高中数学解题思路大全:组合问题的解决方案

高中数学解题思路大全:组合问题的解决方案
高中数学解题思路大全:组合问题的解决方案

组合问题的解决方案

一、对应思想解组合问题,即所研究的问题对应着某些元素的组合.解决此类问题要注意把握每一具体问题中“对应”的确切含义.

例1(1)圆上有10个点,两两连成弦,这些弦在圆内最多可形成_____个交点.

(2)平面上有4条水平直线,5条竖直直线,能形成矩形______个.

(3)马路上有编号为1,2,3,…,10的十盏路灯,为节约用电又不影响照明,可以

把其中3盏灯关掉,但不可以同时关掉相邻的两盏或三盏,在两端的灯都不能关掉的情况下,有多少种不同的关灯方法?

(4)如图是由12个小正方形组成的43?矩形网格,一质点 沿网格线从点A 到点B 的不同路径之中 条

解析:(1)每一个交点对应着两条相交弦,而两条相交弦又对应着圆上4点,故交点数

等于从圆上的10个点中取4点的方法数,为4

10C 个.

(2) 每一个矩形对应着两条水平直线和两条竖直直线,所以形成的矩形数等于2

52

4C C ?个.(3)把问题想象成在可以移动的10盏灯中关掉3盏灯后剩下7盏灯,在7盏灯产生

的6个空位中选出3个位置安排移走的3盏灯(为熄灭的灯)所对应的方法数,为36C 种;

(4)相邻两点算作一步,则从点A 到点B 的最短路径对应着7步,其中横向安排4

步、纵向安排3步,所以最短路径对应着7步中安排4步横向走的方法数,有4735C =.

附:1、(2004湖北文科)将标号为1,2,…,10的10个球放入标号为1,2,…,10的10个盒子里,每个盒内放一个球,恰好3个球的标号与其在盒子的标号不.一致的放入方法种数为( ) A .120 B .240 C .360 D .720

解析:每一种符合要求的方法对应着10个位置选定7个对号安排和余下3个位置的完

全不对号安排,10个位置选定7个的方法数为710C 种,3个位置的完全不对号安排有2种,故总数为7102240C ?=种.故选( B ).

2、(2001全国,16)圆周上有2n 个等分点(n >1),以其中三个点为顶点的直角三角形的个数为 .

解析:每一种符合要求的方法对应着选定一条直径的两个端点和在余下的2n-2个点中选择1点,方法数为()()1

2221n C n n n ?-=-种.

二、至多至少组合问题:即分类后某元素个数满足至多多少个或至少多少个的要求的组合问题.可分类或用间接法,体会两者是可以相互转化的.此类问题一定要注意避免不完全分组会产生重复造成记数出错.

例2、某班有54位同学,正、副班长和学习委员各1名,现选派6名同学参加某课外小组,在下列各种情况中,各有多少种不同的选法?

(1)正、副班长和学习委员至少有一人入选 (2)正、副班长和学习委员至多有一人入选

解析:(1)正、副班长和学习委员至少一人入选可分为只有一人入选、有两人入

选和三人都入选三类,方法数为152433

351351351C C C C C C ?+?+?,本题也可用间接法:没有任何限制的选法为654C ,而不符合要求即正、副班长和学习委员都不入选的方法数为651C ,所以满足题目要求的选法数为66

5451

C C -;对本题的进一步理解:从54人中选出题目要求的选法可画图理解为如图的分类,由此可见本题既可用直接分类法也可用间接排除法解决,这对至多至少组合问题具有一般性.

(2)由以上分类易知正、副班长和学习委员至多有一人入选包含两类:3人均不入

选和3人中恰有1人入选,则满足要求的方法数为615

51351C C C +.

附:1、(2005全国卷Ⅰ)从6名男生和4名女生中,选出3名代表,要求至少包含1名女生,则不同的选法有 种.

解:此题是典型的“至多至少组合问题”,可分类(以选出3人中包含女生的人数分

为3类),共有1221346464100C C C C C ?+?+=种,或用间接法为33

106100C C -=种.

2、(2005浙江卷)从集合{ P ,Q ,R ,S }与{0,1,2,3,4,5,6,7,8,9}中各任选2个元素排成一排(字母和数字均不能重复).每排中字母Q 和数字0至多只能出现一个的不同排法种数是_________.(用数字作答).

解:此题为“至多至少组合问题”,计算出满足要求的2字母和2数字的组合的总数

(采用间接法)为221141039C C C C ?-?种,故不同排法种数是22114

410394()5832

C C C C A ?-??=种.

三、分组搭配组合问题:即对某些元素按一定要求分组或按一定要求分配的问题.要掌握平均分组和不平均分组的处理方法;注意对平均分组又分配和不平均分组又分配的两种处理方法—--“先分(分组)后给(分配)”和“边分(分组)边给(分配)”的把握.

例3、 6本不同的书,按下列要求各有多少种不同的选法或分法: (1)分为三份,一份一本,一份两本,一份三本; (2)分为三份,每份两本;

(3)分给甲、乙、丙三人,一人一本,一人两本,一人三本; (4)分给甲、乙、丙三人,每人两本; ⑸分给甲、乙、丙三人,每人至少一本.

