成果,及时纠正错误。
四、讲解指数函数的定义和特点(15分钟)1. 介绍指数函数的定义,包括指数为变量的函数形式;2. 解释指数函数的特点,如增长率、图像特征等;3. 通过图像展示指数函数的变化规律。
五、指数函数应用实例分析(15分钟)1. 给学生提供一些实际问题,要求他们运用指数函数解决;2. 引导学生分析问题,建立数学模型;3. 鼓励学生互相交流和分享解题思路。
六、小结与拓展(10分钟)1. 总结指数与指数函数的重点内容和学习要点;2. 提出一些拓展问题,激发学生进一步思考;3. 鼓励学生自主学习相关知识,拓宽数学视野。
教学反馈:1. 教师及时纠正学生在课堂上的错误,解答学生提出的问题;2. 教师评价学生的参与度和学习成果;3. 学生填写教学反馈表,反馈课堂教学的效果和自身的学习感受。
教学延伸:1. 布置相关练习作业,巩固学生的学习成果;2. 鼓励学生使用计算器和其他工具进行指数函数的实际计算;3. 推荐相关参考书籍和网站,供学生进一步学习。
第5讲 指数与指数函数(教案)

指数与指数函数教学目标:掌握指数运算(高考要求A )及指数函数的有关概念(高考要求B ). 教学重难点:熟悉指数运算,掌握指数函数图像性质及其应用。
教学过程: 一.知识要点: 1.指数运算(1) 根式的定义:若一个数的n 次方等于),1(*∈>N n n a 且,则这个数称a 的n 次方根。
即若a x n =,则x 称a 的n 次方根()1*∈>N n n 且, ① 当n 为奇数时,n a 的次方根记作n a ;②当n 为偶数时,负数a 没有n 次方根,而正数a 有两个n 次方根且互为相反数,记作)0(>±a a n 。
(2)根式性质:①a a n n =)(;②当n 为奇数时,a a n n =;③当n(0)||(0)a a a a a ≥⎧==⎨-<⎩。
(3)幂运算法则:①∈⋅⋅⋅=n a a a a n ( N *) ②)0(10≠=a a ;n 个 ③∈=-p aap p(1Q ,4)m a a a n m n m,0(>=、∈n N *且)1>n 。
(4)幂运算性质: ①r a a a a sr s r ,0(>=⋅+、∈s Q );②r a a a s r s r ,0()(>=⋅、∈s Q ); ③∈>>⋅=⋅r b a b a b a r r r ,0,0()( Q )。
(注)上述性质对r 、∈s R 均适用。
2.指数函数:(1) 指数函数定义:函数)1,0(≠>=a a a y x 且称指数函数,函数的定义域为R ;函数的值域为),0(+∞; (2)函数图像及性质:①指数函数的图象都经过点(0,1),且图象都在第一、二象限;②当10<<a 时函数为减函数,当1>a 时函数为增函数。
③指数函数都以x 轴为渐近线(当10<<a 时,图象向左无限接近x 轴,当1>a 时,图象向右无限接近x 轴);④对于相同的)1,0(≠>a a a 且,函数x x a y a y -==与的图象关于y 轴对称。
必修1第二章指数和指数函数教案(7个课时)

(2)5x 4,5y 2,则52xy _______
练 2、用分数指数幂的形式表示下列各式(a>0)
7
(1) 3 a2 a3
(2) 3 a8 3 a15
不
解:(1)原式=a
7 2
1 3
31
a 23
7
a6
1
a2
2
a3;
练
(2)原式=a
(
8 ) 3
1 2
15 1
讲
an
1 an
(a 0)
5
观察归纳,讲授新课
观察以下式子,并总结出规律: a >0
10
① 5 a10 5 (a2 )5 a2 a 5
②
8
a8 (a4 )2 a4 a2
12
③ 4 a12 4 (a3 )4 a3 a 4
10
④ 5 a10 5 (a2 )5 a2 a 5
a3 2
45
a 3 2
7
a6.
不
讲
7
教学内容
第3课 (单元)
主题
分数指数幂及其性质 2
1 课时
1、理解分数指数幂的概念;
教
知识 与技能
2、掌握分数指数幂和根式之间的互化;
3、掌握分数指数幂的运算性质.
学
过 程 从整数指数幂到分数指数幂,再推广到无理指数幂,将指数范围扩充到实数,
目 与方法 进而学习分数指数幂以及指数幂的性质.
