归纳与猜想
归纳、猜想、证明

归纳、猜想、证明教学目标1.对数学归纳法的认识不断深化.2.帮助学生掌握用不完全归纳法发现规律,再用数学归纳法证明规律的科学思维方法.3.培养学生在观察的基础上进行归纳猜想和发现的能力,进而引导学生去探求事物的内在的本质的联系.教学重点和难点用不完全归纳法猜想出问题的结论,并用数学归纳法加以证明.教学过程设计(一)复习引入师:我们已学习了数学归纳法,知道它是一种证明方法.请问:它适用于哪些问题的证明?生:与连续自然数n有关的命题.师:用数学归纳法证明的一般步骤是什么?生:共有两个步骤:(1)证明当n取第一个值n时结论正确;(2)假设当n=k(k∈N,且k≥n)时结论正确,证明当n=k+1时,结论也正确.师:这两个步骤的作用是什么?生:第(1)步是一次验证,第(2)步是用一次逻辑推理代替了无数次验证过程.师:这实质上是在说明这个证明具有递推性.第(1)步是递推的始点;第(2)步是递推的依据.递推是数学归纳法的核心.用数学归纳法证题时应注意什么?生:两个步骤缺一不可.证第(2)步时,必须用归纳假设.即在n=k成立的前提下推出n=k+1成立.师:只有这样,才能保证递推关系的存在,才真正是用数学归纳法证题.今天,我们一起继续研究解决一些与连续自然数有关的命题.请看例1.(二)归纳、猜想、证明1.问题的提出a 3,a4,由此推测计算an的公式,然后用数学归纳法证明这个公式.师:这个题目看起来庞大,其实它包括了计算、推测、证明三部分,我们可以先一部分、一部分地处理.(学生很快活跃起来,计算工作迅速完成,请一位同学口述他的计算过程,教师板演到黑板上)师:正确.怎么推测an的计算公式呢?可以相互讨论一下.2.归纳与猜想生:我猜出了一个an的计算公式.(许多学生在偷笑)师:大家在笑什么?是笑他的“猜”吗?“猜”有什么不好.人们对事物的认识很多都是以“猜”开始的,探索新领域就需要大胆,敢猜敢想,当然还要有严谨的思维做后盾.我想他的“猜”,也一定不是胡蒙乱猜,一定会有他的道理的,说说你是怎么“猜”的.师:大家也一定觉得他说的有道理,但为什么用“猜想”呢?生:我只是通过对a1,a2,a3,a4的观察,就去归纳an的计算公式,这个公式不一定对,所以还只能是“猜想”.师:他是经观察有限个特例从中获取一定信息、分析它们共同具有的特征后,归纳出对一切自然数的一般结论.他用的是不完全归纳法.他的结论虽不一定正确,但这却是探索新知识,发现新规律的重要途径,归纳法是可以用于猜测与发现的.我们一起把他的“猜想”记录下来.(教师板书)师:这个“猜想”的正确性怎么能保证?生:用数学归纳法证明.3.证明(学生口述,教师板书)师:证得非常好.在证明n=k+1时,每一步的依据是什么?生:因为在这里,能否用上归纳假设是关键.因此先根据定义用ak 表示ak+1,然后就可代入归纳假设,再化简整理,即可证出n=k+1的相应结论.师:这才能体现出递推性.必须注意要由归纳假设(n=k时)的正确性来推n=k+1时的正确性,这是用数学归纳法证题的核心与关键.回顾我们的解题过程,光用不完全归纳法对事物的一部分特例,通过观察,加以归纳,得到猜想,再用数学归纳法对猜想加以证明.这种从观察到归纳到猜想到证明的过程,是一种科学的思维模式,也正是我们今天要研究的课题.(板书课题:归纳、猜想、证明)4.不完全归纳法中的“猜测”二法师:高斯说过:“发现和创新比命题论证更重要,因为一旦抓住真理之后,补行证明往往是时间问题.”在“归纳、猜想、证明”的过程中,猜想准确是关键.我们再看一个例题,在解题过程中重点思考:如何猜想.且n≥2).先求出f(2),f(3),f(4)的值,再由此推测f(n)的计算公式,并对其正确性作出证明.(学生们在笔记本上解答,教师巡视完成情况,请两位同学把自己的解法写到黑板上)(学生甲书写如下)则f(n)=f(n-1)+lg 2n-1(n≥2).f(3)=f(2)+lg 23-1=0+2 lg 2=2lg 2,f(4)=f(3)+lg 24-1=2lg 2+3 lg 2=5lg2.猜想:……(学生乙书写如下)得f(n)=f(n-1)+lg 2n-1(n≥2).则f(2)=f(1)+lg 22-1=-lg 2+(2-1)lg 2=(-1+2-1) lg 2,f(3)=f(2)+lg 23-1=(-1+2-1+3-1) lg 2,f(4)=f(3)+lg 24-1=(-1+2-1+3-1)lg 2+(4-1)lg 2=(-1+2-1+3-1+4-1)lg 2.由此可以推测:f(n)=[-1+(2-1)+(3-1)+…+(n-1)]lg2=[-1+1+2+…+(n-1)]lg 2f(k+1)=f(k)+lg 2(k+1)-1师:我们一起来看两位同学的解题过程.学生甲的计算结果正确,但没有猜出来.学生乙没有求出f(2),f(3),f(4)的值,但猜出了计算公式,并用数学归纳法给予了证明.题目要求求值,还是应写出结果的,说说你这么写的理由吧.生乙:其实一开始,我跟学生甲一样,先算出了f(2),f(3),f(4)的值,但从-lg 2,0,2lg 2,5lg 2我除发现了应是多少倍的lg2就再无收获了,这“多少倍的”从-1,0,2,5实在无法断定,于是我就往回找,从计算的过程中,我发现了规律,一高兴就忘了写结果了.师:你是怎么从计算的过程中发现规律的?生乙:我是看f(2),f(3),f(4)每一个的计算过程都是在前一个结果的基础上加上(n-1)lg 2,也就是从n=2,3,4,…分别代入递推关系式f (n)=f(n-1)+(n-1)lg 2的求值计算过程中得到的.这里算每一个时要用前一个的结果,写时也用它的计算过程来表示,这样就容易发现规律了.师:实际上,他是通过算式的结构特征作出归纳、推测的,这种归纳我们不妨称之为:“猜结构”,而例1那种归纳我们就叫它做“猜结果”吧.其实,我们在猜想时,往往是先看结果,从结果得不出猜想时,再看过程,从解题过程中的式子结构去思考.但不管怎么猜想,都离不开对题目特征的认识.学生乙在用数学归纳法证明猜想时,注意了两个步骤及归纳假设的使用,证明正确.这个问题解决得非常好.归纳、猜想、证明是一种科学的思维方法,重要的解题途径,它是我们认识数学的一把钥匙.(三)练习已知数列{an }和{bn},其中a n =1+3+5+…+(2n+1),bn=1+2+22+…+2n-1,(n∈N+)当n∈N+时,试比较an与bn的大小,并证明你的结论.(教师巡视学生的解题情况,适时点评)师:有的同学面对问题无从下手,一下子就想得到一个一般性的结论是不太容易,但我们可以从特殊的n=1,n=2,……入手,通过观察归纳,猜想出一个一般的结论,这应是可以做到的吧.……有的同学结论下得太草率,只看了a1与b1,a2与b2,a3与b3就下结论了,急于去证明,证的时候就有困难了.这种时候该怎么办?①看证法是否正确;②回过头来多试几个,甚至还应看看an ,bn的结构,再慎重下结论.(待大部分学生都解出后,教师将课前准备好的写在投影片上的解答在投影机上打出来并讲评.)当 n=1时,a1=4,b1=1,则a1>b1;当n=2时,a2=9,b2=3,则a2>b2;当n=3时,a3=16,b3=7,则a3>b3;当n=4时,a4=25,b4=15,则a4>b4;当n=5时,a5=36,b5=31,则a5>b5;当n=6时,a6=49,b6=63,则a6<b6;当n=7时,a7=64,b7=127,则a7<b7;……由此得到:当n≤5(n∈R)时,an >bn;猜想:当n≥6(n∈R)时,an <bn.前一结论在推导时已用穷举法得到证明,后一猜想我们用数学归纳法加以证明.证明:(1)当n=6时,上面已证得a6<b6,命题成立.(2)假设当n=k(k≥6)时命题成立,即k≥6时,(k+1)2<2k-1.