解析:(1)此为不平均分组的题目,只须按三个步骤分别选出1本的一份、2本的一份

和3本的一份即可,方法总数为3

3

2516C C C ??种;

(2) 此为平均分组的题目,只须先假定三个位置A 、B 、C ,每个位置安排2本书,按

三个步骤分别选出2本安排在A 、B 和C ,共有2

2

2426C C C ??种方法,而此题为平均分组,上述算法已对每一分组在A 、B 、C 三个位置进行了排列,故满足要求的平均分组为

3

322

2426A C C C ??种;(3) 此为不平均分组又分配的题目,可采用先分组后分配的方法,即第一步分组共有3

32516C C C ??种方法,第二步每一种分法得到的3组分给甲、乙、丙三人的方法都是33A 种,故采用先分组后分配的方法得分配方法共33332516A C C C ???种;本题也可采用“边分边给”的方法解决,即先选出1本书并将这本书分配给1人的方法数为1163C C ?种,再选出2本书并将这2本书分配给1人的方法数为2152C C ?种,第三步选出3本书并将这3本书分配给1人的方法数为3131C C ?种,故采用“边分边给”的方法得方法总数为112131

635231

C C C C C C ?????种;(4)此为平均分组又分配的问题,可采用“先分(分组)后给(分配)”得方法数为2223

6423

33C C C A A ???种;若采用“边分(分组)边给(分配)”的方法理解本题可分三步完成:甲分得2本书、乙分得2本书、丙分得2本书,方法数为222

642

C C C ??种;

⑸先分类再结合上述解法得方法数为3346A C ?+332516A C C ??+2

4

26C C ?种. 例4、3名司机和6名售票员分别分配到3辆不同的公交车上,每辆车上1名司机2 名售票员,分配方法共多少种?

解析:将问题分两步:对3名司机和6名售票员分为3组,每组1名司机和2名售票员,先

假定司机不动,则分组方法为222

642

C C C ??种,再对每一分法分得的3组在3个位置(3辆不同的公交车)进行排列得分配方法共有2223

6423

()C C C A ???种;若采用边分边给的方法则分3步完成:第一、二、三辆公交车分别选1名司机2名售票员,分配方法共

()()()2

121216

34221C

C C C C C ?????种.

附:1、(2005北京卷)北京《财富》全球论坛期间,某高校有14名志愿者参加接待工作.若每天排早、中、晚三班,每班4人,每人每天最多值一班,则开幕式当天不同的排班种数为( )

(A )124414

12

8

C C C (B )124414

12

8

C A A (C )1244141283

3

C C C A (

D )12443

141283C C C A 解析:本题是典型的分组搭配问题(平均分组),注意对该类问题的两种处理方法—--“先分(分组)后给(分配)”和“边分(分组)边给(分配)”的把握.在解答本题时请仔细体会“边分(分组)边给(分配)”的运用.答案为(A ).

2、(2005湖北卷)把一同排6张座位编号为1,2,3,4,5,6的电影票全部分给4个人,

每人至少分1张,至多分2张,且这两张票具有连续的编号,那么不同的分法种数是( ) A .168 B .96 C .72 D .144

解析:本题是典型的分组搭配问题(不平均分组),注意对该类问题的两种处理方法—--“先分(分组)后给(分配)”和“边分(分组)边给(分配)”的把握.本题把一同排6张座位编号为1,2,3,4,5,6的电影票分为4组的方法数为6种,每一种分组

的分配方法均为44A ,故本题的方法数为4

46A ?种.故选(D ).请仔细体会“先分(分组)

后给(分配)”的运用.

3、(2005江苏卷)四棱锥的8条棱代表8种不同的化工产品,有公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共顶点的两条棱多代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,那么安全存放的不同方法种数为 ( )

(A )96 (B )48 (C )24 (D )0

解析:本题是典型的分组搭配问题(平均分组),本题适用“先分(分组)后给(分配)”法,没有公共顶点的两条棱一组的分组有(PA ,BC )、(PB ,CD )、(PC ,AD )、(PD ,AB )或(PA ,CD )、(PB ,DA )、(PC ,AB )、(PD ,BC )共2大组,而每大组的4小组在4个位置的分配就是4个元素在4个位置的全排列,所以安全存放的不同方法

种数为 44248A ?= 种.故选( B).

高中数学必修一求函数解析式解题方法大全及配套练习

高中数学必修一求函数解析式解题 方法大全及配套练习 一、 定义法: 根据函数的定义求解析式用定义法。 【例1】设23)1(2 +-=+x x x f ,求)(x f . 2]1)1[(3]1)1[(23)1(22+-+--+=+-=+x x x x x f =6)1(5)1(2 ++-+x x 65)(2+-=∴x x x f 【例2】设2 1 )]([++= x x x f f ,求)(x f . 解:设x x x x x x f f ++=+++=++=11111 11 21)]([ x x f += ∴11)( 【例3】设3 3 22 1)1(,1)1(x x x x g x x x x f +=++ =+,求)]([x g f . 解:2)(2)1 (1)1(2222-=∴-+=+=+ x x f x x x x x x f 又x x x g x x x x x x x x g 3)()1(3)1(1)1(3333-=∴+-+=+=+ 故2962)3()]([2 4 6 2 3 -+-=--=x x x x x x g f 【例4】设)(sin ,17cos )(cos x f x x f 求=. 解:)2 ( 17cos )]2 [cos()(sin x x f x f -=-=π π x x x 17sin )172 cos()1728cos(=-=-+ =π π π.

