曲线轨距加宽
第三章-轨道几何形位

第三章轨道几何形位3.1 概述轨道几何形位是指轨道各部分的几何形状、相对位置和基本尺寸。
3.1.1 轨道几何形位的基本要素轨距:在轨道的直线部分,两股钢轨之间应保持一定的距离水平:两股钢轨的顶面应位于同一水平或保持一定的相对高差方向:轨道中线位置应与它的设计位置一致前后高低:两股钢轨轨顶所在平面(即轨面)在线路纵向应保持平顺轨底坡:为使钢轨顶面与锥形踏面的车轮相配合,两股钢轨均应向内倾斜铺设轨距加宽:在轨道的曲线部分,除应满足上述要求外,还应根据机车车辆顺利通过曲线的要求,将小半径曲线的轨距略以加宽外轨超高:为抵消机车车辆通过曲线时出现的离心力,应使外轨顶面略高于内轨顶面,形成适当的外轨超高缓和曲线:为使机车车辆平稳地自直线进入圆曲线(或由圆曲线进入直线),并为外轨逐渐升高、轨距逐渐加宽创造必要的条件,在直线与圆曲线之间,应设置一条曲率和超高渐变的缓和曲线3.1.2 控制轨道几何形位的重要性3.2 机车车辆走行部分构造简介转向架的主要功能是:将车体荷载均匀分配于轮对,保证机车车辆顺利通过曲线,并降低轮对振动对车体的影响。
3.2.1 转向架的构造和类型重要概念全轴距:同一机车车辆最前位和最后位车轴中心间水平距离固定轴距:同一转向架上始终保持平行的最前位和最后位车轴中心间水平距离车辆定距:车辆前后两转向架上车体支承间的距离3.2.2 轮对对轮对的要求是:应有足够的强度,以保证在容许的最高速度和最大载荷下安全运行;应在强度足够和保证一定使用寿命的前提下,自重最小,并具有一定弹性,以减小轮轨之间的相互作用力;应具备阻力小和耐磨性好的优点,以降低牵引动力损耗并提高使用寿命;应能适应车辆直线运行,同时又能顺利通过曲线,还应具备必要的抵抗脱轨的安全性。
踏面:车轮与钢轨的接触面;轮缘:突出的圆弧部分,是保持车辆沿钢轨运行,防止脱轨的重要部分;车轮内侧面:轮缘内侧面的竖直面;车轮外侧面:与车轮内侧面相对的竖直面;车轮宽度:车轮内外两侧面之间的距离;轮辋:车轮上踏面下最外的一圈;轮毂:轮与轴互相配合的部分;幅板:联接轮辋与轮毂的部分,幅板上有两个圆孔,便于轮对在切削加工时与机床固定并供搬运轮对之用。
铁路轨道考试试题及答案(问答题)

铁路轨道考试试题及答案〔问答题〕1、轨距、水平、轨底坡的定义是什么?如何测定?轨距为两股钢轨头部内侧与轨道中线相垂直的距离。
轨距用道尺或轨检车进展测量。
水平是指线路左右两股钢轨顶面的相对高差。
水平可用道尺或轨检车进展测量。
轨底坡为钢轨底面对轨枕顶面的倾斜度〔也叫内倾度〕测量轨底坡也可用拉绳法,即从两股钢轨底拉一条细绳,使绳靠贴两根钢轨轨底的最低点,测量不靠绳一边轨底距绳的距离。
2、标准轨距是多少?曲线轨距如何规定?承受 1435mm 轨距,是以固定轴距为 4m 的车辆顺当通过曲线为条件计算出来的,并按各类机车亦能顺当通过为条件加以检算。
3、轨距、水平的允许误差及适用范围是什么?何为三角坑?轨距:容许偏差值为+6 和-2mm 即宽不超过 1441mm 并不小于1433mm,正线道发线不超过2‰站线和专用线不得超出3‰。
水平:正线道发线不得大于4mm,其他站线不得大于5mm。
三角坑:指在一段规定的距离内,先是左股钢轨高于右股,后是右股高于左股,高差值超过容许偏差值,而且两个最大水平误差点之间的距离缺乏 18m。
4、曲线轨距加宽和外轨超高的设置方法是什么?超高值有何规定?将曲线轨道内轨向内侧移动,轨距加宽的递减,应在缓和曲线或直线范围内进展,递减率不大于1‰.曲线外轨的位置则保持与轨道中心半个轨距的距离不变。
外轨超高应在整个缓和曲线内递减顺坡,未设缓和曲线者,则以不大于1‰的递减率在直线段顺接。