则当n=k+1时,bk+1=2k+1-1=2·2k-1=2(2k-1)+1>2(k+1)2+1=2k2+4k+3=k2+4k+4+(k2-1).因k≥6,则k2-1>0.所以k2+4k+4+(k2-1)>k2+4k+4.即bk+1>k2+4k+4=(k+2)2=[(k+1)+1]2=ak+1.故ak+1<bk+1,所以当n=k+1时,命题也成立.由(1),(2)得an <bn对任意n≥6且n∈N+都成立.第(2)步亦可由分析法证得.(2)假设当n=k(k≥6)时命题成立,即k≥6时,(k+1)2<2k-1,则当n=k+1时,要证ak+1<bk+1,即证:(k+2)2<2k+1-1.这只要证(k+2)2<2·2k-1.由归纳假设2k>(k+1)2+1,只要证(k+2)2<[(k+1)2+1]×2-1,只要证k2+4k+4<2k2+4k+3,只要证1<k2.这由k≥6是显然成立的,所以当n=k+1时命题也成立.师:本题不能只对n=1,2,3,4做出检验,就冒然断定当n∈N+时,an>bn成立.如果仓促做出此推测,在后面证明受阻时,也应重新检查猜想是否准确.其实,仔细看看式子an =(n+1)2,bn=2n-1的结构,就不难发现:随着n的不断增大,bn 的增长速度明显快于an.想想这些,对结论的猜测会是大有好处的.(四)小结(引导学生一起归纳小结)1.归纳、猜想、证明是一个完整的思维过程,既需要探求和发现结论,又需要证明所得结论的正确性.它引导我们在数学的领域中积极探索,大胆猜想,可以充分地发挥我们的数学想象力.同时又要求我们注意对所得的一般结论作严格的数学证明.2.归纳法是一种推理方法,数学归纳法是一种证明方法.归纳法帮助我们提出猜想,而数学归纳法的作用是证明猜想.在归纳、猜想、证明的过程中,猜想是关键.我们可以“猜结果”,也可以“猜过程”,只要抓住问题的本质特征、知识的内在联系,就不难得到猜想.在用数学归纳法证明时,有时还可以弥补猜想中的不足.(五)布置作业已知数列{an }满足Sn+an=2n+1,其中Sn是{an}的前n项和.先求出a1,a2,a 3,a4的值,再推测{an}的通项公式,并用数学归纳法加以证明.本题的求值计算、猜想都不是很困难,但用数学归纳法证明有一定难度.在由归纳假设ak 成立推证ak+1成立时,需ak+1与ak的关系式,而题目条件中没有直接给出,这就需要学生能有意识地利用条件Sn +an=2n+1①.由于n∈N,就可以得到Sn +1+an+1=2(n+1)+1②.将数学归纳法的证明中起着重要作用,而且可简化计算.有整体构想的同学应先推导出此关系式,再计算、猜想、证明)课堂教学设计说明利用“归纳、猜想、证明”这一思维方法解题,在课本中虽无这类例题,但复习参考题的最后一道却属此类.它对于学生认识数学、提高数学修养、发展数学能力的作用重大.在归纳、猜想、证明中,准确猜想是关键.因此我们把重点放在了如何猜想.它不仅能帮助学生使问题得以顺利解决,而且对于开发学生的想象力、培养学生的创新意识、培养新世纪人材都很有意义.在例题、习题、作业题的配备上,我们认为高中的学习特点是梯度陡、跨度大、思维能力要求高(较初中而言).因此在题目的设置上,我们加大了思维的含量.让学生在处理每一个问题,操作每一步时都必须有所思考,使学生深切体会到:数学不能死记硬背,也不能生搬硬套.要用数学的思想方法观点学习数学、看待数学.本节安排的这道练习题.从题目本身看,学生得不到一个解题程序,似乎无从下手.但如果他已掌握了归纳、猜想、证明的思想而不只是方法的话,他就会有解题意识与思路.更可从中领略到发现、观察、归纳、猜想、证明这一数学研究的全过程,体会有限与无限、特殊与一般等辩证关系.至于课后思考题,其计算、猜想都不困难,使学生对此题轻松上手.但证明时的不顺利会引发他们的思考:照搬例习题的模式是不行的,它与例习题的区别何在?数学归纳法的本质特征是什么?……这些思考不仅有助于学生解出此题,更有助于学生从实质上理解数学归纳法,抓住其核心——递推.这节课的教学,我们始终以问题为主线,让学生的思维由问题开始,到问题深化.通过问题的研讨,帮助学生从认识上得到提高.逐步由特殊到一般,由具体到抽象,由表面到本质,把学生的思维步步引向深入.从而提高学生的思维层次与思维水平.。
猜想与归纳

①1×12=1-12 ②2×23=2-23 ③3×34=3-34④4×45=4-45……猜想与归纳归纳与猜想问题指的是给出一定条件(可以是有规律的算式、图形或图表),让学生认真分析,仔细观察,综合归纳,大胆猜想,得出结论,进而加以验证的数学探索题。
其解题思维过程是:从特殊情况入手→探索发现规律→综合归纳→猜想得出结论→验证结论,这类问题有利于培养学生思维的深刻性和创造性。
例1观察右面的图形(每个正方形的边长均为1)和相应等式,探究其中的规律:⑴写出第五个等式,并在右边给出的五个正方形上画出与之对应的图示:⑵猜想并写出与第n 个图形相对应的等式。
例2将一张正方形纸片剪成四个大小形状一样的小正方形,然后将其中的一片又按同样的方法剪成四小片,再将其中的一小片正方形纸片剪成四片,如此循环进行下去,⑴如果能剪100次,共有多少个正方形?据上表分析,你能发现什么规律? ⑵如果剪n 次共有A n 个正方形,试用含n 、A n 的等式表示这个规律; ⑶利用上面得到的规律,要剪得22个正方形,共需剪几次? ⑷能否将正方形剪成2004个小正方形?为什么?⑸若原正方形的边长为1,设a n 表示第n 次所剪的正方形的边长,试用含n 的式子表示a n ; ⑹试猜想a 1+a 2+a 3+…+a n 与原正方形边长的关系,并画图示意这种关系.例3下图中,图⑴是一个扇形AOB ,将其作如下划分:第一次划分:如图⑵所示,以OA 的一半OA 1为半径画弧,再作∠AOB 的平分线,得到扇形的总数为6个,分别为:扇形AOB 、扇形AOC 、扇形COB 、扇形A 1OB 1、扇形A 1OC 1、扇形C 1OB 1;第二次划分:如图⑶所示,在扇形C 1OB 1中,按上述划分方式继续划分,可以得到扇形的总数为11个;第三次划分:如图⑷所示;……依次划分下去.⑴根据题意,完成下表:⑵根据上表,请你判断按上述划分方式,能否得到扇形的总数为2005个?为什么?优化训练1. 如图,细心观察图形,认真分析各式,然后解答问题:(1)2+1=2 S 1=12 (2)2+1=3S 2=22(3)2+1=4 S 3=32⑴请用含有n (n 是正整数)的等式表示上述变化规律; ⑵推算出OA 10的长;⑶求出S 12+S 22+S 32+…+S 102的值.2. 观察图1至图5中小黑点的摆放规律,并按照这样的规律继续摆放,记第n 个图中的小黑点的个数为y .A 6 … A 51 1 A 4 1 A 3 A 21 A 111 O S 1 S2 S3 S4 S 5图⑷第三次划分 图⑴ A B O 图⑵第一次划分 A B O A 1 C B 1 C 1 图⑶第二次划分 A B OA 1 CB 1C 1⑴ ⑵⑶⑷解答下列问题: ⑴填表:⑵当n =8时,y = ___;⑶你能猜想y 与n 之间的关系式吗?你是怎么得到的,请与同伴交流;⑷下边给出一种研究方法。
归纳—猜想—证明

归纳—猜想—证明归纳法是由一系列有限的特殊事例得出一般结论的推理方法。
归纳法分为不完全归纳法与完全归纳法,数学归纳法是“完全归纳”的一种科学方法,对于无穷尽的事例,常用不完全归纳法去发现规律,得出结论,并设法予以证明,这就是“归纳—猜想—证明”的思想方法,1.什么是归纳法在初中学习平面几何时,常会遇到如下推理:三角形内角和为180°,直角三角形是三角形,所以直角三角形内角和为180°。
这种由一般命题推出特殊命题的推理方法,我们称为演绎法。
但很多时候,往往需要从特殊的事例推出一般的原理,例如,一个人通过若干天的观察,看到“太阳从东方升起”, 就推出一般结论:“今后的每一天太阳都从东方升起”,这种推理方法叫做归纳法。