二、 待定系数法:(主要用于二次函数) 已知函数解析式的类型,可设其解析式的形式,根据已知条件建立关于待定系数的方程, 从而求出函数解析式。 它适用于已知所求函数类型(如一次函数,二次函数,正、反例函数等)及函数的某些特征求其解析式的题目。其方法:已知所求函数类型,可预先设出所求函数的解析式,再根据题意列出方程组求出系数。 【例1】 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f 【解析】设b ax x f +=)( )0(≠a ,则 b ab x a b b ax a b x af x f f ++=++=+=2)()()]([ ∴???=+=342b ab a ∴????? ?=-===32 1 2b a b a 或 32)(12)(+-=+=∴x x f x x f 或 【例2】已知二次函数f (x )满足f (0)=0,f (x+1)= f (x )+2x+8,求f (x )的解析式. 解:设二次函数f (x )= ax 2+bx+c ,则 f (0)= c= 0 ① f (x+1)= a 2 )1(+x +b (x+1)= ax 2+(2a+b )x+a+b ② 由f (x+1)= f (x )+2x+8 与①、② 得 ?? ?=++=+8 2 2b a b b a 解得 ?? ?==. 7, 1b a 故f (x )= x 2+7x. 【例3】已知1392)2(2 +-=-x x x f ,求)(x f . 解:显然,)(x f 是一个一元二次函数。设)0()(2 ≠++=a c bx ax x f 则c x b x a x f +-+-=-)2()2()2(2 )24()4(2c b a x a b ax +-+-+= 又1392)2(2 +-=-x x x f 比较系数得:?????=+--=-=1324942c b a a b a 解得:?? ???=-==312c b a 32)(2 +-=∴x x x f

高中数学100个热点问题(三): 排列组合中的常见模型

第80炼 排列组合的常见模型 一、基础知识: (一)处理排列组合问题的常用思路: 1、特殊优先:对于题目中有特殊要求的元素,在考虑步骤时优先安排,然后再去处理无要求的元素。 例如:用0,1,2,3,4组成无重复数字的五位数,共有多少种排法? 解:五位数意味着首位不能是0,所以先处理首位,共有4种选择,而其余数位没有要求, 只需将剩下的元素全排列即可,所以排法总数为44496N A =?=种 2、寻找对立事件:如果一件事从正面入手,考虑的情况较多,则可以考虑该事的对立面,再用全部可能的总数减去对立面的个数即可。 例如:在10件产品中,有7件合格品,3件次品。从这10件产品中任意抽出3件,至少有一件次品的情况有多少种 解:如果从正面考虑,则“至少1件次品”包含1件,2件,3件次品的情况,需要进行分类讨论,但如果从对立面想,则只需用所有抽取情况减去全是正品的情况即可,列式较为简 单。3310785N C C =-=(种) 3、先取再排(先分组再排列):排列数m n A 是指从n 个元素中取出m 个元素,再将这m 个元素进行排列。但有时会出现所需排列的元素并非前一步选出的元素,所以此时就要将过程拆分成两个阶段,可先将所需元素取出,然后再进行排列。 例如:从4名男生和3名女生中选3人,分别从事3项不同的工作,若这3人中只有一名女生,则选派方案有多少种。 解:本题由于需要先确定人数的选取,再能进行分配(排列),所以将方案分为两步,第一步:确定选哪些学生,共有2143C C 种可能,然后将选出的三个人进行排列:33A 。所以共有213433108C C A =种方案 (二)排列组合的常见模型 1、捆绑法(整体法):当题目中有“相邻元素”时,则可将相邻元素视为一个整体,与其他元素进行排列,然后再考虑相邻元素之间的顺序即可。 例如:5个人排队,其中甲乙相邻,共有多少种不同的排法

高中数学完整讲义——排列与组合5.排列组合问题的常见模型1

高中数学讲义 1.基本计数原理 ⑴加法原理 分类计数原理:做一件事,完成它有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种方法,……,在第n 类办法中有n m 种不同的方法.那么完成这件事共有12n N m m m =+++种不同的方法.又称加法原理. ⑵乘法原理 分步计数原理:做一件事,完成它需要分成n 个子步骤,做第一个步骤有1m 种不同的方法,做第二个步骤有2m 种不同方法,……,做第n 个步骤有n m 种不同的方法.那么完成这件事共有12n N m m m =???种不同的方法.又称乘法原理. ⑶加法原理与乘法原理的综合运用 如果完成一件事的各种方法是相互独立的,那么计算完成这件事的方法数时,使用分类计数原理.如果完成一件事的各个步骤是相互联系的,即各个步骤都必须完成,这件事才告完成,那么计算完成这件事的方法数时,使用分步计数原理. 分类计数原理、分步计数原理是推导排列数、组合数公式的理论基础,也是求解排列、组合问题的基本思想方法,这两个原理十分重要必须认真学好,并正确地灵活加以应用. 2. 排列与组合 ⑴排列:一般地,从n 个不同的元素中任取()m m n ≤个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.(其中被取的对象叫做元素) 排列数:从n 个不同的元素中取出()m m n ≤个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号A m n 表示. 排列数公式:A (1)(2) (1)m n n n n n m =---+,m n +∈N ,,并且m n ≤. 全排列:一般地,n 个不同元素全部取出的一个排列,叫做n 个不同元素的一个全排列. n 的阶乘:正整数由1到n 的连乘积,叫作n 的阶乘,用!n 表示.规定:0!1=. ⑵组合:一般地,从n 个不同元素中,任意取出m ()m n ≤个元素并成一组,叫做从n 个元素中任取m 个元素的一个组合. 组合数:从n 个不同元素中,任意取出m ()m n ≤个元素的所有组合的个数,叫做从n 个不同元素中,任意取出m 个元素的组合数,用符号C m n 表示. 组合数公式:(1)(2)(1)!C !!()! m n n n n n m n m m n m ---+==-,,m n +∈N ,并且m n ≤. 组合数的两个性质:性质1:C C m n m n n -=;性质2:11C C C m m m n n n -+=+.(规定0 C 1n =) 知识内容 排列组合问题的常见模型 1