双线地段不超过 150mm;单线地段不超过 125mm。
5、钢轨类型如何划分?有哪几种?6、轨道附属设备有哪些?什么叫轨道爬行?信号标志及线路标志的作用及设置位置如何?防爬设备、加强设备、明桥面轨道、平角道口。
当列车运行时,它与钢轨会有一纵向力的作用〔主要是摩擦力〕,这会使钢轨产生纵向移动,有时甚至带动钢轨一起移动,这种现象就叫做轨道爬行。
作用:向行人和线路养护人员显示铁路建筑物设备位置状态。
位置:在线路运行方向左侧。
修规补充规定

1.对《铁路线路修理规则》第1.0.8条的补充规定1.1 宽轨线路轨距标准轨距是钢轨踏面下16mm范围内两股钢轨工作边之间的最小距离,直线轨距标准为1520mm。
曲线轨距按表1规定标准在里股加宽。
表1注:在半径为350米以下的曲线上,允许比规定的容许误差大出钢轨实际侧磨值,以减少改道次数,延长木枕的使用寿命,以及减少混凝土轨枕扣件和人工的投入,其最大值不得超过1541mm。
1.2 宽轨线路轨道几何尺寸容许偏差管理值如表2规定表2和偏差)不得大于1541mm。
(2)三角坑偏差不含曲线超高顺坡造成的扭曲量,检查三角坑时基长为6.25m,但在18m的距离内无超过表列的三角坑值。
(3)轨向偏差(直线)和高低偏差为10米弦测量的最大矢度值。
(4)曲线正矢容许偏差执行《铁路线路修理规则》表3.7.10-2的规定。
(5)专用线按其它站线办理。
1.3 宽轨道岔各部轨距1.3.1尖轨尖端轨距:见表3表31.3.2 尖轨跟端轨距:见表4表41.3.3 导曲线中部轨距按标准图办理,无标准图时按设计图办理。
1.3.4辙叉部分轨距:直、侧向均为1520mm。
另外,对道岔前端与另一道岔后端相连,尖轨尖端轨距递减率如不能按6‰递减时,可加大前面道岔的辙叉轨距为1526mm。
1.3.5尖轨在第一拉杆中心处最小动程:直尖轨为142mm,曲尖轨为152mm。
1.4 宽轨道岔各部分轨距加宽递减执行《铁路线路修理规则》第3.9.2条规定。
1.5 宽轨道岔导曲线支距与超高导曲线支距按标准图或设计图设置,在导曲轨与基本轨两股钢轨作用边之间测量。
导曲线可根据需要设置6mm的超高,并在导曲线范围按不大于2‰顺坡。
1.6 宽轨道岔轮缘槽宽度1.6.1护轨平直部分轮缘槽标准宽度为42mm,如侧向轨距为1526mm,则侧向护轨轮缘槽宽度为48mm,允许误差为+3,-1mm。
1.6.2辙叉心理论尖端至心轨宽50mm处轮缘槽标准宽度为46mm,允许误差为+3,-1mm。
轨道线路维修技术标准

轨道维修技术标准一、轨距1、轨距为两钢轨头部内侧间与轨道中线箱垂直的距离(在钢轨头部内侧顶面下16毫米处测量),线路直线地段的轨距为900毫米,轨距用道尺进行测量,宽不得超过6毫米,窄不得超过2毫米,轨矩的变更必须和缓平顺,每一米距离中不可有2毫米以上的差异。
2、游间为了使轮对沿两钢轨滚动时不致被楔住,在轮缘与钢轨间应有一定空隙称为游小与曲线半径、机车车辆的固定轴距等有关。
曲线加宽是通过把曲线内轨向内移动来实现,外轨位置保持不变。
曲线加宽应在缓和曲线全长范围内递减,没有缓和曲线,应在直线上递减;可太急,在一米距离内不得超过1毫米;三角坑的大小数值18米范围不许超过6毫米;直线方向必须目视平顺,用10米弦量不得超过6毫米。
5、轨底坡:在直线上钢轨不应竖直铺设,而要适当地向内倾斜,这种倾斜度如果光带偏向内侧,说明轨底坡不足;如果偏向外侧则说明轨底坡过大。
轨底坡设置不当将使钢轨头部磨耗不均,腰部弯曲,在轨头与轨腰处发生纵裂,甚至折损。
6、防爬设备:主要安装在制动地段、驼峰线路及主要道岔上。
二、轨枕1、长度:1.6米 2.0米 2.4米 3.0米宽度:19厘米高度:13.5厘米2、木枕:1公里1600根。