归纳法在科学发展和社会生活中起着重要作用,如气象工作者、水文工作者根据积累的历史资料作气象预测、水文预测,用的就是归纳法归纳法有什么特点?来看两个问题。
问题1:这里有一袋球共10个,要判断这袋球的颜色是白色,还是其他颜色,请问怎么办?学生:一个个拿出来看一看。
教师:这一袋球都是白色的。
问题2:数列的通项公式()2255n a n n =-+,计算1234,,,a a a a 的值,可以得到什么结论?学生:该数列的前四项都是1,猜测该数列的所有项都是1教师:这是错误的结论,该数列第五项是25。
解决以上两个问题用的都是归纳法——用一些特殊事例推出一般结论。
为什么问题1的结论正确,问题2的结论错误呢?这是因为问题1中,一共10个球,全部看了一遍,结论当然正确。
问题2中,根据前4 项为1,推测到所有项都是1,由于自然数有无数多个,因此得出的结论不一定正确。
实际上在这两个问题中运用的归纳法是有区别的,问题1中把研究对象都一一考察到了,这样推出结论的归纳法称为完全归纳法(通过验证一切可能的特殊事例,从而得出一般性结论,这种归纳推理称为完全归纳法)。
问题2中,根据部分事实推出了更加一般的事实,这种推理方法称为不完全归纳法(通过验证有限的特殊事例,从中推断出一般性的结论,这种归纳推理称为不完全归纳法)。
归纳—猜想—论证(高三复习课)教学设计说明

归纳—猜想—论证(高三复习课)教学设计说明选择课题的背景:1.在2009年第9期《数学教学》杂志封底看到张奠宙和赵小平教授的编后漫笔《一个新课题:数学思想方法的教学》,深受启发,很想付诸实践,于是选择这个机会展示一节关于数学思想方法的教学。
2.研究近年的高考试题,发现自觉或不自觉地在考查应用“归纳—猜想”解决问题的思想和方法(参看本节课所选试题),作为高三复习课,本着以学生的发展为本的理念,要重视这一数学思想的教学。
3.2011年10月10日在建平中学听华东师范大学李俊教授的报告,她谈到后面的课改,会把数学思想方法教学的具体要求写入课标,这更坚定了我的想法----上一节关于数学思想方法的课。
一、内容与教材分析“归纳—猜想—论证”是上海教育出版社高级中学课本数学高二年级第一学期(试用本)第7章数列一章的内容,隶属数学归纳法这一节。
“归纳—猜想—论证”是高中数学教学中唯一一节以数学思想方法为内容的课。
如果数学归纳法是数学方法,那么“归纳—猜想—论证”就是解决问题的思想方法,经常和数学归纳法联合使用,所以教材将其归入数学归纳法的一部分,但也并非意味着归纳猜想的结论只能应用数学归纳法证明。
为了探求一般规律,往往先考察一些简单的特例,进行归纳,形成猜想,然后设法用证明验证猜想的正确性,这样解决问题的想法就是“归纳—猜想—论证”的思想方法。
“归纳—猜想—论证”是把解答问题转化为证明问题的方法,核心是把复杂的问题简单化,把抽象的问题具体化,蕴涵着简化问题的思想。
需要注意(方法的要害):归纳猜想后,只有证明了我们才可以肯定猜想的正确性(例如哥德巴赫猜想,尽管计算机可以检验到很大的数猜想都成立,可是在没证明之前,谁也无法断定哥德巴赫猜想的正确性,课本例题中遗憾的费马猜想就是最好佐证)。
“归纳—猜想—论证”是人们探究(数学)问题最基本的方法,所以可以尝试用它来解决各类问题(如这节课解决的几何、向量、矩阵等问题),它经历三个过程:尝试观察特例→体验猜测→理性证明,所以“归纳—猜想—论证”完美地把归纳猜想和演绎论证统一了起来。
第二讲归纳与猜想

8. 在下表中:
123
··· 14 15
30 29 28
··· 17 16
31 32 33
··· 44 45
第 n行
··· A
···
第 n+1 行
··· B
···
第 n 行有一个数 A, 在它的下一行(第 n+1 行)同样的位置有一个数 B。
如果 A+B=391,那么 n 是
。
练习卷
1. 在下面的自然数塔形排列中, 第 16行的第 3 个数是
。
1
234
56789
10 11 12 13 14 15 16
··· ··· ··· ··· ··· ··· ···
2. 观察下图:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
第二讲 归纳与猜想
例题精学
例1 下图是按规律排列的三角形数阵。
1
11
121
1331
14641
1 5 10 10 5 1
···
那么第 2008 行中左起第三个数是多少?
例 2 将自然数 1,2,3,4 ,···按箭头所指方向顺序排列(如下图) ,
依次在 2,3,5,7,10 ···等数的位置处拐弯。
21 → 22 → 23 → 24 → 25 → 26
少千米?
4
← 3 ←2
↓
小学数学“猜想-验证-归纳-运用”课堂教学模式

小学数学“猜想-验证-归纳-运用”课堂教学模式3、通过观察、实验、探究等方式,让学生自主猜测并提出假设,然后进行验证。
二)、验证——用“证”实猜想,加深理解在学生提出猜想后,需要进行验证。
验证的过程不仅可以证实猜想的正确性,也可以发现猜想的不足之处,进一步加深对知识的理解。
验证的方式可以多样化,例如:1、通过具体的实验或观察来验证猜想的正确性。
2、通过逻辑推理和数学证明来验证猜想的正确性。
3、通过举反例来验证猜想的不正确性。
三)、归纳——总结规律,提高抽象思维在验证了多个猜想后,学生可以对这些猜想进行总结,找出其中的规律。
通过归纳的过程,可以提高学生的抽象思维能力,培养学生发现问题本质的能力。
四)、运用——将知识运用到实际生活中在学生掌握了一定的数学知识后,需要将其运用到实际生活中。
例如,通过解决实际问题,让学生发现数学知识的实用性和重要性,提高学生的数学应用能力。
四、模式的实施方式:在教学实践中,可以通过以下方式来实施“猜想——验证——归纳——运用”的小学数学教学模式:1、引导学生提出猜想,并进行验证和总结。
2、通过课堂讨论、小组合作等方式,让学生分享归纳出的规律和知识。
3、通过实际问题的解决,让学生将所学知识应用到实际生活中。
通过这种教学模式,可以激发学生的研究兴趣,提高学生的数学思维能力和创新能力,培养学生的实际应用能力,从而达到更好的教学效果。
在实际操作中,我们经常会遇到问题,需要提出猜想和假设,并通过实践来验证。
为了提高学生的“猜想”能力,我们应该遵循以下几个基本原则。
首先,我们应该给学生足够的时间和空间来进行猜想。
学生在课堂上应该是研究的主体,我们应该改进教师讲授和学生练的方式,引导学生进行猜想。
数学猜想是学生对数学问题的主动探索,我们应该创造平等民主的课堂氛围,尊重学生的猜想,鼓励他们畅所欲言,调动他们的研究积极性和主动性。
其次,我们应该允许学生出错。
数学研究是一个动手实践、合作交流和自主探索的过程。
归纳与猜想系统讲义
观察、猜想、规律
【李老师提醒】寻找规律是近年来中考必考题,主要考察大家的观察和猜想能力,多以选择题
出现。
解决此类问题主要是两种方法:
第一种:数字归纳法,就是找出已知图形的个
数差别,并找出他们的规律进行延展。
一般来
说就是看几个数字的差之间的关系。
第二种:追根朔源法,就是观察图形变化引起
的数字变化,从而推导出通向公式进行求解。
下列图案均是用长度相同的小木棒按一定的规
律拼搭而成:拼搭第1个图案需4根小木棒,拼搭第2个图案需10根小木棒,……,依次规律,拼搭第8个图案需小木棒根.为庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示:
按照上面的规律,摆个“金鱼”需用火柴棒的根数为()
A.B.
C.D.
按如下规律摆放三角形:
则第(4)堆三角形的个数为_____________;第(n)堆三角形的个数为_____________.