高中数学解题方法大全

第一章 高中数学解题基本方法 一、 配方法 配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简。何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。有时也将其称为“凑配法”。 最常见的配方是进行恒等变形,使数学式子出现完全平方。它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy 项的二次曲线的平移变换等问题。 配方法使用的最基本的配方依据是二项完全平方公式(a +b) =a +2ab +b ,将这个公式灵活运用,可得到各种基本配方形式,如: a 2 + b 2=(a +b)2 -2ab =(a -b)2 +2ab ; a 2 +a b +b 2 =(a +b)2 -ab =(a -b)2 +3ab ; a 2 + b 2 + c 2 +ab +bc +ca = 2 1[(a +b)2 +(b +c) 2+(c +a) 2] a 2+b 2+c 2=(a +b +c) 2-2(ab +bc +ca)=(a +b -c)2 -2(ab -bc -ca)=… 结合其它数学知识和性质,相应有另外的一些配方形式,如: 1+sin2α=1+2sin αcos α=(sin α+cos α) ; x + =(x + ) -2=(x - ) +2 ;…… 等等。 Ⅰ、再现性题组: 1. 在正项等比数列{a }中,a ?a +2a ?a +a ?a =25,则 a +a =_______。 2. 方程x +y -4kx -2y +5k =0表示圆的充要条件是_____。 A. 1 C. k ∈R D. k = 或k =1 3. 已知sin α+cos α=1,则sin α+cos α的值为______。

高中数学排列组合专题

排列组合 一.选择题(共5小题) 1.甲、乙、丙三同学在课余时间负责一个计算机房的周一至周六的值班工作,每天1人值班,每人值班2天,如果甲同学不值周一的班,乙同学不值周六的班,则可以排出不同的值班表有() A.36种B.42种C.50种D.72种 2.某城市的街道如图,某人要从A地前往B地,则路程最短的走法有() A.8种 B.10种C.12种D.32种 3.某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是() A.72 B.120 C.144 D.168 4.现将甲乙丙丁4个不同的小球放入A、B、C三个盒子中,要求每个盒子至少放1个小球,且小球甲不能放在A盒中,则不同的放法有() A.12种B.24种C.36种D.72种 5.从6人中选4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中甲、乙两人不去巴黎游览,则不同的选择方案共有() A.300种B.240种C.144种D.96种 二.填空题(共3小题) 6.某排有10个座位,若4人就坐,每人左右两边都有空位,则不同的坐法有种. 7.四个不同的小球放入编号为1,2,3的三个盒子中,则恰有一个空盒的放法共有种(用数字作答). 8.书架上原来并排放着5本不同的书,现要再插入3本不同的书,那么不同的

插法共有种. 三.解答题(共8小题) 9.一批零件有9个合格品,3个不合格品,组装机器时,从中任取一个零件,若取出不合格品不再放回,求在取得合格品前已取出的不合格品数的分布列10.已知展开式的前三项系数成等差数列. (1)求n的值; (2)求展开式中二项式系数最大的项; (3)求展开式中系数最大的项. 11.设f(x)=(x2+x﹣1)9(2x+1)6,试求f(x)的展开式中: (1)所有项的系数和; (2)所有偶次项的系数和及所有奇次项的系数和. 12.求(x2+﹣2)5的展开式中的常数项. 13.求值C n5﹣n+C n+19﹣n. 14.3名男生,4名女生,按照不同的要求排队,求不同的排队方案的种数.(1)选5名同学排成一行; (2)全体站成一排,其中甲只能在中间或两端; (3)全体站成一排,其中甲、乙必须在两端; (4)全体站成一排,其中甲不在最左端,乙不在最右端; (5)全体站成一排,男、女各站在一起; (6)全体站成一排,男生必须排在一起; (7)全体站成一排,男生不能排在一起; (8)全体站成一排,男、女生各不相邻; (9)全体站成一排,甲、乙中间必须有2人; (10)全体站成一排,甲必须在乙的右边; (11)全体站成一排,甲、乙、丙三人自左向右顺序不变; (12)排成前后两排,前排3人,后排4人. 15.用1、2、3、4、5、6共6个数字,按要求组成无重复数字的自然数(用排列数表示).

高二数学知识点:排列与组合

高二数学知识点:排列与组合 排列组合公式/排列组合计算公式 排列P------和顺序有关 组合C-------不牵涉到顺序的问题 排列分顺序,组合不分 例如把5本不同的书分给3个人,有几种分法."排列" 把5本书分给3个人,有几种分法"组合" 1.排列及计算公式 从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号p(n,m)表示. p(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!(规定0!=1). 2.组合及计算公式 从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n 个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号 c(n,m)表示. c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m); 3.其他排列与组合公式

从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!. n个元素被分成k类,每类的个数分别是n1,n2,...nk这n 个元素的全排列数为 n!/(n1!*n2!*...*nk!). k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m). 排列(Pnm(n为下标,m为上标)) Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符 号);Pnn(两个n分别为上标和下标)=n!;0!=1;Pn1(n为下标1为上标)=n 组合(Cnm(n为下标,m为上标)) Cnm=Pnm/Pmm;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标)=1;Cn1(n为下标1为上标)=n;Cnm=Cnn-m 2019-07-0813:30 公式P是指排列,从N个元素取R个进行排列。公式C是指组合,从N个元素取R个,不进行排列。N-元素的总个数R参与选择的元素个数!-阶乘,如9!=9*8*7*6*5*4*3*2*1 从N倒数r个,表达式应该为n*(n-1)*(n-2)..(n-r+1); 因为从n到(n-r+1)个数为n-(n-r+1)=r 举例: Q1:有从1到9共计9个号码球,请问,可以组成多少个三位数?