捆扎:心材开裂或长度超过300毫米,应在距木枕端100毫米处捆扎,如有出入也不超过±10毫米,铁线与木枕各边棱垂直,偏斜不超过10毫米,铁线捆紧木枕,不得松驰。
8#铁丝捆扎两圈,10#铁丝捆扎三圈。
3、水泥枕:1公里1600~1520根,开裂、碎及时更换。
接头轨枕间距要较中间轨枕的间距略小,陡坡制动地段轨枕间距略小;4、轨枕失效标准和维修要求轨枕在使用中逐渐形成伤损,对其丧失功能程度判定能否继续使用所制订的标准和对其如何使用所提出的维修要求。
5、失效标准木枕(含木岔枕)达到下列条件之一者即为失效:①腐朽失去承压能力,钉孔腐朽无处改孔,不能持钉;②折断或拼接的接合部分离,不能保持轨距;③机械磨损,经削平或除去腐朽木质后,容许速度大于18km/h的线路,其厚度不足140mm,其他线路不足100mm;④劈裂或其他伤损,不能承压、持钉。
轨道交通曲线地段加宽设置及其原因分析

[1]
工作落实到位,具体如图 1 所示。
[2]
[3]
[4]
[5]
田晓燕 . 城市交通规划设计中立交与周边建筑及环境的关
划设计要求,严格审查建筑设计方案,其次,成立专家评审小组,
住宅设计方面,要进行合理布局,贯彻落实好节能环保原则,生
共同致力于设计方案的具体内容和要求,对设计思想与设计任
态化设置和处理生活排泄物和生活垃圾等,其中,要注重住宅区
务书的要求进行分析。最后,在建筑设计方案最终决策中,要深
公共绿地的设置,将屋顶绿化水平提升上来,给予绿化覆盖率一
引言
当列车在直线上运行时,车体中心线与线路中心线重合,车
现在的城市都在向大型化、国际化发展,这些城市通常是国
体和建筑物之间能够保持必要的安全空间。但是,当列车行驶
家或某一地区的政治中心、金融中心或制造中心,具有城市规模
到曲线地段时,转向架中心点沿线路运行,而车体为刚性结构,
大、人口多的特点。轨道交通由于具有运量大、速度快、准时、安
辆中心线偏移产生的曲线地段限界加宽、因曲线半径较小而设置的曲线地段轨距加宽等 3 种情况。分析成果对正确认识曲
线地段加宽设置的原因和规律,
保证曲线地段线路安全运营具有重要意义。
关键词:轨道交通;
曲线地段;
曲线超高;
曲线加宽
中图分类号:TU522.09
1
文献标识码:A
文章编号:1001-6945(2020)005-0091-02
部向轨道内侧偏移(d 内 1),如图 1(a)所示。
由于曲线外轨超高,车体向曲线内侧倾斜,使车辆限界上的
控制点在水平方向上向内移动了一个距离(d 内 2),
如图 1(b)所示。
曲线轨距加宽

第四节曲线轨距加宽2010-08-02 14:52:46关键字:曲线轨距加宽五、轨底坡由于车轮踏面与钢轨顶面主要接触部分是1/20的斜坡,为了使钢轨轴心受力,钢轨也应有一个向内的倾斜度,因此轨底与轨道平面之间应形成一个横向坡度,称之为轨底坡。
钢轨设置轨底坡,可使其轮轨接触集中于轨顶中部,提高钢轨的横向稳定能力,减轻轨头不均匀磨耗。
分析研究指出,轨头中部塑性变形底积累比之两侧较为缓慢,故而设置轨底坡也有利于减小轨头塑性变形,延长使用寿命。
我国铁路在1965年以前,轨底坡设定为1/20。
但在机车车辆的动力作用下,轨道发生弹性挤开,轨枕产生挠曲和弹性压缩,加上垫板与轨枕不密贴,道钉的扣压力不足等原因,实际轨底坡与原设计轨底坡有较大的出入。
另外车轮踏面经过一段时间的磨耗后原来1/20的斜面也接近1/40的坡度。
所以1965年以后,我国铁路的轨底坡统一改为1/40。
曲线地段的外轨设有超高,轨枕处于倾斜状态。
当其倾斜到一定程度时,内轨钢轨中心线将偏离垂直线而外傾,在车轮荷载作用下有可能推翻钢轨。
因此,在曲线地段应视其外轨超高值而加大内轨的轨底坡。