n
26n
+86n
+
44n
+8
n
第第第
第。
2019年浙江省中考《第34讲:归纳、猜想与说理型问题》总复习讲解
第34讲 归纳、猜想与说理型问题(建议该讲放第11讲后教学)类型一 通过数式变化产生规律例1 (2019·淄博)(1)填空:(a -b)(a +b)= ; (a -b)(a 2+ab +b 2)= ; (a -b)(a 3+a 2b +ab 2+b 3)= ; (2)猜想:(a -b)(an -1+an -2b +…+abn -2+bn -1)= (其中n 为正整数,且n≥2);(3)利用(2)猜想的结论计算:29-28+27-…+23-22+2.【解后感悟】此类问题要从整体上观察各个式子的特点,猜想出式子的变化规律,并进行验证.对于本题来说,关键是先计算,再观察各等式的结构,猜想结果并验证.对于(3)根据结构特征进行设、列来构建等式求解.1.(1)(2019·资阳模拟)设一列数中相邻的三个数依次为m 、n 、p ,且满足p =m 2-n ,若这列数为-1,3,-2,a ,-7,b …,则b = .(2)(2019·德州模拟)有一个计算程序,每次运算都是把一个数先乘以2,再除以它与1的和,多次重复进行这种运算的过程如下:输入x ――→第1次y 1=2x x +1――→第2次y 2=2y 1y 1+1――→第3次y 3=2y 2y 2+1――→…则第n 次运算的结果y n = (用含字母x 和n 的代数式表示).类型二 通过图形变化产生规律例2 (2019·达州)如图,将一张等边三角形纸片沿中位线剪成4个小三角形,称为第一次操作;然后,将其中的一个三角形按同样方式再剪成4个小三角形,共得到7个小三角形,称为第二次操作;再将其中一个三角形按同样方式再剪成4个小三角形,共得到10个小三角形,称为第三次操作;…根据以上操作,若要得到100个小三角形,则需要操作的次数是( )A .25B .33C .34D .50【解后感悟】本题通过一次操作,得到下一个图形的三角形个数与上一个图形的三角形个数之间的数量关系是解题的关键.解决这类问题的关键是仔细分析前后两个图形中基础图案的数量关系,从而发现其数字变化规律.具体地说,先根据图形写出数字规律,然后将每一个数字改写为等式,再比较各等式的相同点和不同点,分析不同点(数字)与等式序号之间的关系,从而得到一般规律.2.(2019·舟山)如图,把n 个边长为1的正方形拼接成一排,求得tan ∠BA 1C =1,tan ∠BA 2C =13,tan ∠BA 3C =17,计算tan ∠BA 4C =____________________,…按此规律,写出tan ∠BA n C =____________________(用含n 的代数式表示).类型三 通过平移、折叠产生规律例3 如图,直角三角形纸片ABC 中,AB =3,AC =4,D 为斜边BC 中点,第1次将纸片折叠,使点A 与点D 重合,折痕与AD 交于点P 1;设P 1D 的中点为D 1,第2次将纸片折叠,使点A 与点D 1重合,折痕与AD交于点P2;设P2D1的中点为D2,第3次将纸片折叠,使点A与点D2重合,折痕与AD交于点P3;…;设P n-1D n-2的中点为D n-1,第n次将纸片折叠,使点A与点D n-1重合,折痕与AD交于点P n(n>2),则AP6的长为( )A.5×35212B.365×29C.5×36214D.375×211【解后感悟】此题是翻折变换的知识,解答本题关键是写出前面几个有关线段长度的表达式,从而得出一般规律,注意培养自己的归纳总结能力.3.如图,矩形OABC的两条边在坐标轴上,OA=1,OC=2,现将此矩形向右平移,每次平移1个单位,若第1次平移得到的矩形的边与反比例函数图象有两个交点,它们的纵坐标之差的绝对值为0.6,则第n 次(n>1)平移得到的矩形的边与该反比例函数图象的两个交点的纵坐标之差的绝对值为(用含n的代数式表示).类型四通过旋转产生规律例4(2019·衢州)如图,正△ABO的边长为2,O为坐标原点,A在x轴上,B在第二象限,△ABO沿x轴正方向作无滑动的翻滚,经一次翻滚后得到△A1B1O,则翻滚3次后点B的对应点的坐标是________,翻滚2019次后AB中点M经过的路径长为________.【解后感悟】解题的关键是尝试特殊情况,寻找循环规律,从特殊到一般的探究方法解决问题.4.(2019·东港模拟)如图,点B1是面积为1的等边△OBA的两条中线的交点,以OB1为一边,构造等边△OB1A1(点O,B1,A1按逆时针方向排列),称为第一次构造;点B2是△OB1A1的两条中线的交点,再以OB2为一边,构造等边△OB2A2(点O,B2,A2按逆时针方向排列),称为第二次构造;以此类推,当第n次构造出的等边△OB n A n 的边OA n 与等边△OBA 的边OB 第一次重合时,构造停止.则构造出的最后一个三角形的面积是 .类型五 以数轴、平面直角坐标系为背景的规律问题例5 (2019·菏泽)如图,一段抛物线:y =-x(x -2)(0≤x≤2)记为C 1,它与x 轴交于两点O ,A 1;将C 1绕A 1旋转180°得到C 2,交x 轴于A 2;将C 2绕A 2旋转180°得到C 3,交x 轴于A 3;…如此进行下去,直至得到C 6,若点P(11,m)在第6段抛物线C 6上,则m = .【解后感悟】此题是抛物线其中一段的旋转规律,解题的关键是求出抛物线的顶点坐标.5.(1)如图,在数轴上,A 1,P 两点表示的数分别是1,2,A 1,A 2关于点O 对称,A 2,A 3关于点P 对称,A 3,A 4关于点O 对称,A 4,A 5关于点P 对称…依此规律,则点A 14表示的数是 .(2) (2019·达州)在直角坐标系中,直线y =x +1与y 轴交于点A 1,按如图方式作正方形A 1B 1C 1O 、A 2B 2C 2C 1、A 3B 3C 3C 2…,A 1、A 2、A 3…在直线y =x +1上,点C 1、C 2、C 3、…在x 轴上,图中阴影部分三角形的面积从左到右依次记为S 1,S 2,S 3,…S n ,则S n 的值为____________________(用含n 的代数式表示,n 为正整数).【探索研究题】用水平线和竖直线将平面分成若干个边长为1的小正方形格子,小正方形的顶点称为格点,以格点为顶点的多边形称为格点多边形.设格点多边形的面积为S ,该多边形各边上的格点个数和为a ,内部的格点个数为b ,则S =12a +b -1(史称“皮克公式”).小明认真研究了“皮克公式”,并受此启发对正三角形格中的类似问题进行探究:正三角形格中每个小正三角形面积为1,小正三角形的顶点为格点,以格点为顶点的多边形称为格点多边形,下图是该正三角形格点中的两个多边形:根据图中提供的信息填表:则S 与a 、b 之间的关系为S =________(用含a 、b 的代数式表示).【方法与对策】此题需要根据图中表格和自己所算得的数据,总结出规律.寻找规律是一件比较困难的活动,需要仔细观察和大量的验算.该题型采用特殊到一般探究问题的方法.是中考命题的一种方式.【探求一般规律,注意序号与变量之间对应关系】如图,△ABC 是斜边AB 的长为3的等腰直角三角形,在△ABC 内作第1个内接正方形A 1B 1D 1E 1(D 1、E 1在AB 上,A 1、B 1分别在AC 、BC 上),再在△A 1B 1C 内按同样的方法作第2个内接正方形A 2B 2D 2E 2,…如此下去,操作n 次,则第n 个小正方形A n B n D n E n 的边长是________.第34讲 归纳、猜想与说理型问题【例题精析】例1 (1)a 2-b 2,a 3-b 3,a 4-b 4; (2)a n-b n; (3)令S =29-28+27-…+23-22+2,∴S -1=29-28+27-…+23-22+2-1=[2-(-1)](29-28+27-…+23-22+2-1)÷3=(210-1)÷3=(1024-1)÷3=341,∴S =342.例2 ∵第一次操作后,三角形共有4个;第二次操作后,三角形共有4+3=7个;第三次操作后,三角形共有4+3+3=10个;…∴第n 次操作后,三角形共有4+3(n -1)=(3n +1)个;当3n +1=100时,解得:n =33,故选:B.例 3 由题意得,AD =12BC =52,AD 1=AD -DD 1=158,AD 2=5×3225,AD 3=5×3327,…∴AD n =5×3n22n +1.故AP 1=54,AP 2=1516,AP 3=5×3226…AP n =5×3n -122n.∴当n =6时,AP 6=5×35212.故选A.例4 如图作B 3E ⊥x 轴于E ,易知OE =5,B 3E =3,∴B 3(5,3),观察图象可知三次一个循环,一个循环点M 的运动路径为120π·3180+120π·1180+120π·1180=⎝ ⎛⎭⎪⎫23+43π,∵2019÷3=672……1,∴翻滚2019次后AB 中点M 经过的路径长为672·⎝ ⎛⎭⎪⎫23+43π+233π=⎝ ⎛⎭⎪⎫134633+896π.故答案为(5,3);⎝ ⎛⎭⎪⎫134633+896π.例5 ∵y=-x(x -2)(0≤x≤2),∴配方可得y =-(x -1)2+1(0≤x≤2),∴顶点坐标为(1,1),∴A 1坐标为(2,0),∵C 2由C 1旋转得到,∴OA 1=A 1A 2,即C 2顶点坐标为(3,-1),A 2(4,0);照此类推可得,C 3顶点坐标为(5,1),A 3(6,0);C 4顶点坐标为(7,-1),A 4(8,0);C 5顶点坐标为(9,1),A 5(10,0);C 6顶点坐标为(11,-1),A 6(12,0);∴m=-1.