高中数学排列组合难题十一种方法

高考数学排列组合难题解决方法 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有: 12n N m m m =+++ 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有: 12n N m m m =??? 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置. 先排末位共有13C 然后排首位共有1 4C 最后排其它位置共有34A 由分步计数原理得113 4 34288C C A = C 14A 34C 13 位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,需先安排特殊元素,再处理其它元素.若以位置分析为主,需先满足特殊位置的要求,再处理其它位置。若有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其它条件

高中数学知识点以及解题方法大全

前言 (2) 第一章高中数学解题基本方法 (3) 一、配方法 (3) 二、换元法 (7) 三、待定系数法 (14) 四、定义法 (19) 五、数学归纳法 (23) 六、参数法 (28) 七、反证法 (32) 八、消去法……………………………………… 九、分析与综合法……………………………… 十、特殊与一般法……………………………… 十一、类比与归纳法………………………… 十二、观察与实验法………………………… 第二章高中数学常用的数学思想 (35) 一、数形结合思想 (35) 二、分类讨论思想 (41) 三、函数与方程思想 (47) 四、转化(化归)思想 (54) 第三章高考热点问题和解题策略 (59) 一、应用问题 (59) 二、探索性问题 (65) 三、选择题解答策略 (71) 四、填空题解答策略 (77) 附录……………………………………………………… 一、高考数学试卷分析………………………… 二、两套高考模拟试卷………………………… 三、参考答案…………………………………… 前言 美国著名数学教育家波利亚说过,掌握数学就意味着要善于解题。而当我们解题时遇到一个新问题,总想用熟悉的题型去“套”,这只是满足于解出来,只有对数学思想、数学方法理解透彻及融会贯通时,才能提出新看法、巧解法。高考试题十分重视对于数学思想方法的考查,特别是突出考查能力的试题,其解答过程都蕴含着重要的数学思想方法。我们要有意识地应用数学思想方法去分析问题解决问题,形成能力,提高数学素质,使自己具有数学头脑和眼光。 高考试题主要从以下几个方面对数学思想方法进行考查: ①常用数学方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去 法等; ②数学逻辑方法:分析法、综合法、反证法、归纳法、演绎法等; ③数学思维方法:观察与分析、概括与抽象、分析与综合、特殊与一般、类比、 归纳和演绎等; ④常用数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化 归)思想等。 数学思想方法与数学基础知识相比较,它有较高的地位和层次。数学知识是数学内容,可以用文字和符号来记录和描述,随着时间的推移,记忆力的减退,将来可能忘记。而数学思想方法则是一种数学意识,只能够领会和运用,属于思维的范畴,用以对数学问题的认识、处理和解决,掌握数学思想方法,不是受用一阵子,而是受用一辈子,即使数学知识忘记了,数学思想方法也还是对你起作用。 数学思想方法中,数学基本方法是数学思想的体现,是数学的行为,具有模式化与可操作性的特征,可以选用作为解题的具体手段。数学思想是数学的灵魂,它与数学基本方法常常在学习、掌握数学知识的同时获得。 可以说,“知识”是基础,“方法”是手段,“思想”是深化,提高数学素质的核心就是提高学生对数学思想方法的认识和运用,数学素质的综合体现就是“能力”。 为了帮助学生掌握解题的金钥匙,掌握解题的思想方法,本书先是介绍高考中常用的数学基本方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法、反证法、分析与综合法、特殊与一般法、类比与归纳法、观察与实验法,再介绍高考中常用的数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化( 第一章高中数学解题基本方法 一、配方法 配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简。何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。有时也将其称为“凑配法”。 最常见的配方是进行恒等变形,使数学式子出现完全平方。它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy项的二次曲线的平移变换等问题。 配方法使用的最基本的配方依据是二项完全平方公式(a+b) 2 =a 2 +2ab+b 2 ,将这个公式灵活运用,可得到各种基本配方形式,如: a 2 +b 2 =(a+b) 2 -2ab=(a-b) 2 +2ab; a 2 +ab+b 2 =(a+b) 2 -ab=(a-b) 2 +3ab=(a+ b 2) 2 +( 3 2b) 2 ; a 2 +b 2 +c 2 +ab+bc+ca= 1 2[(a+b) 2 +(b+c) 2 +(c+a) 2 ] a 2 +b 2 +c 2 =(a+b+c) 2 -2(ab+bc+ca)=(a+b-c) 2 -2(ab-bc-ca)=… 结合其它数学知识和性质,相应有另外的一些配方形式,如: 1+sin2α=1+2sinαcosα=(sinα+cosα) 2 ; x 2 + 1 2 x=(x+ 1 x) 2 -2=(x- 1 x) 2 +2 ;……等等。 Ⅰ、再现性题组: 1. 在正项等比数列{a n}中,a1?a5+2a3?a5+a3?a7=25,则 a3+a5=_______。 2. 方程x 2 +y 2 -4kx-2y+5k=0表示圆的充要条件是_____。 A. 1 41 C. k∈R D. k= 1 4或k=1 3. 已知sin 4 α+cos 4 α=1,则sinα+cosα的值为______。 A. 1 B. -1 C. 1或-1 D. 0 4. 函数y=log1 2 (-2x 2 +5x+3)的单调递增区间是_____。 A. (-∞, 5 4] B. [ 5 4,+∞) C. (- 1 2, 5 4] D. [ 5 4,3) 5. 已知方程x 2 +(a-2)x+a-1=0的两根x1、x2,则点P(x1,x2)在圆x 2 +y 2 =4上,则实数a=_____。 【简解】 1小题:利用等比数列性质a m p -a m p +=a m 2 ,将已知等式左边后配方(a3+a5) 2 易求。答案是:5。 2小题:配方成圆的标准方程形式(x-a) 2 +(y-b) 2 =r 2 ,解r 2 >0即可,选B。 3小题:已知等式经配方成(sin 2 α+cos 2 α) 2 -2sin 2 αcos 2 α=1,求出sinαcosα,然后求出所求式的平方值,再开方求解。选C。 4小题:配方后得到对称轴,结合定义域和对数函数及复合函数的单调性求解。选D。 5小题:答案3-11。 Ⅱ、示范性题组: 例1.已知长方体的全面积为11,其12条棱的长度之和为24,则这个长方体的一条对角线长为_____。 A. 23 B. 14 C. 5 D. 6 【分析】先转换为数学表达式:设长方体长宽高分别为x,y,z,则211 424 () () xy yz xz x y z ++= ++= ? ? ? ,而欲求对角线长x y z 222 ++,将其配凑成两已知式的组合形式可得。