调整的范围见表2-3。
应当说明,以上所述轨底坡的大小是钢轨在不受列车荷载作用情况下的理论值。
在复杂的列车动荷载作用下,轨道各部件将产生不同程度的弹性和塑性变形,静态条件下设置的1/40轨底坡在列车动荷载作用下不一定保持1/40。
轨底坡设置是否正确,可根据钢轨顶面上由车轮碾磨形成的光带位置来看。
如光带偏离轨顶中心向内,说明轨底坡不足;如光带偏离轨顶中心向外,说明轨底坡过大;如光带居中,说明轨底坡合适。
线路养护工作中,可根据光带位置调整轨底坡的大小。
表2-3 内股钢轨轨底楔型或枕木砍削倾斜度外缘超高(mm) 轨枕面最大倾斜铁垫板或承轨槽面倾斜度0 1/20 1/400~75 1:20 1:20 0 1:4080~125 1:12 1:12 1:30 1:17概述机车车辆进入曲线轨道时,仍然存在保持其原有形式方向的惯性,只是受到外轨的引导作用方才沿着曲线轨道行驶。
城市轨道交通 小半径曲线 轨距加宽

一、轨距加宽计算的原理和方法
地铁车辆由直线进入半径较小的曲线时,车辆转向架前轴的外轮缘冲击外轨,迫使转向
架转向,而转向架后轴的内轮又靠向内轨,为使车辆平顺地通过曲线,对于小半径曲线的轨
距要适当加宽。曲线轨距加宽是按车辆在静力自由内接条件所需轨距来进行计算的,其值与
曲绂半径、车辆固定轴距、轮轨间隙、轮缘厚度、轮距等因素有关。
由于车辆由曲线外股钢轨导向,为保持曲线外股钢轨圆顺,故规定曲线轨距加宽值应加
在里股,即将里股钢轨向曲线内侧横移,使其与线路中心线的距离等于 l 435/2 加上轨距加宽
值。
表 1 曲线地段轨距加宽值
曲线半径/m
加宽值/mm
B 型车
A 型车
200≥R>150
5
10
150≥R>100
10
15
注 : A 型 车 固 定 轴 距 2500mm, B 型 车 固 定 轴 距 2 200~2 300mm。
∆ܵ——轨距容许负误差,∆ܵ ൌ 2mm。
由于地下铁道车辆固定轴距尚未统一,因此上述公式对于同一半径的加宽值就有出入,
另外,鉴于国内外对曲线轨距加宽有逐渐减小的趋势,对上述计算的轨距加宽值还要做一些
修正。
二、曲线轨距加宽的标准
《地铁设计规范》规定,半径等于及小于 200 m 曲线地段的轨距应按表 1 进行加宽。
(3) 在困难条件下,曲线轨距加宽,允许按不大于 3‰递减。
YH HZ
(a)Leabharlann S1ZH HY S210m S2
S1
S1= S2
YH HZ
ZH HY
(b)
S2
S1
S1
10m S2
轨道及道岔主要结构图示介绍

宽轨枕
道床 一、作用:
1.支承轨枕,把从轨枕上传来的压力均匀地传给路 基;2.固定轨枕的位置,阻止轨枕纵向和横向移动; 3.缓和机车车轮对钢轨的冲击。 二、分类 碎石道床(有渣道床)
碎石、卵石、粗砂等,其中以碎石为最优。 我国铁路一般都采用碎石道床。 整体道床(混泥土道床)
整体道床
(1)由于有害空间的存在,当机车车辆通过辙叉有害空间时, 轮缘有可能走错辙叉槽而引起脱轨; (2)设置护轮轨的运行方向实行强制性的引导。 道岔有害空间是限制列车过岔速度的一个重要因素。 活动心轨道岔:消灭有害空间,适应列车高速运行要求。 (1)活动心轨和心轨是同时被扳动的; (2)当尖轨开通某一方向时,活动心轨的辙叉心轨就与开通 方向一致的翼轨密贴,而与另一翼轨分开,从而消灭了有害空 间, 使列车安全通过道岔。
辙岔与护轨
辙岔与护轨
有害空间
有害空间
常用道岔有关指标。
道岔号 数
(N)
辙叉角 (α)
导曲 半径(m)
道岔全长 (m)
侧向允许通 过速度
(km/h)
9
6°20′25″
180
28.848
30
12 4°45′49″