故答案为:-1.【变式拓展】1.(1)128 (2)2nx (2n-1)x +1 2.113 1n 2-n +1 3.145n (n +1)或65n (n +1) 4.1310 5.(1)-25 (2)22n -3【热点题型】【分析与解】根据8=8+2(1-1),11=7+2(3-1)得到S =a +2(b -1). 填表如下:【错误警示】∵∠A=∠B=45°,∴AE1=A1E1=A1B1=B1D1=D1B,∴第一个内接正方形的边长=3AB=1;同理可得:第二个内接正方形的边长=13A1B1=19AB=13;第三个内接正方形的边长=13A2B2=127AB=19;故可推出第n个小正方形A n B n D n E n的边长=13n AB=13n-1,故答案为:13n-1.2019-2020学年数学中考模拟试卷一、选择题1.如图,在平行四边形ABCD 中,AB 4=,BAD ∠的平分线与BC 的延长线交于点E ,与DC 交于点F ,且点F 为边DC 的中点,DG AE ⊥,垂足为G ,若DG 1=,则AE 的边长为( )A .B .C .4D .82.如图所示,点A 是双曲线y=1x(x >0)上的一动点,过A 作AC ⊥y 轴,垂足为点C ,作AC 的垂直平分线双曲线于点B ,交x 轴于点D .当点A 在双曲线上从左到右运动时,四边形ABCD 的面积( )A .不变B .逐渐变小C .由大变小再由小变大D .由小变大再由大变小3.若k >0,点P (﹣k ,k )在第( )象限. A .第一象限B .第二象限C .第三象限D .第四象限4.如图,在Rt ABC ∆中,90C ∠=︒,4AC =,3BC =,则sin B 的值为( )A .23B .35C .34D .455.如图,一次函数y=kx+b 的图象经过点(-1,0)与(0,2),则关于x 的不等式kx+b >0的解集是( )A .x 1>-B .x 1<-C .x 2>D .x 2<6.如图,△ABC 中,AD ⊥BC 于点D ,AD=ABC S ∆=tanC 的值为( )A .13 B .12C D 7.下列函数中,自变量x 的取值范围为x >1的是( )A .y =B .11-=x yC .11-=x y D .y =(x ﹣1)08.关于x 的正比例函数,y=(m+1)23m x -若y 随x 的增大而减小,则m 的值为 ( )A .2B .-2C .±2D .-129.要组织一次羽毛球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排6天,每天安排6场比赛,设比赛组织者应邀请x 个队参赛,则x 满足的关系式为( ) A .()1x x 1362+= B .()1x x 1362-= C .()x x 136+= D .()x x 136-=10.下面是一个几何体的俯视图,那么这个几何体是( )A .B .C .D .11.如图是二次函数y =ax 2+bx+c 的图象,对于下列说法:①ac >0,②2a+b >0,③4ac <b 2,④a+b+c <0,⑤当x >0时,y 随x 的增大而减小,其中正确的是( )A .①②③B .①②④C .②③④D .③④⑤12.在一个不透明的袋中装着3个红球和1个黄球,它们只有颜色上的区别,随机从袋中摸出两个小球,两球恰好是一个黄球和一个红球的概率为( )A .16B .14C .13D .12二、填空题13.矩形的面积是240m ,设它的一边长为x (单位:m ),则矩形的另一边长y (单位:m )与x 的函数关系是__________.14.已知直线y 1=kx +1(k <0)与直线y 2=nx(n >0)的交点坐标为(13,13n ),则不等式组nx -3<kx +1<nx 的解集为______.15.若a ,b 分别是方程x 2+2x-2017=0的两个实数根,则a 2 +3a+b=_________. 16.函数y =中,自变量x 的取值范围是________. 17.因式分解:244a a -+=____.18.这段时间,一个叫“学习强国”的理论学习平台火了,很多人主动下载、积分打卡,兴起了一股全民学习的热潮.据不完全统计,截止4月2号,华为官方应用市场“学习强国APP”下载量已达8830万次,请将8830万用科学记数法表示为是_____. 三、解答题 19.如图,ABC ∆为O 的内接三角形,AB 为O 的直径,过A 作AB 的垂线,交BC 的延长线于点D ,O 的切线CE 交AD 于点E .(1)求证:12CE AD =; (2)若点F 为直径AB 下方半圆的中点,连接CF 交AB 于点G ,且AD=6,AB=3,求CG 的长.20.阅读下列材料,解决问题:12345678987654321这个数有这样一个特点:各数位上的数字从左到右逐渐增大(由1到9,是连续的自然数),到数9时,达到顶峰,以后又逐渐减小(由9到1),它活像一只橄榄,我们不妨称它为橄榄数.记第一个橄榄数为a 1=1,第二个橄榄数为a 2=121,第三个橄榄数为a 3=12321……有趣的是橄榄数还是一个平方数,如1=12,121=112,12321=1112,1234321=11112……而且,橄榄数可以变形成如下对称式:1111⨯=2222121121⨯=++3333331232112321⨯=++++…… 根据以上材料,回答下列问题(1)11111112= ;将123454321变形为对称式:123454321= .(2)一个两位数(十位大于个位),交换其十位与个位上的数字,得到一个新的两位数,将原数和新数相加,就能得到橄榄数121,求这个两位数.(3)证明任意两个橄榄数a m ,a n 的各数位之和的差能被m ﹣n 整除(m =1,2…9,n =1,2…9,m >n )21.已知方程组2+24x y ax by =-⎧⎨-=-⎩和方程组3128x y bx ay -=⎧⎨+=-⎩的解相同,求(2a+b )2015的值. 22.如图,ABC △的顶点分别为()()()3,4,B 4,2,C 2,1.A(1)请在平面直角坐标系中做出ABC △绕原点O 逆时针旋转90后得到的111A B C △(点,,A B C 的对应点分别为111,,A B C );(2) 画出点A 在旋转过程中所经过的路径,并求出点A 所经过的路径的长23.如图,二次函数图象的顶点为(﹣1,1),且与反比例函数的图象交于点A (﹣3,﹣3)(1)求二次函数与反比例函数的解析式;(2)判断原点(0,0)是否在二次函数的图象上,并说明理由;(3)根据图象直接写出二次函数的值小于反比例函数的值时自变量x 的取值范围.24.传统文化与我们生活息息相关,中华传统文化包括古文古诗、词语、乐曲、赋、民族音乐、民族戏剧、曲艺、国画、书法、对联、灯谜、射覆、酒令、歇后语等.在中华优秀传统文化进校园活动中,某校为学生请“戏曲进校园”和民族音乐”做节目演出,其中一场“戏曲进校园”的价格比一场“民族音乐”节目演出的价格贵600元,用20000元购买“戏曲进校园”的场数是用8800元购买“民族音乐节目演出场数的2倍,求一场“民族音乐”节目演出的价格.25.解不等式组,并把它们的解集在数轴上表示出来:2803(2)4xx x-<⎧⎨--⎩….【参考答案】*** 一、选择题二、填空题13.40 yx =14.14 33x<<15.201516.5x>-17.(a-2)218.83×107.三、解答题19.(1)详见解析;(2)5.【解析】【分析】(1)利用AB是⊙O的直径判断AD是⊙O的切线,利用切线长定理判断出AE=CE,进而得出∠DAC=∠EAC,再用等角的余角相等判断出∠D=∠DCE,得出DE=CE,即可得出结论;(2)先求出tan∠ABD值,进而得出GH=2CH,进而得出BC=3BH,再求出BC建立方程求出BH,进而得出GH,即可得出结论.【详解】(1)∵AB是⊙O直径,AB⊥AD,∴AD是⊙O的切线,∵EA,EC是⊙O的切线,∴AE=CE,∴∠DAC=∠ECA,∵∠ACD=90°,∴∠ACE+∠DCE=90°,∠DAC+∠D=90°,∴∠D=∠DCE,∴DE=CE,∴AD=AE+DE=CE+CE=2CE,∴CE=12 AD;(2)如图,在Rt△ABD中,AD=6,AB=3,∴tan∠ABD=ADAB=2,过点G作GH⊥BD于H,∴tan∠ABD=GHBH=2,∴GH=2BH,∵点F是直径AB下方半圆的中点,∴∠BCF=45°,∴∠CGH=∠CHG-∠BCF=45°,∴CH=GH=2BH,∴BC=BH+CH=3BH,在Rt△ABC中,tan∠ABC=ACBC=2,∴AC=2BC,根据勾股定理得,AC2+BC2=AB2,∴4BC2+BC2=9,∴,∴,∴,∴,在Rt△CHG中,∠BCF=45°,∴5.【点睛】此题是圆的综合题,主要考查了切线的性质,切线长定理,锐角三角函数,相似三角形的判定和性质,勾股定理,求出tan∠ABD的值是解本题的关键.20.(1)55555555551234567654321,123454321⨯++++++++;(2)65,74,83,92;(3)任意两个橄榄数a m,a n的各数位之和的差能被m﹣n整除.【解析】【分析】(1)根据题中给出的定义,直接可得:(2)设十位数字是x,个位数字是y,根据题意得到x+y=11,进而确定两位数;(3)根据数的规律求得a m的各数位之和m2,a n的各数位之和n2,然后因式分解证明结论. 