(完整)高中数学排列组合专题复习

高考数学轻松搞定排列组合难题二十一种方法 排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。 教学目标 1.进一步理解和应用分步计数原理和分类计数原理。 2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。提高学生解决问题分析问题的能力 3.学会应用数学思想和方法解决排列组合问题. 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n类办法,在第1类办法中有 m种不同的方法,在第2类 1 办法中有 m种不同的方法,…,在第n类办法中有n m种不同的方法,那么2 完成这件事共有: 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n个步骤,做第1步有 m种不同的方法,做第2步 1 有 m种不同的方法,…,做第n步有n m种不同的方法,那么完成这件事共2 有: 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 两个位置.

高中数学解题的21个典型方法和技巧

高中数学解题的21个典型方法与技巧 1、解决绝对值问题(化简、求值、方程、不等式、函数)的基本思路是:把绝对值的问题转化为不含绝对值的问题。具体转化方法有: ①分类讨论法:根据绝对值符号中的数或表达式的正、零、负分情况去掉绝对值。 ①零点分段讨论法:适用于含一个字母的多个绝对值的情况。 ①两边平方法:适用于两边非负的方程或不等式。 ①几何意义法:适用于有明显几何意义的情况。 2、根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。因式分解的一般步骤是:提取公因式→选择用公式→十字相乘法→分组分解法→拆项添项法。 3、利用完全平方式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。配方法的主要根据有: ①()2 222a ab b a b ±+=± ①()2 222222a b c ab bc ca a b c +++++=++ ①()()()22222212 a b c ab bc ca a b b c c a ??+++++=+++++?? ①222222224224244b b b b b b ac ax bx c a x x c a x x c a x a a a a a a ??-????++=++=+??++-=++ ? ? ??????? 4、解某些复杂的特型方程要用到换元法。换元法解题的一般步骤是:设元→换元→解元→还元。 5、待定系数法是在已知对象形式的条件下求对象的一种方法。适用于求解点的坐标、函数解析式、曲线方程等重要问题的解决。其步骤是:①设①列①解①写

6、复杂代数等式条件的使用技巧:右边化为零,左边变形。 ①因式分解型:()()0---?---=,两种情况为或型。 ①配成平方型:()()22 0---+---=,两种情况为且型。 7、数学中两个最伟大的解题思路: ①求值的思路 ?????→方程思想与方法列欲求值字母的方程或方程组 ①求取值范围的思路 ??????→不等式思想与方法欲求范围字母的不等式或不等式组 8的基本思路:把m 化成完全平方式。 即 2 m a a a =???=??????→按的情况分类讨论结果 9()2 a x y ±=±其中220xy x y a x y =+=>>且。 10、代数式求值的方法有:①直接代入法①化简代入法①适当变形法(和积代入法)。注意:当求值的代数式是字母的“对称式”时,通常可以化为字母“和与积”的形式,从而用和积代入法求值。 11、方程中除未知数以外,含有的其他字母叫做参数,这种方程叫做含参方程。解含参方程一般要用“分类讨论法”,其原则是:①按照类型求解①根据需要讨论①分类写出结论。 12、恒等成立的条件: ①0ax b +=对于任意x 都成立?关于x 的方程0ax b +=有无数个解?00a b ==且。 ①20ax bx c ++=对于任意x 都成立?关于x 的方程20ax bx c ++=有无数个解?

高中数学排列组合经典题型全面总结版

高中数学排列与组合 (一)典型分类讲解 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 先排末位共有1 3C 然后排首位共有1 4C 最后排其它位置共有 34A 由分步计数原理得1 1 3 434 288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元 素内部进行自排。由分步计数原理可得共有 522522480A A A =种不同的排法 练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有55A 种, 第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种 46 A 不同的方法,由分步计数原理,节目的不同顺序共有54 56A A 种 练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30 四.定序问题倍缩空位插入策略 例4. 7人排队,其中甲乙丙3人顺序一定共有多少不同的排法 解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素 之间的全排列数,则共有不同排法种数是: 73 73/A A (空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有 47 A 种方法,其余的三个位置甲乙丙共有 1种坐法,则共有4 7A 种方法。 思考:可以先让甲乙丙就坐吗? (插入法)先排甲乙丙三个人,共有1种排法,再把其余4四人依次插入共有 方法 练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法? 5 10C 五.重排问题求幂策略 例5.把6名实习生分配到7个车间实习,共有多少种不同的分法 解:完成此事共分六步:把第一名实习生分配到车间有 7 种分法.把第二名实习生分配到车间也有7种分依此类推,由分步计数原 理共有6 7种不同的排法 练习题: 1. 某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插 法的种数为 42 4 4 3 允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排各个元素的位置,一般地n 不同的元素没有限制地安排在m 个位置上的排列数为n m 种