330
36.815
45
18 3°10′12.5″ 800
54.00
80
二、其他类型道岔与交叉设备
米 轨
一、轨距加宽
由于固定轨距的 影响,在小半径 曲线上轨距应适 当地加宽。
曲线轨距加宽表
曲线半径R (m)
加宽值(mm)
R≥350
0
350>R≥300
5
R<300
二、外轨超高 机车车辆在
曲线上运行时, 由于离心力的作 用使曲线外轨承 受了较大的压力, 必须将外轨抬高,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四节曲线轨距加宽关键字:曲线轨距加宽五、轨底坡1/20的斜坡,为了使钢轨轴心受力,钢轨也应有一个向内的倾斜度,因此轨底与轨道平面之间应形成一个横向坡度,称之为轨底坡。
头不均匀磨耗。
分析研究指出,轨头中部塑性变形底积累比之两侧较为缓慢,故而设置轨底坡也有利于减小轨头塑性变形,延长使用寿命。
1965年以前,轨底坡设定为1/20。
但在机车车辆的动力作用下,轨道发生弹性挤开,轨枕产生挠曲和弹性压缩,加上垫板与轨枕不密贴,道钉的扣压力不足等原因,实际轨底坡与原设计轨底坡有较大的出入。
另外车轮踏面经过一段时间的磨耗后原来1/20的斜面也接近1/40的坡度。
所以1965年以后,我国铁路的轨底坡统一改为1/40。
轨钢轨中心线将偏离垂直线而外傾,在车轮荷载作用下有可能推翻钢轨。
因此,在曲线地段应视其外轨超高值而加大内轨的轨底坡。
调整的范围见表2-3。
作用情况下的理论值。
在复杂的列车动荷载作用下,轨道各部件将产生不同程度的弹性和塑性变形,静态条件下设置的1/40轨底坡在列车动荷载作用下不一定保持1/40。
轨底坡设置是否正确,可根据钢轨顶面上由车轮碾磨形成的光带位置来看。
如光带偏离轨顶中心向内,说明轨底坡不足;如光带偏离轨顶中心向外,说明轨底坡过大;如光带居中,说明轨底坡合适。
线路养护工作中,可根据光带位置调整轨底坡的大小。
表2-3 内股钢轨轨底楔型或枕木砍削倾斜度外缘超高(mm) 轨枕面最大倾斜铁垫板或承轨槽面倾斜度0 1/20 1/400~75 1:20 1:20 0 1:4080~125 1:12 1:12 1:30 1:17概述作用方才沿着曲线轨道行驶。
在小半径曲线,为使机车车辆顺利通过曲线而不致被楔住或挤开轨道,减小轮轨间的横向作用力,以减少轮轨磨耗,轨距要适当加宽。
加宽轨距,系将曲线轨道内轨向曲线中心方向移动,曲线外轨的位置则保持与轨道中心半个桂剧的距离不变。
曲线轨道的加宽值与机车车辆转向架在曲线上的几何位置有关。
一、转向架的内接形式位置,即可以有不同的内接形式。
随着轨距大小的不同,机车车辆在曲线上可呈现以下四种内接形式:1. 斜接。
机车车辆车架或转向架的外侧最前位车轮轮缘与外轨作用边接触,内侧最后位车轮轮缘与内轨作用边接触,如图2-7(a)所示。
2. 自由内接。
机车车辆车架或转向架的外侧最前位车轮轮缘与外轨作用边接触其它各轮轮缘无接触地在轨道上自由行驶,如图2-7(b)所示。
3. 楔形内接。
机车车辆车架或转向架的最前位和最后位外侧车轮轮缘同时与外轨作用边接触,内侧中间车轮的轮缘与内轨作用边接触,如图2-7(c)所示。
2-7 机车通过曲线的内接形式4. 正常强制内接。
为避免机车车辆以楔形内接形式通过曲线,对楔形内接所需轨距增加,此时转向架在曲线上所处的位置称为正常强制内接。
二、曲线轨距加宽的确定原则由内接最为有利,但机车车辆的固定轴距长短不一,不能全部满足自由内接通过。
为此,确定轨距加宽必须满足如下原则:1. 保证占列车大多数的车辆能以自由内接形式通过曲线;2. 保证固定轴距较长的机车通过曲线时,不出现楔形内接,但允许以正常强制内接形式通过;3. 保证车轮不掉道,即最大轨距不超过容许限度。