图象特征函数性质轴正负方向无限延伸函数的定义域为r图象关于原点和y轴不对称非奇非偶函数函数图象都在x轴上方函数的值域为r自左向右图象逐渐上升自左向右图象逐渐下降增函数减函数在第一象限内的图象纵坐标都大于1在第一象限内的图象纵坐标都小于1在第二象限内的图象纵坐标都小于1在第二象限内的图象纵坐标都大于1学习目标
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1.1 指数与指数幂的运算(一)(一)教学目标1.知识与技能(1)理解n次方根与根式的概念;(2)正确运用根式运算性质化简、求值;(3)了解分类讨论思想在解题中的应用.2.过程与方法通过与初中所学的知识(平方根、立方根)进行类比,得出n次方根的概念,进而学习根式的性质.3.情感、态度与价值观(1)通过运算训练,养成学生严谨治学,一丝不苟的学习习惯;(2)培养学生认识、接受新事物的能力.(二)教学重点、难点1.教学重点:(1)根式概念的理解;(2)掌握并运用根式的运算性质.2.教学难点:根式概念的理解.(三)教学方法:本节概念性较强,为突破根式概念的理解这一难点,使学生易于接受,故可以从初中已经熟悉的平方根、立方根的概念入手,由特殊逐渐地过渡到一般的n次方根的概念,在得出根式概念后,要引导学生注意它与n次方根的关系,并强调说明根式是n次方根的一种表示形式,加强学生对概念的理解,并引导学生主动参与了教学活动.故本节课可以采用类比发现,学生合作交流,自主探索的教学方法.(四)教学过程:一、引入课题1.以折纸问题引入,激发学生的求知欲望和学习指数概念的积极性2.由实例(见教材P48—49)引入,了解指数的意义是什么,指数概念提出的背景,体会引入指数的必要性;3.初中根式的概念;如果一个数的平方等于a,那么这个数叫做a的平方根,如果一个数的立方等于a,那么这个数叫做a的立方根;二、新课教学(一)指数与指数幂的运算1.根式的概念x n ,那么x叫做a的n次方根(n th root),其中n>1,且n∈N*.一般地,如果a当n是奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数.此时,a的n次方根用符号n a表示.式子n a叫做根式(radical),这里n叫做根指数(radical exponent),a叫做被开方数(radicand).当n 是偶数时,正数的n 次方根有两个,这两个数互为相反数.此时,正数a 的正的n 次方根用符号na 表示,负的n 次方根用符号-n a 表示.正的n 次方根与负的n 次方根可以合并成±n a (a >0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作00=n.思考:(课本P 50探究问题)nn a =a 一定成立吗?.(学生活动) 结论:当n 是奇数时,a a nn =当n 是偶数时,⎩⎨⎧<≥-==)0()0(||a a a a a a nn 三.例题讲解例1.(教材P 50例1). 略 补充例题(按情况讲解)例21,a =-a 求的取值范围.例3例4四.巩固练习: 练习 计算下列各式的值.(1)33)(a ;(2 (1n >,且n N *∈)(3)1n >,且n N *∈)五.归纳总结1.根式的概念:若n >1且*n N ∈,则n x a 是的次方根.x n 为奇数时, n 为偶数时,x =2.掌握两个公式:,n n 为奇数时(0)||(0)a a n a a a ≥⎧==⎨-<⎩为偶数时 六.课后作业: 七.板书设计:(略) 八.课后反思:2.1.2 指数与指数幂的运算(二)(一)教学目标1.知识与技能(1)理解分数指数幂的概念;(2)掌握分数指数幂和根式之间的互化;(3)掌握分数指数幂的运算性质;(4)培养学生观察分析、抽象等的能力.2.过程与方法通过与初中所学的知识进行类比,得出分数指数幂的概念,和指数幂的性质.3.情感、态度与价值观(1)培养学生观察分析,抽象的能力,渗透“转化”的数学思想;(2)通过运算训练,养成学生严谨治学,一丝不苟的学习习惯;(3)让学生体验数学的简洁美和统一美.(二)教学重点、难点1.教学重点:(1)分数指数幂的理解;(2)掌握并运用分数指数幂的运算性质;2.教学难点:分数指数幂概念的理解(三)教学方法发现教学法1.经历由利用根式的运算性质对根式的化简,注意发现并归纳其变形特点,进而由特殊情形归纳出一般规律.2.在学生掌握了有理指数幂的运算性质后,进一步推广到实数范围内.由此让学生体会发现规律,并由特殊推广到一般的研究方法.(四)教学过程:一.