【详解】(1)根据题中给出的定义,直接可得:11111112=1234567654321,123454321=⨯++++++++5555555555 123454321;(2)设十位数字是x,个位数字是y,x>y,10x+y+10y+x=11(x+y)=121,∴x+y=11,∴这个两位数是65,74,83,92;(3)a m的各数位之和1+2+3+…+m+(m﹣1)+…+2+1=(1)(1)22m m m m+-+=m2,a n的各数位之和1+2+3+…+m+(m﹣1)+…+2+1=(1)(1)22n n n n+-+=n2,∴a m,a n的各数位之和的差为m2﹣n2=(m+n)(m﹣n),∵m>n,∴m2﹣n2=(m+n)(m﹣n)能被m﹣n整除,∴任意两个橄榄数a m,a n的各数位之和的差能被m﹣n整除.【点睛】本题考查新定义,字母表示数,自然数求和,因式分解;能够理解定义,熟练掌握因式分解,自然数求和方法是解题的关键.21.【解析】【分析】由两个方程组中不含a、b的两个方程可组成一个新的方程组,可求得x、y的值,再代入含有a、b的两个方程,可得到关于a、b的方程组,可求得a、b的值,代入计算即可.【详解】方程组224x yax by+-⎧⎨--⎩=①=②与3128x ybx ay=③=④-⎧⎨+-⎩有相同的解,∴由①、③可得方程组22312x y x y +-⎧⎨-⎩==,解得26x y ⎧⎨-⎩==, 再把26x y ⎧⎨-⎩==代入②、④可得方程组264268a b b a +-⎧⎨--⎩==,解得11a b ⎧⎨-⎩==, ∴(2a+b )2015=(2-1)2015=1.【点睛】本题主要考查方程组的解法,利用方程组的解相同求得方程组中x 、y 的值是解题的关键.22.(1) 111A B C △如图所示见解析;(2) 路径如图所示见解析,路径长为52π 【解析】【分析】(1)在平面直角坐标系中画出A,B,C 的对应点111,,A B C ,然后顺次连接即可;(2)求出AO 的长,根据弧长公式进行计算即可求出点A 所经过的路径长.【详解】(1) 111A B C △如图所示(2) 路径如图所示,则路径长为905180π⋅⋅ =52π. 【点睛】此题考查作图-旋转变换,解题关键在于掌握作图法则23.(1)y =﹣(x+1)2+1,9y x=;(2)原点(0,0)是在二次函数的图象上;(3)当x <﹣3或x >0时二次函数的值小于反比例函数的值.【解析】【分析】(1)设二次函数为y =a (x+1)2+1,设反比例函数的解析式为y =k x,把A 点的坐标代入,关键待定系数法即可求得;(2)把x =0代入求得的二次函数的解析式即可判断;(3)由两函数的图象直接写出x 的取值范围即可.【详解】解:(1)设二次函数为y=a(x+1)2+1,∵经过点A(﹣3,﹣3)∴﹣3=4a+1,∴a=﹣1,∴二次函数的解析式为y=﹣(x+1)2+1,设反比例函数的解析式为y=kx,∵二次函数的图象与反比例函数的图象交于点A(﹣3,﹣3)∴k=﹣3×(﹣3)=9,∴反比例函数的解析式为y=9x;(2)把x=0代入y=﹣(x+1)2+1,得y=﹣1+1=0,∴原点(0,0)是在二次函数的图象上;(3)由图象可知,二次函数与反比例函数图象的交点为A(﹣3,﹣3),当x<﹣3或x>0时二次函数的值小于反比例函数的值.【点睛】本题是一道函数的综合试题,考查了待定系数法求反比例函数的解析式和求二次函数的解析式,由图象特征确定自变量的取值范围.24.一场“民族音乐”节目演出的价格为4400元.【解析】【分析】设一场“民族音乐”节目演出的价格为x元,根据等量关系:用20000元购买“戏曲进校园”的场数是用8800元购买“民族音乐节目演出场数的2倍列出分式方程求解即可.【详解】设一场“民族音乐”节目演出的价格为x元,则一场“戏曲进校园”的价格为(x+600)元.由题意得:2000088002600x x=⨯+解得:x=4400经检验x=4400是原分式方程的解.答:一场“民族音乐”节目演出的价格为4400元.【点睛】本题运用了分式方程解应用题,找准等量关系列出方程是解决问题的关键.25.1≤x<4,见解析.【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,然后把不等式的解集表示在数轴上即可.【详解】解:2803(2)4 xx x-<⎧⎨--⎩①②…解不等式①得:x<4,解不等式②得:x≥1,所以不等式组的解集是:1≤x<4,表示在数轴上如下:【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.2019-2020学年数学中考模拟试卷一、选择题1.如图,在5×5的方格纸中将图①中的图形N 平移到如图②所示的位置,那么下列平移正确的是A .先向下移动1格,再向左移动1格B .先向下移动1格,再向左移动2格C .先向下移动2格,再向左移动1格D .先向下移动2格,再向左移动2格2.在函数y =x 的取值范围是( ) A.x 2≠-B.x 0>C.x 2>-D.x 2≥- 3.12019的倒数是( ) A.12019 B.﹣12019C.2019D.﹣2019 4.2018年10月24日港珠澳大桥正式通车.港珠澳大桥是在“一国两制”框架下,粤港澳三地首次合作共建的超大型基础设施项目,总投资约480亿元,大桥全长55000米,主体工程集合了桥、岛、隧三部分.隧道两端的东西两个海中人工岛,犹如“伶仃双贝”熠熠生辉,寓意三地同心的青州航道桥,形似中华白海豚的江海直达航道桥,以及扬帆起航的九洲航道桥,也是伶仃洋上别致的风景.将数据480亿用科学记数法表示为( )A .848010⨯B .94810⨯C .104.810⨯D .110.4810⨯5.下列运算正确的是( )A.a 2×a 3=a 6B.a 2+a 2=2a 4C.a 8÷a 4=a 4D.(a 2)3=a 56.如图所示,在直角坐标系中,A 点坐标为(-3,-2),⊙A 的半径为1,P 为x 轴上一动点,PQ 切⊙A 于点Q ,则当PQ 最小时,P 点的坐标为( )A .(-3,0)B .(-2,0)C .(-4,0)或(-2,0)D .(-4,0)7.计算(2sin60°+1)+(﹣0.125)2006×82006的结果是( )A B C +2 D .08.下列运算正确的是( )A .336a a a +=B .222()a b a b +=+C .22122m m -= D .2222)2961a a a ÷=-+ 9.如图,将一副三角板如图放置,BAC ADE 90∠∠==,E 45∠=,B 60∠=,若AE //BC ,则AFD (∠= )A .75B .85C .90D .6510.为了改善人民生活环境,建设美丽家园,某省第一季度投放垃圾箱及环境保护牌共250000个.将250000用科学记数法表示为( )A .2.5×104B .2.5×105C .25×104D .0.25×10711.函数x 的取值范围是( )A .x≥-3B .x≠-3C .x>-3D .x≤-312.为执行“均衡教育”政策,某区2017年投入教育经费2500万元,预计到2019年底三年累计投入1.2亿元,若每年投入教育经费的年平均增长百分率为x ,则下列方程正确的是( )A .2500(12)12000x +=B .22500(1)12000x +=C .25002500(1)2500(12)12000x x ++++=D .225002500(1)2500(1)12000x x ++++=二、填空题13.有六张分别印有三角形、正方形、等腰梯形、正五边形、矩形、正六边形图案的卡片(这些卡片除图案不同外,其余均相同).现将有图案的一面朝下任意摆放,从中任意抽取一张,抽到卡片的图案既是中心对称图形,又是轴对称图形的概率为____.14.甲、乙两人进行射击测试,每人10次射击的平均成绩恰好都是9.5环,方差分别是S 甲2=0.90平方环,S 乙2=1.22平方环,在本次射击测试中,甲、乙两人中成绩较稳定的是__.15.如图,在Rt △OAB 中,OA=4,AB=5,点C 在OA 上,AC=1,⊙P 的圆心P 在线段BC 上,且⊙P 与边AB ,AO 都相切.若反比例函数 k y x= (k≠0)的图象经过圆心P ,则k=________.16.直线11:l y k x b =+与直线22:l y k x =在同一平面直角坐标系中如图所示,则关于x 的不等式12k x b k x +>的解为________________.17.如图,点A 的坐标(﹣1,2),点A 关于y 轴的对称点的坐标为__________.18.某实验室对150款不同型号的保温杯进行质量检测,其中一个品牌的30款保温杯的保温性、便携性与综合质量在此检测中的排名情况如图所示,可以看出其中A 型保温杯的优势是_____.三、解答题19.今年,某社区响应泰州市政府“爱心一日捐”的号召,积极组织社区居民参加献爱心活动.为了解该社区居民捐款情况,对社区部分捐款户数进行分组统计(统计表如下),数据整理成如图所示的不完整统计图.请结合图中相关数据回答下列问题:捐款分组统计表(1)本次调查的样本容量是多少?(2)求出C组的频数并补全捐款户数条形统计图.(3)若该社区有1000户住户,请估计捐款不少于200元的户数是多少?20.(1)计算:|1(12)﹣1﹣2tan60°(2)先化简,再求值:22121()242x x xxx x-++÷-++,其中x﹣1.21.某数学小组到人民英雄纪念碑站岗执勤,并在活动后实地测量了纪念碑的高度,方法如下:如图,首先在测量点A处用高为1.5m的测角仪AC测得人民英雄纪念碑MN项部M的仰角为37°,然后在测量点B 处用同样的测角仪BD测得人民英雄纪念碑MN顶部M的仰角为45°,最后测量出A,B两点间的距离为15m,并且N,B,A三点在一条直线上,连接CD并延长交MN于点E.