三、根据车辆条件确定轨距加宽前轴外轮轮缘与外轨的作用边接触,后轴占据曲线垂直半径的位置。
则自由内接形式所需最小轨距为:2-2)Sf--自由内接所需轨距;qmax--最大轮对宽;f0--外矢距,其值为L--转向架固定轴距,R--曲线半径。
S0表示直线轨距,则曲线轨距加宽值e应为:"202"型转向架为例计算如下:R=350m,L=2.4m,qmax=1424mmm350m及以上的曲线,轨距不需加宽。
四、根据机车条件检算轨距加宽轨距为小的"正常强制内接"通过曲线。
(2-3)式中qmax--最大轮对宽度;f0--前后两端车轴的外轮在外轨处所形成的矢距,其值为:其中L1--第一轴至第二轴距离,L2--第二轴至第三轴距离,L3--第三轴至第四轴距离;fi--中间两个车轴的内轮在内轨处形成的矢距,其值为:Li1--第二轴至与车架纵轴垂直的曲线半径之间的距离,可由下式计算:S'w等于(2-4)式中δmin --直线轨道的最小游间。
五、曲线轨道的最大允许轨距一个车轮轮缘紧贴一股钢轨时,另一个撤论踏面与钢轨的接触点即为车轮踏面的变坡点。
(2-5)式中dmin--车辆车轮最小轮缘厚度,其值为22mm;Tmin--车轮最小轮背内侧距离;r--车辆车轴弯曲时轮背内侧距离缩小量,用2mm;a --轮背至轮踏面斜度为1:20与1:10变坡点的距离,用100mm;r --钢轨顶面圆角宽度,用12mm;s--钢轨弹性挤开量,用2mm。
将上述采用的数值代入得:mm6mm,所以曲线轨道最大容许轨距应为1450mm,即最大允许加宽15mm。
2-4规定的标准进行曲线轨距加宽。
未按该标准调整前的线路可维持原标准。
曲线轨距加宽递减率一般不得大于1‰,特殊条件下,不得大于2‰。
表2-4 曲线轨距加宽曲线半径(m) 加宽值(mm) 轨距(mm)R≥350 0 1435350>R≥300 5 1440R<300 15 1450一、外轨超高的作用及其设置方法股钢轨的压力,使旅客产生不适,货物位移等。
因此需要把曲线外轨适当抬高,使机车车辆的自身重力产生一个向心的水平分力,以抵消惯性离心力,达到内外两股钢轨受力均匀和垂直磨耗均等,满足旅客舒适感,提高线路的稳定性和安全性。
水平高度之差。
在设置外轨超高时,主要有外轨提高法和线路中心高度不变法两种方法。
外轨提高法是保持内轨标高不变而只抬高外轨的方法。
线路中心高度不变法是内外轨分别降低和抬高超高值一半而保证线路中心标高不变的方法。
前者使用较普遍,后者仅在建筑限界受到限制时才采用。
二、外轨超高的计算2-8所示。
为简便计算,将车体视为一个平面。
P--车体的重力;Q--轨道反力;图2-8 曲线外轨超高计算图Fn--向心力;S1--两轨头中心线距离;h--所需的外轨超高度。
由于超高很小,从工程实用的角度出发,可取CB≈AB=S1(2-6)2-7)式中g--重力加速度;v--行车速度;单位取为m/s时用v,取为km/h时用V;R--曲线半径。
2-6)、(2-7)得2-8)S1=1500mm,g=9.8m/s2,代入上式并变换量纲单位得:2-9)(2-9)中的列车速度V应当采用各次列车的平均速度Vp ,即(2-10)V选用是否恰当。
平均速度Vp 的计算有如下两种方法。
1. 全面考虑每一次列车的速度和重力来计算Vp2-9)可见,对任一确定的曲线,其外轨超高和两股头中心线距离是确定不变的。
但通过的每一次列车的重量和速度是不同的。
因而列车作曲线运动产生的离心力及向心力也是不同的。
为了反映不同行驶速度和不同牵引重量的列车对于外轨超高值的不同要求,均衡内外轨的垂直磨耗,平均速度Vp 应取每昼夜通过该曲线列车牵引重量的加权平均速度。