高中数学-排列组合解法大全

排列组合解法大全 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n类办法,在第 1类办法中有m1种不同的方法,在第 2 类办法中有m2种不同的方法,?,在第n 类办法中有m n种不同的方法,那么完成这件事共有: 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n个步骤,做第 1步有m1种不同的方法,做第 2步有m2种不同的方法,做第n步有m n种不同的方法,那么完成这件事共有: 种不同的方法. 3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下 : 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事 , 即采取分步还是分类 , 或是分步与分类同时进行 , 确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题, 元素总数是多少及取出多少个元素 . 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一. 特殊元素和特殊位置优先策略 例 1. 由 0,1,2,3,4,5 可以组成多少个没有重复数字五位奇数 . 解: 由于末位和首位有特殊要求 , 应该优先安排 , 以免不合要求的元素占了这两个位置 . 先排末位共有C13 然后排首位共有C14 最后排其它位置共有A43 由分步计数原理得C41C13A43 288 练习题 :7 种不同的花种在排成一列的花盆里 , 若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法? 二. 相邻元素捆绑策略 例 2. 7 人站成一排 , 其中甲乙相邻且丙丁相邻 , 共有多少种不同的排法 . 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素部进行自排。由分步计数原理可得共有A55A22A22480种不同的排法 练习题 : 某人射击 8 枪,命中 4 枪, 4 枪命中恰好有 3 枪连在一起的情形的不同种数为20

高中数学函数解题技巧与方法

专题1 函数(理科) 一、考点回顾 1.理解函数的概念,了解映射的概念. 2.了解函数的单调性的概念,掌握判断一些简单函数的单调性的方法. 3.了解反函数的概念及互为反函数的函数图象间的关系,会求一些简单函数的反函数. 4.理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图象和性质. 5.理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图象和性质. 6.能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题. 二、经典例题剖析 考点一:函数的性质与图象 函数的性质是研究初等函数的基石,也是高考考查的重点内容.在复习中要肯于在对定义的深入理解上下功夫. 复习函数的性质,可以从“数”和“形”两个方面,从理解函数的单调性和奇偶性的定义入手,在判断和证明函数的性质的问题中得以巩固,在求复合函数的单调区间、函数的最值及应用问题的过程中得以深化.具体要求是: 1.正确理解函数单调性和奇偶性的定义,能准确判断函数的奇偶性,以及函数在某一区间的单调性,能熟练运用定义证明函数的单调性和奇偶性. 2.从数形结合的角度认识函数的单调性和奇偶性,深化对函数性质几何特征的理解和运用,归纳总结求函数最大值和最小值的常用方法. 3.培养学生用运动变化的观点分析问题,提高学生用换元、转化、数形结合等数学思想方法解决问题的能力. 这部分内容的重点是对函数单调性和奇偶性定义的深入理解. 函数的单调性只能在函数的定义域内来讨论.函数y=f(x)在给定区间上的单调性,反映了函数在区间上函数值的变化趋势,是函数在区间上的整体性质,但不一定是函数在定义域上的整体性质.函数的单调性是对某个区间而言的,所以要受到区间的限制. 对函数奇偶性定义的理解,不能只停留在f(-x)=f(x)和f(-x)=-f(x)这两个等式上,要明确对定义域内任意一个x,都有f(-x)=f(x),f(-x)=-f(x)的实质是:函数的定义域关于原点对称.这是函数具备奇偶性的必要条件.稍加推广,可得函数f(x)的图象关于直线x=a对称的充要条件是对定义域内的任意x,都有f(x+a)=f(a-x)成立.函数的奇偶性是其相应图象的特殊的对称性的反映.这部分的难点是函数的单调性和奇偶性的综合运用.根据已知条件,调动相关知识,选择恰当的方法解决问题,是对学生能力的较高要求.

(完整版)高中数学排列组合习题精选

1、体育场南侧有4个大门,北侧有3个大门,某学生到该体育场练跑步,则他进出门的方案有( )种。 2、某公共汽车上有10名乘客,沿途有5个车站,乘客下车的可能方式有( )种 3、(1)4名同学选报跑步、跳高、跳远三个项目,每人报一项,共有多少种报名方法?(2)4名同学争夺跑步、跳高、跳远三项冠军(各项目冠军都只有一人),共有多少种可能的结果? 4、从集合{1,2,…,10}中任选出三个不同的数,使这三个数成等比数列,这样的等比数列的个数为() 5、有4位教师在同一年级的四个班中各教一个班的数学,在数学检测时要求每位教师不能在本班监考,则监考的方法有( )种。 A .8 B .9 C .10 D .11 6、3人玩传球游戏,由甲开始并做为第一次传球,经过4次传球后,球仍回到甲手中,有多少种不同的传球方式呢? 7、集合A ={a,b,c,d},B={1,2,3,4,5}。(1)从集合A 到集合B 可以建立多少个不同的映射?(2)从集合A 到集合B 的映射中,要求集合A 中元素的象不同,这样的映射有多少个 8、对一个各边长都不相等的凸五边形的各边进行染色,每条边都可以染红、黄、蓝三种不同的颜色,但是不允许相邻相邻的边染相同的颜色,则不同的染色方法共有( )种。 9、用5种不同颜色给图中的A 、B 、C 、D 四个区域涂色,规定一个区域只涂一种颜色,相邻的区域颜色不同,共有( )种不同的涂色方案。 10、将1,2,3填入3×3的方格中,要求每行、每列都没有重复数字,如图是一种填法,则不同的填写方法共有 A .6种 B .12种 C .24种 D .48种 11、如图所示的五个区域中,中心区域是一幅图画,现要求在其余四个区域中涂色,有四种颜色可供选择.要求每个区域只涂一种颜色,相邻区域所涂颜色不同,则不同的涂色方法种数为()A .64B .72C.84 D .96 12、(13山东)用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为( ) A .243 B .252 C .261 D .279 13、(13福建)满足{},1,0,1,2a b ∈-,且关于x 的方程220ax x b ++=有实数解的有序数对(,)a b 的个数为( ) A .14 B .13 C .12 D .10 14、(16全国)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,,,k a a a L 中0的个数不少于1的个数。若m =4,则不同的“规范01数列”共有(A )18(B )16(C )14 (D )12