请你利用他们的测量结果,计算人民英雄纪念碑MN的高度.(参考数据:sin37°≈0.60,cos37°≈0.80,tan35°≈0.75)22.下面是两个转盘,每个转盘分成几个相等的扇形,甲、乙两个人做游戏,游戏者同时转动两个转盘一次,如果转盘A转出了红色,转盘B转出了蓝色,则甲赢否则乙赢.(1)甲和乙获胜的概率分别是多少?(2)这个游戏对双方公平吗?说说你的理由.(3)如果你认为不公平,应怎样修改才能使游戏对双方公平?23.为了丰富学生的校园文化生活,学校开设了书法、体育、美术音乐共四门选修课程.为了合理的分配教室,教务处问卷调查了部分学生,并将了解的情况绘制成如下不完整的统计图:(1)参与问卷调查的共有________人,其中选修美术的有________人,选修体育的学生人数对应扇形统计图中圆心角的度数为________.(2)补全条形统计图;(3)若每人必须选修一门课程,且只能选一门,已知小红没有选体育,小刚没有选修书法和美术,则他们选修同一门课程的概率是多少,列树状图或列表法求解.24.一件上衣,每件原价500元,第一次降价后,销售甚慢,于是再次进行大幅降价,第二次降价的百分率是第一次降价的百分率的2倍,结果这批上衣以每件240元的价格迅速售出,求两次降价的百分率各是多少.25.如图,已知在矩形ABCD中,E是BC边上的一个动点,点F,G,H分别是AD,AE,DE的中点.(1)求证:四边形AGHF是平行四边形;(2)若BC=10cm,当四边形EHFG是正方形时,求矩形ABCD的面积.【参考答案】***一、选择题二、填空题13.1 214.甲15.5 416.1x<-;17.(1,2)18.便携性三、解答题19.(1)50;(2)C组的频数是:50×40%=20;图见解析;(3)760.【解析】【分析】(1)根据样本的容量=A、B两组捐款户数÷A、B两组捐款户数所占的百分比即可求出(2)C组的频数=样本的容量×C组所占的百分比,进而可以补全捐款户数条形统计图;(3)捐款不少于200元的有C、D、E、两组,捐款不少于200元的户数=1000×D、E两组捐款户数所占的百分比;【详解】解:(1)调查样本的容量是:(10+2)÷(1﹣40%﹣28%﹣8%)=50;(2)C组的频数是:50×40%=20;补全捐款户数条形统计图如图所示:(3)估计捐款不少于200元的户数是:1000×(28%+8%+40%)=760户.【点睛】此题综合考查了频数(率)分布表,扇形统计图,用样本估计总体,频数(率)分布直方图和扇形统计图,需要熟悉以上考点才能解答出此题20.(1+1;(2.【解析】【分析】(1)根据绝对值、负整数指数幂、特殊角的三角函数值可以解答本题;(2)根据分式的减法和除法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【详解】(1)|1|+(12)﹣1﹣2tan60°1+21+2﹣;(2)22121() 242 x x xxx x-++÷-++=21(2)(21) 222x x x xx x-+-+÷++()()=2212 22221 x xx x x x-+++--()()=211211 xx x-+-()()()=12(1)xx-+,当x﹣1=12.【点睛】本题考查分式的化简求值、绝对值、负整数指数幂、特殊角的三角函数值,解答本题的关键是明确它们各自的计算方法.21.人民英雄纪念碑MN的高度约为36.5米.【解析】【分析】在Rt△MED中,由∠MDE=45°知ME=DE,据此设ME=DE=x,则EC=x+15,在Rt△MEC中,由ME=EC•tan ∠MCE知x≈0.7(x+15),解之求得x的值,根据MN=ME+EN可得答案.【详解】由题意得四边形ABDC、ACEN是矩形,∴EN=AC=1.5,AB=CD=15,在Rt△MED中,∠MED=90°,∠MDE=45°,∴ME=DE,设ME=DE=x,则EC=x+15,在Rt△MEC中,∠MEC=90°,∠MCE=35°,∵ME=EC•tan∠MCE,∴x≈0.7(x+15),解得:x≈35,∴ME≈35,∴MN=ME+EN≈36.5,答:人民英雄纪念碑MN的高度约为36.5米.【点睛】本题考查了解直角三角形中的仰俯角问题,解题的关键是从实际问题中整理出直角三角形并利用解直角三角形的知识解题.22.(1)1625,925;(2)不公平,理由见解析;(3)两次都转蓝色,甲赢;两次都转红色,乙赢.【解析】【分析】(1)根据题意,用列表法将所有可能出现的结果,再根据概率公式计算可得;(2)由(1)的结果,判断两人获胜的概率是否相等,得到结论不公平.(3)只要使甲、乙获胜的概率相等即可.【详解】解:(1)列表如下:由表知,共有25种等可能结果,其中转盘A转出了红色,转盘B转出了蓝色有16种结果,∴甲获胜的概率为16 25,则乙获胜的概率为925;(2)不公平,因为1625≠925;(3)两次都转蓝色,甲赢;两次都转红色,乙赢.【点睛】此题考查的是用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.23.(1)60,12,108°;(2)详见解析;(3)1 6【解析】【分析】(1)用参与了解的音乐的学生数除以所占的百分比即可求得调查的总人数;用总人数减去书法的人数减去体育和音乐的人数就可得到美术的人数;用选修体育的人数除以总人数再乘以360°即可求出对应扇形的圆心角;.(2)根据选修课程的人数补全条形统计图即可;.(3)列表或树状图将所有等可能的结果列举出来后利用概率公式求解即可.【详解】(1) 由条形统计图可知音乐有24人,由扇形统计图可知音乐占40%,2440%=60∴÷(人);。
专题复习 归纳与猜想(含答案)-
①1×12=1-12 ②2×23=2-23 ③3×34=3-34④4×45=4-45 ……专题复习 归纳与猜想归纳与猜想问题指的是给出一定条件(可以是有规律的算式、图形或图表),让学生认真分析,仔细观察,综合归纳,大胆猜想,得出结论,进而加以验证的数学探索题。
其解题思维过程是:从特殊情况入手→探索发现规律→综合归纳→猜想得出结论→验证结论,这类问题有利于培养学生思维的深刻性和创造性。
一、知识网络图二、基础知识整理猜想规律型的问题难度相对较小,经常以填空等形式出现,解题时要善于从所提供的数字或图形信息中,寻找其共同之处,这个存在于个例中的共性,就是规律。
其中蕴含着“特殊——一般——特殊”的常用模式,体现了总结归纳的数学思想,这也正是人类认识新生事物的一般过程。
相对而言,猜想结论型问题的难度较大些,具体题目往往是直观猜想与科学论证、具体应用的结合,解题的方法也更为灵活多样:计算、验证、类比、比较、测量、绘图、移动等等,都能用到。
由于猜想本身就是一种重要的数学方法,也是人们探索发现新知的重要手段,非常有利于培养创造性思维能力,所以备受命题专家的青睐,逐步成为中考的又一热点。
★ 范例精讲【归纳与猜想】例1【河北实验区05】观察右面的图形(每个正方形的边长均为1)和相应等式,探究其中的规律:⑴写出第五个等式,并在右边给出的五个正方形上画出与之对应的图示:⑵猜想并写出与第n 个图形相对应的等式。
解:⑴5×56=5-56⑵11+-=+⨯n nn n n n 。
例2〖归纳猜想型〗将一张正方形纸片剪成四个大小形状一样的小正方形,然后将其中的一片又按同样的方法剪成四小片,再将其中的一小片正方形纸片剪成四片,⑵如果剪n 次共有A n 个正方形,试用含n 、A n 的等式表示这个规律; ⑶利用上面得到的规律,要剪得22个正方形,共需剪几次? ⑷能否将正方形剪成2004个小正方形?为什么? ⑸若原正方形的边长为1,设a n 表示第n 次所剪的正方形的边长,试用含n 的式子表示a n ;⑹试猜想a 1+a 2+a 3+…+a n 与原正方形边长的关系,并画图示意这种关系.解:⑴100×3+1=301,规律是:本次剪完后得到的小正方形的个数比上次剪完后得到的小正方形的个数多3个;⑵A n =3n +1;⑶若A n =22,则3n +1=22,∴n =7,故需剪7次; ⑷若A n =2004,则3n +1=2004,此方程无自然数解, ∴不能将原正方形剪成2004个小正方形;⑸a n =12n ;⑹a 1=12<1,a 1+a 2=12+14=34<1,a 1+a 2+a 3=12+14+18=78<1,……从而猜想到:a 1+a 2+a 3+…+a n <1.直观的几何意义如图所示。
归纳-猜想-证明
a2
4, b2
6
b22
2a3
a2a3 b2 b3
a3
9, b3
12
b32
2a4
a3a4 b3 b4
a4
16, b4
20
(2)猜想:an n2,bn n(n 1)(n N*)
bn2 anan1
2an1 bn bn1
猜想:an n2,bn n(n 1)(n N*)
10 a1 1, b1 2 20 an , bn , an1成 等 比 数 列.
30
bn
,
an1
,
bn
成
1
等
差
数
列.
(1)求a2 , a3 , a4; b2 , b3 , b4.(2)猜 想 :an , bn并 证 明.
解
:(1) bn2 2an1
anan1 bn bn1
b12
2a2
a1a2 b1 b2
12
(k 1)(k 2) [3(k 1)2 11(k 1) 10]
12
n k 1时,猜想成立;
由(1)(2)知,等式对于任意的自然数都成立.
例2: 已 知a1
1 2
, an1
3an an 3
, (1)求a2 , a3 , a4.
(2)猜 想an , 并 数 学 归 纳 法 证 明 .