引入课题1.n次方根的定义记法nnnnaa ⎧⎪⎨±⎪⎩为奇数为偶数2.根式:n a3. 3.{,||,a n a n 为奇数为偶数巩固强化知识点,为本节课的教学奠定知识基础 二.新课讲授1.回顾正整数指数幂导出探究的问题 能否这样表示?指出当根式的被开方数能被根指数整除时,根式可以表示为分数指数幂的形式,能否将这个结论推广到正数的正分数指数幂的形式上去? 2.分数指数幂 正数的分数指数幂的意义规定:)1,,,0(*>∈>=n N n m a a an m nm)1,,,0(11*>∈>==-n N n m aa aanmnm nm0的正分数指数幂等于0,0的负分数指数幂没有意义指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂. 3.有理指数幂的运算性质(1)r a ·s r ra a +=),,0(Q s r a ∈>; (2)rs s ra a=)(),,0(Q s r a ∈>; (3)s r ra a ab =)(),0,0(Q r b a ∈>>.三.例题讲解引导学生解决本课开头实例问题例题.(教材P 51例2、例3、例4、例5) 补充例题 例1计算(1).)01.0(41225325.02120-⎪⎭⎫⎝⎛⋅+⎪⎭⎫ ⎝⎛--==412510)2()1(a a 34432552)()(aa a a ==412510aa ==)0()0(>>a a ()4315220aaa a ===>(1)5.1213241)91()6449()27()0001.0(---+-+; 例2.化简下列各式:(1)313315383327----÷÷a a a a a a ;(2)33323323134)21(248a ab a abb b a a ⨯-÷++-. 说明:让学生熟练掌握根式与分数指数幂的互化和有理指数幂的运算性质运用. 巩固练习:(教材P 54练习1-3) 4. 无理指数幂结合教材P 52实例利用逼近的思想理解无理指数幂的意义.指出:一般地,无理数指数幂),0(是无理数αα>a a是一个确定的实数.有理数指数幂的运算性质同样适用于无理数指数幂.有理数指数幂推广到无理数指数幂,进而推广到整个实数范围,说明可以用指数的运算来解决生活中的实际问题.四.课堂小结1. 正数的正分数指数幂的意义2. 正数的负分数指数幂的意义3. 运算性质五.课后作业 六.板书设计(略) 七.课后反思:2.1.3 指数函数及其性质(一)(一)教学目标1.知识与技能了解指数函数模型的实际背景,理解指数函数的概念,掌握指数函数的图象. 2.过程与方法能借助计算器或计算机画出具体指数函数的图象,探索指数函数图象特征. 3.情感、态度与价值观在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型,激发学生学习数学的兴趣,努力培养学生的创新意识.(二)教学重点、难点1.教学重点:指数函数的概念和图象. 2.教学难点:指数函数的概念和图象. (三)教学方法采用观察、分析、归纳、抽象、概括,自主探究,合作交流的教学方法,通过各种教学媒体(如计算机或计算器),调动学生参与课堂教学的主动性和积极性. (四)教学过程 一.复习引入1. 在本章的开头,问题(1)中时间x 与GDP 值中的1.073(20)x y x x =∈≤与问题(2)中时间t 和C-14含量P 的对应关系]t 51301P=[()2,请问这两个函数有什么共同特征. 2. 这两个函数有什么共同特征157301][()]2t P =t57301把P=[()变成2,从而得出这两个关系式中的底数是一个正数,自变量为指数,即都可以用x y a =(a >0且a ≠1来表示).二.新课讲授 1.指数函数的定义 一般地,函数x y a =(a >0且a ≠1)叫做指数函数(exponential function),其中x 是自变量,函数的定义域为R .提问:在下列的关系式中,哪些不是指数函数,为什么?(1)22x y += (2)(2)x y =- (3)2x y =-(4)x y π= (5)2y x = (6)24y x = (7)x y x = (8)(1)x y a =- (a >1,且2a ≠)小结:根据指数函数的定义来判断说明:因为a >0,x 是任意一个实数时,xa 是一个确定的实数,所以函数的定义域为实数集R .000,0xx a a x a ⎧>⎪=⎨≤⎪⎩x当时,等于若当时,无意义若a <0,如1(2),,8x y x x =-=1先时,对于=等等,6在实数范围内的函数值不存在.