高中数学:排列与组合练习

高中数学:排列与组合练习 1.(昆明质检)互不相同的5盆菊花,其中2盆为白色,2盆为黄色,1盆为红色,先要摆成一排,要求红色菊花摆放在正中间,白色菊花不相邻,黄色菊花也不相邻,共有摆放方法(D) A.A55种B.A22种 C.A24A22种D.C12C12A22A22种 解析:红色菊花摆放在正中间,白色菊花不相邻,黄色菊花也不相邻,即红色菊花两边各一盆白色菊花,一盆黄色菊花,共有C12C12A22A22种摆放方法. 2.(广州测试)某学校获得5个高校自主招生推荐名额,其中甲大学2个,乙大学2个,丙大学1个,并且甲大学和乙大学都要求必须有男生参加,学校通过选拔定下3男2女共5个推荐对象,则不同的推荐方法共有(B) A.36种B.24种 C.22种D.20种 解析:根据题意,分两种情况讨论:第一种,3名男生每个大学各推荐1人,2名女生分别推荐给甲大学和乙大学,共有A33A22=12种推荐方法;第二种,将3名男生分成两组分别推荐给甲大学和乙大学,共有C23A22A22=12种推荐方法.故共有24种推荐方法,选B. 3.(广东珠海模拟)将5个不同的球放入4个不同的盒子中,每个盒子至少放一个球,则不同放法共有(C) A.480种B.360种 C.240种D.120种 解析:根据题意,将5个不同的球放入4个不同的盒子中,每个盒子至少放一个球,则必须有2个小球放入1个盒子,其余的小球各单独放入一个盒子,分2步进行分析:①先将5个小球分成4组,有C25=10种分法;②将分好的4组全排列,放入4个盒子,有A44=24种情况,则不同放法有10×24=240种.故选C. 4.某小区有排成一排的7个车位,现有3辆不同型号的车需要停放,如果要求剩余的4个车位连在一起,那么不同的停放方法的种数为(C) A.16 B.18

高中数学解题思想方法大全

目录 前言 (2) 第一章高中数学解题基本方法 (3) 一、配方法 (3) 二、换元法 (7) 三、待定系数法 (14) 四、定义法 (19) 五、数学归纳法 (23) 六、参数法 (28) 七、反证法 (32) 八、消去法……………………………………… 九、分析与综合法……………………………… 十、特殊与一般法……………………………… 十一、类比与归纳法………………………… 十二、观察与实验法………………………… 第二章高中数学常用的数学思想 (35) 一、数形结合思想 (35) 二、分类讨论思想 (41) 三、函数与方程思想 (47) 四、转化(化归)思想 (54) 第三章高考热点问题和解题策略 (59) 一、应用问题 (59) 二、探索性问题 (65) 三、选择题解答策略 (71) 四、填空题解答策略 (77) 附录……………………………………………………… 一、高考数学试卷分析………………………… 二、两套高考模拟试卷………………………… 三、参考答案……………………………………

前言 美国著名数学教育家波利亚说过,掌握数学就意味着要善于解题。而当我们解题时遇到一个新问题,总想用熟悉的题型去“套”,这只是满足于解出来,只有对数学思想、数学方法理解透彻及融会贯通时,才能提出新看法、巧解法。高考试题十分重视对于数学思想方法的考查,特别是突出考查能力的试题,其解答过程都蕴含着重要的数学思想方法。我们要有意识地应用数学思想方法去分析问题解决问题,形成能力,提高数学素质,使自己具有数学头脑和眼光。 高考试题主要从以下几个方面对数学思想方法进行考查: ①常用数学方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法等; ②数学逻辑方法:分析法、综合法、反证法、归纳法、演绎法等; ③数学思维方法:观察与分析、概括与抽象、分析与综合、特殊与一般、类比、归纳 和演绎等; ④常用数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思 想等。 数学思想方法与数学基础知识相比较,它有较高的地位和层次。数学知识是数学内容,可以用文字和符号来记录和描述,随着时间的推移,记忆力的减退,将来可能忘记。而数学思想方法则是一种数学意识,只能够领会和运用,属于思维的范畴,用以对数学问题的认识、处理和解决,掌握数学思想方法,不是受用一阵子,而是受用一辈子,即使数学知识忘记了,数学思想方法也还是对你起作用。 数学思想方法中,数学基本方法是数学思想的体现,是数学的行为,具有模式化与可操作性的特征,可以选用作为解题的具体手段。数学思想是数学的灵魂,它与数学基本方法常常在学习、掌握数学知识的同时获得。 可以说,“知识”是基础,“方法”是手段,“思想”是深化,提高数学素质的核心就是提高学生对数学思想方法的认识和运用,数学素质的综合体现就是“能力”。 为了帮助学生掌握解题的金钥匙,掌握解题的思想方法,本书先是介绍高考中常用的数学基本方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法、反证法、分析与综合法、特殊与一般法、类比与归纳法、观察与实验法,再介绍高考中常用的数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思想。最后谈谈解题中的有关策略和高考中的几个热点问题,并在附录部分提供了近几年的高考试卷。 在每节的内容中,先是对方法或者问题进行综合性的叙述,再以三种题组的形式出现。再现性题组是一组简单的选择填空题进行方法的再现,示范性题组进行详细的解答和分析,对方法和问题进行示范。巩固性题组旨在检查学习的效果,起到巩固的作用。每个题组中习题的选取,又尽量综合到代数、三角、几何几个部分重要章节的数学知识。

相关文档
最新文档