解:(1)a2
3 7
,
a3
3 8
, a4
3. 9
(2)猜想:an
3 n5
(n
N*)
证明:(1)n
1时,a1
1 2
3 15
, 成立;
(2)假设n
k(k
1)时猜想成立,即:ak
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三.归纳与猜想一、 知识综述归纳是一种重要的推理方法,是根据具体事实和特殊现象,通过实验、观察、比较、概括出一般的原理和结论。
猜想是一种直觉思维,它是通过对研究对象的实验、观察和归纳、猜想它的规律和结论的一种思维方法。
猜想往往依据直觉来获得,而恰当的归纳可以使猜想更准确。
我们在进行归纳和猜想时,要善于从变化的特殊性中寻找出不变的本质和规律。
二、理解掌握例1、用等号或不等号填空:(1)比较2x 与x 2+1的大小①当x =2时,2x x 2+1;②当x =1时,2x x 2+1;③当x =-1时,2x x 2+1.(2)可以推测:当x 取任意实数时,2x x 2+1.分析:本题是通过计算发现和猜想一般规律题,正确计算和发现规律是关键。
解:(1)<,=,<; (2)≤。
例2、观察下列分母有理化的计算:12121-=+,23231-=+,34341-=+, 45451-=+…从计算结果中找出规律,并利用这一规律计算: 1)2002)(200120021341231121(+++++++++ =____。
分析:解本题时,要抓住分每有理化后的结果都是两数之差,且可以错位相消。
还要注意相消后所剩下的是什么。
解:1)2002)(200120021341231121(+++++++++ =)12002)(20012002342312(+-++-+-+- =)12002)(12002(+-=2002—1=2001。
例3、观察下列数表:1 2 3 4 …第一行2 3 4 5 …第二行3 4 5 6 …第三行4 5 6 7 …第四行…………第一列第二列第三列第四列根据数表所反映的规律,猜想第6行与第6列的交叉点上的数应为____,第n行与第n列交叉点上的数应为____。
(用含正整数n的式子表示)分析:本题要求的是同行同列交叉点上的数,因此,必须先研究同行同列交叉点上的数有什么规律,然后利用此规律解题。
解: 11 , 2n—1.例4、将一个边长为1的正方形纸,剪成四个大小一样的正方形,然后将其中的一个按同样的方法剪成四个正方形,如此循环下去,观察下列图形和所给表格中的数据后填空格。
数之间的关系,再猜想空格中的结果。
解:操作的次数是 10时,正方形个数为31;操作的次数是 n时,正方形个数为1+3n.例5、 下面三个图是由若干盆花组成形如三角形的图案,每条边(包括顶点)有n(n>1)盆花,每个图案花盆总数为S ,按此规律推断,S 与n 的关系式是______。
n=2 n=3 n=4S=3 S=6 S=9分析:题目给出了“每条边(包括顶点)有n(n>1)盆花”,而三角形有三条边,因此,三条边上的的花盆数量为3n ,但每个顶点上的花盆用了两次,必须减去。
所以S=3n —3。
解:S=3n —3。
三、拓宽应用例6、⑴如下表:方程1,方程2,方程3,……,是按照一定规律排列的一列方程,解方程1,并将它的解填在表中的空白处:⑵若方程)b a (bx x >=--1的解是61=x ,102=x ,求a ,b 的值,该方程是不是⑴中所给出的一列方程中的一个方程?如果是,它是第几个方程?⑶请写出这列方程中的第n 个方程和它的解,并验证所写出的解适合第n 个方程。
分析:通过解方程不难求出:x 1=3,x 2=4,将61=x ,102=x 代入方程易求a=12,b=5。
本题较难的是写出第n 个方程和它的解,解决难点的关键是观察表格中方程和它们的解的排列规律,特别是每个变化的数与序号的关系。
解:(1)解方程1216=--x x 得,x 1=3,x 2=4; (2)将61=x ,102=x 代入方程)b a (bx x a >=--11,易求得a=12,b=5;(3)第n 个方程是:1)1(1)2(2=+--+n x x n ,它的解是:)1(2,221+=+=n x n x 。
例7、图形的操作过程(本题中四个矩形的水平方向的边长均为a ,竖直放行上的边长均为b ):●在图1中,将线段21A A 向右平移1个单位到21B B ,得到封闭图形21A A 12B B (即阴影部分)●在图2中,将折线321A A A 向右平移1个单位到321B B B ,得到封闭图形321A A A 3B 12B B (即阴影部分)A1(图1) (图2) (图3)⑴在图3中,请你类似地画一条有两个折点的折线,同样向右平移1个单位,从而得到一个封闭的图形,并用斜线画出阴影;⑵请你分别写出上述三个图形中除去阴影部分后剩余部分的面积:1S =____;2S =____;3S =____⑶联想与探索:如图4,在一块矩形草地上,有一条弯曲的柏油小路(小路任何地方的水平宽度都是1个单位),请你猜想空白部分表示的草地面积是多少?并说明你的猜想是正确的。
草 地 小 路 草 地分析:本题考查的内容较多,有动手操作、有计算、有归纳猜想,还有想象。
(1)和(2)两问并不困难,第(3)问可想象将中间的小路从中抽去,再拼起来后仍然是一个矩形,这时它的两边长分别是a —1,b ,这样面积就不难求了。
解:(1)(2)1S =ab--b ;2S =ab--b ;3S =ab —b;(3) 空白部分表示的草地面积是ab —b 。
(可想象将中间的小路从中抽去,再拼起来后仍然是一个矩形,这时它的两边长分别是a —1,b )例8、阅读下列材料,按要求解答问题。
⑴观察下面两块三角尺它们有一个共同的性质:∠A=2∠B 。
我们由此出发来进行思考。
在图a 中,作斜边上的高CD ,由于∠B=30°,可知c=2b ,∠ACD=30°,于是AD=2b ,BD=2b c -,由△CDB ∽△ACB ,可知aBD c a =,即BD c a ⋅=2,同理AD c b ⋅=2,于是bc )b b (c )b c (c b )b c (c )AD BD (c b a =-=-=⎥⎦⎤⎢⎣⎡--=-=-22222。
ba c AC B B C A c a b b a c A C B图a 图b图c对于图b 由勾股定理有222c b a +=,由于b=c ,故也有bc b a =-22,这两块三角尺都具有性质bc b a =-22,在△ABC 中,如果有一个内角等于另一个内角的2倍,我们称这种三角形为倍角三角形。
两块三角尺就都是特殊的倍角三角形,上面的性质仍然成立吗?暂时把我们的设想作为一个猜测:如图c ,在△ABC 中,若∠CAB=2∠ABC ,则bc b a =-22,在上述由三角尺的性质到“猜测”这一认识过程中,用到了下列四种数学思想方法中的哪一种?选出一个正确的将其序号填在括号内( )① 分类的思想方法;②转化的思想方法;③由特殊到一般的思想方法;④数形结合的思想方法。
⑵这个猜测是否正确?请证明。
分析:通过阅读可以发现:本题的研究是先从特殊情况入手,再得出一般情况的结论,因此,主要运用的是由特殊到一般的思想方法。
故选③;一般情况下的证明虽然方法较多,但是有一定的难度,应加强解题思路的分析。
解:(1)③;(2)猜测是正确的。
证明:延长BA 到D ,使AD=AC=b ,连结CD ,则∠ACD=∠ADC , ∵∠BAC=∠ACD+∠ADC ,∴∠BAC=2∠ADC∵∠BAC=2∠ABC ∠ABC=∠ADC ,且BC=CD=a ,∴△ACD ∽△CBD 想一想:还有其他证明方法吗?四、巩固训练1、观察下列有规律的数,并根据规律写出第五个数: 1741035221___ 376 2、观察下列图形并填表。
11 1的每条边(包括两个顶点)上都有n (n ≥2)个棋子,每个图案的棋子总数为S ,按下图的排列规律推断,S 与n 之间的关系可以用式子____来表示。
· · · · · · · · · · · · · · · · · · · · · · · c b a a b +=bc b a =-22∴ ∴ CD A B a ab b cn=2 · · · · · · · S=4 n=3 · · · · · · S=8 n=4 · · · · · S=12 n=5 S=164、⑴判断下列各式是否成立,你认为成立的请在括号内打“√”,不成立的打“×” ①322322=+( ) ②833833=+( ) ③15441544=+ ( ) ④24552455=+( ) ⑵你判断完以上各题后,发现了什么规律?请用含有n 的式子将规律表示出来,并注明n 的取值范围:________。
⑶请用数学知识说明你所写的式子的正确性。
5、已知AC 、AB 是⊙O 的弦,AB >AC 。
(1)如图9,能否在AB 上确定一个点E ,使AC 2=AE ·AB ,为什么?(2)如图10,在条件(1)的结论下延长EC 到P ,连结PB 。
如果PB=PE ,试判断PB 和⊙O 的位置关系并说明理由。
(3)在条件(2)的情况下,如果E 是PD 的中点,那么C 是PE 的中点吗?为什么?(重庆市中考试题)OPB B图9 图10 本题三个小题全是结论探索题。
参考答案1、265, 2、17,20,2+3n 3、4n-4 4、(1)√√√√,(2)1122-=-+n n n n n n 5、(1)能,连结BC ,作∠ACE=∠B 。
(证明略) (2)PB 是⊙O 的切线(证明略)(3)是。
(提示:利用切割线定理和PE=PB 、PD=2PE )。