若a =1,11,x y == 是一个常量,没有研究的意义,只有满足(0,1)x y a a a =>≠且的形式才能称为指数函数,5,,3,31x x x a y x y y +===+1xx为常数,象y=2-3,y=2等等,不符合(01)x y a a a =>≠且的形式,所以不是指数函数2.指数函数的性质我们在学习函数的单调性的时候,主要是根据函数的图象,即用数形结合的方法来研究. 先来研究a >1的情况 下面我们通过用计算机完成以下表格,并且用计算机画出函数2x y =的图象再研究,0<a <1的情况,用计算机完成以下表格并绘出函数1()2x y =的图象.从图中我们看出12()2x x y y ==与的图象有什么关系?通过图象看出12()2x x y y y ==与的图象关于轴对称,实质是2xy =上的x,y 点(-)x y x,y y 1与=()上点(-)关于轴对称.2讨论: 1.12()2x x y y ==与的图象关于y 轴对称,所以这两个函数是偶函数,对吗?2.画出115,3,(),()35x xx x y y y y ====的函数图象.问题:1:从画出的图象中,你能发现函数的图象与底数间有什么样的规律.x x.问题2:根据函数的图象研究函数的定义域、值域、特殊点、单调性、最大(小)值、奇偶性. 问题3:指数函数x y a =(a >0且a ≠1),当底数越大时,函数图象间有什么样的关系.指数函数的图象和性质x y a =三.例题讲解例1 比较下列各题中两个数的大小:(1) 3 0.8 ,30.7(2) 0.75-0.1, 0.750.1四.课堂练习练习p58 1,2五.板书设计六.课后反思:2.1.2 指数函数及其性质(二) (一)教学目标 1.知识与技能: (1)理解指数函数的概念和意义,根据图象理解和掌握指数函数的性质.(2)体会具体到一般数学讨论方式及数形结合的思想;2.过程与方法:展示函数图象,让学生通过观察,进而研究指数函数的性质.3.情感、态度与价值观(1)让学生了解数学来自生活,数学又服务于生活的哲理.(2)培养学生观察问题,分析问题的能力.(二)教学重点、难点1.教学重点:指数函数的概念和性质及其应用.2.教学难点:指数函数性质的归纳,概括及其应用.(三)教学方法采用观察、分析、归纳、抽象、概括,自主探究,合作交流的教学方法,利用多媒体教学,使学生通过观察图象,总结出指数函数的性质,调动学生参与课堂教学的主动性和积极性.从而培养学生的观察能力,概括能力.(四)教学过程一.复习引入复习指数函数的概念和图象.1.指数函数的定义2.指数函数的图象问题:根据函数的图象研究函数的定义域、值域、特殊点、单调性、最大(小)值、奇偶性.问题:指数函数x y a (a >0且a ≠1),当底数越大时,函数图象间有什么样的关系.二.新科讲授一.例题讲解题型一:单调区间的求法例1:求下列函数的单调区间:(1)223x x y a +-=; (2)10.21x y =- 题型二:与指数有关的定义域(值域)问题 例2 :(1)求下列函数的定义域、值域(1)y=22)21(++-x x ; (2)110.3x y -=; (3)513x y -=(2).求函数4225x x y =-⋅+,[0,2]x ∈的最大值和最小值.练习 求函数2233x x y -++=的定义域、值域并指出单调区间.题型三:与指数函数有关的图象问题1.如图指数函数①x y a =②x y b =③x y c =④x y d =的图象,则 ( ) (A )01a b c d <<<<<(B )01b a d c <<<<<(C )1a b c d <<<<(D )01a b d c <<<<<题型四:指数函数图象与方程和不等式例4:(2)求方程24x x +=的解的个数练习:补充例题 例题:已知f(x)=11+-x x a a (a>0,且a 1≠)(1)求f(x)的定义域和值域; (2)判断f(x)的奇偶性;(3)讨论f(x)的单调性;练习:已知21()21x x f x -=+. (1)讨论()f x 的奇偶性; (2)讨论()f x 的单调性. 二.课堂练习1.函数2651()()3x x f x -+=的单调递减区间为( ). A. (,)-∞+∞ B. [3,3]- C. (,3]-∞ D. [3,)+∞2.定义运算()() , .a a b a b b a b ≤⎧⎪*=⎨>⎪⎩ 则函数()12x f x =*的值域为 . 3:设a 是实数,2()()21x f x a x R =-∈+, (1)求a 的值,使函数()f x 为奇函数(2)试证明:对于任意,()a f x 在R 为增函数;三.课后作业四.板书设计五.课后反思。