2-11)式中N--每昼夜通过的相同速度和牵引重量的列车次数;Gz--列车总重。
2-11)中列车重量Gz 对Vp 影响较大,由此计算所得的平均速度适用于客货混运线路,因此我国《铁路线路维修规则》规定,在确定曲线外轨超高时,平均速度按式(2-11)计算。
高公式(2-10)是将车辆视为一个平面而导出的,与实际列车受力状况存在差异。
在现场使用时,按计算值设置超高以后,还应视轨道稳定以及钢轨磨耗等状况适当调整。
2.在新线路设计与施工时,采用的平均速度Vp 由下式确定2-12) 代入式(2-10)中,得(2-13)式中Vmax --预计该地段最大行车速度,以km/h计。
三、外轨未被平衡的超高,离心力J为(2-14)当v=vp 时,这时J刚好与设置超高h后所提供的向心力Fn 相等。
此时两股钢轨承受相同荷载,旅客也没有不舒适感觉。
v<vp 时,离心力J大于设置超高后所提供的向心力Fn ,说明超高不足(此差值称为欠超高)。
从而导致外轨承受偏载,同时也因离心力未被平衡而使旅客感觉不舒适。
v>vp 时,离心力J小于设置超高后的所提供的向心力Fn ,说明超高过大(此差值称为过超高)。
从而导致内轨承受偏载和旅客不适。
衡的超高。
未被平衡的超高使内外轨产生偏载,引起内外轨不均匀磨耗,并影响旅客的舒适度。
此外,过大的未被平衡超高度还可能导致列车倾覆,因此必须对未被平衡的超高加以限制。
,超高h是定值。
当列车以vmax(或vmin)通过时,将产生最大的欠超高hQmax(或hGmax )为2-15) 式中,右边的符号表示欠超高。
同理可得最大的过超高。
(2-16)式中hQmax(hGmax )--最大欠(过)超高;amax--最大离心加速度;amin--最小离心加速度;ap--以平均速度通过曲线时的平均离心加速度;amax(amax)、△a'max(a'max)-- 最大未被平衡的离心加速度和相信加速度。
a]为0.4~0.5,困难情况下为0.6 。
我国《铁路线路维修规则》规定:未被平衡欠超高,一般应不大于75mm,困难情况下应不大于90mm;未被平衡过超高不得大于50mm。
四、外轨最大超高的允许值限制外轨超高的最大值。
以下叙述该值的确定方法。
hmax ,与之相适应的行车速度为v,产生的惯性离心力为J,车辆的重力为G,J与G 的合力为R,它通过轨道中心点O。
当某一车辆以v1<v的速度通过该曲线时,相应的离心力为J1,J1与G 的合力为R1 ,其与轨面连线的交点为O1,偏离轨道中心距离为e,随着e值的增大,车辆在曲线运行的稳定性降低,其稳定程度可采用稳定系数n来表示。
(2-17)当n =1,即e=0.5S1 时,指向内轨断面中心线,属于临界状态;当n <1,即e>0.5S1 时,车辆丧失稳定而倾覆。
当n >1 时,车辆处于稳定状态。
n值愈大,稳定型愈好。
e值与未被平衡超高△h存在一定的关系,可得过超高三角形△BAA' 与另一三角形△COO1 有以下近似关系:H,则上式可变换为(2-18)式中e--合力偏心距;H--车体重心至轨顶面高,货车为2220mm,客车为2057.5mm;h--未被平衡超高度;S1--两轨头中心线距离。
2-17)式,得(2-19)n值不应小于3。
最大外轨超高度应达到这一指标的要求。
我国铁路设计规范规定,最大超高度为150mm,若以最不理情况(曲线上停车,即速度v =0)来教核其稳定系数n,并考虑4mm的水平误差在内,即过超高△h =154mm,可计算得到将使低速列车对内轨产生很大的偏压并降低稳定系数。
从工程经验出发,规定其最大超高度为125mm。
五、曲线轨道上的超高限速曲线轨道,均按一定的平均速度设置超高。