接地网格的雷电冲击特性
风机接地装置的冲击特性研究分析

风机接地装置的冲击特性研究分析摘要:风电场在遭受到雷电袭击的时候接地装置的电阻数值会不断加大,且雷电电流在垂直方向上的穿透性也会降低,最终导致电位分布不均匀的问题。
为了能够确保电位的均衡分布,扩大雷电流垂直泄流的能力,改善地电位下降梯度,需要强化对风机接地装置的冲击特性的研究。
关键词:风机接地装置;风力发电;冲击特性;分析接地装置雷电冲击特性主要指雷电流沿着接地体在土壤里流散的过程中引起的周围暂态电位的抬升。
输电线路杆塔接地装置的冲击接地电阻会决定雷击时的塔顶电位,最终影响线路绝缘子串所承受的电压,当冲击电流作用下的接地阻抗较大时,会造成暂态电位急剧上升,引起较大的跨步电压和接触电压,危及人身与设备的安全。
在具体实施操作的时候发电站、变电站接地网的冲击接地电阻较大会影响到电力系统运行的安全性和稳定性。
因此,为了确保电力系统的稳定运行需要确保接地装置具备良好的接地冲击特性。
接地装置在工频电流和雷电流下所展现的作用是不同的,而出现这种现象的原因是雷电流通过接地装置向大地散流时的特征。
在受到火花效应、电感应效应影响的时候,接地装置暂态接地阻抗会呈现出时变形和频变形的特点,由此使得冲击接地电阻的大小很难被精准的解释和评估出来,只有通过复杂的暂态建模和数值分析来计算出冲击电流数值。
一、风电场风电机组基本情况概述文章所研究的风电场有风机十三台,每台风机的额定容量为1.5MW,总装机的容量为19.5MW。
由于整个风电场风机和海边之间的距离不超过500m,因而风电机场在使用的时候经常会受到台风的干扰,在台风作用下产生的频繁的雷电活动会影响风电场风电机的供电可靠性、安全性。
为了确保雷击时地电位升满足人员、设备的安全需求,风机接地装置冲击接地电阻是的数值要满足一定的要求。
接地装置冲击接地电阻是接地装置在冲击电流进入时对地电压峰值和电流峰值的一种比值,这个比值大小和电流的波形存在密切的关联。
而实际雷击时,雷电流是通过风机的叶片和塔筒流入接地装置的。
防雷接地中的冲击接地电阻

Analysis of the I mpulse Ear thing Resistance in the L ightning Pr otection Gr ound
Peng Fei (Anji Bureau of Meteorology, Anji, Zhejiang 313300)
3 冲击接地电阻的散流特性
根据冲 击接 地电 阻的 定义, 我们 可以 分析 得出 接地 体在 冲击 电 流作 用下 ,表 现出 以下 过 程[3]:波 过程— —“电 感-电 导” 过程— —电阻 过程。因 此, 冲击 接地电 阻值 是一 个与 雷电 流波头 时间 、雷 电流 幅值、 接地 体长度 等参数 有关 的量。 3.1 冲击电流经过接地体时的散流特性
2 接地电阻定义
2.1 工频接地电阻 通常 定义的 接地 电阻 为工 频接地 电阻 ,为 一定
的电 流经 接地 极流入 大地 时, 接地 极与无 穷远 处零 电位面之间的电位差 V 与电流 I 的比值。通常所说 的接 地 电阻 通常 由下 列要 素构 成 [2]:接 地 引线 的电 阻、 接地 引线 与接地 装置 的接 触电 阻、接 地体 本身
Key words:grounding;impulse earthing resistance;impulse coefficient
1 引言
冲击接 地电 阻不 同于 工频接 地电 阻, 目前 防雷
检测 部门对 建筑 物防 雷接 地检 测得到 的数 据均 为工
频接地电阻。这与 GB50057-94(2000 版)《建筑物
土壤 电阻率 的影 响, 还受 到雷 电流幅 值和 波头 时间
的影响 。
现实中 ,防 雷检 测人 员直接 将检 测到 的工 频接
铁路信号设备雷害的探讨

铁路信号设备雷害的探讨1 影响铁路信号的一般雷害分析1.1 雷电电磁冲击雷电产生电磁脉冲,直接冲击地面或者冲击安装信号接收和发射的地面设施,这样的雷电通常被称为感应雷,是由于云层相互放电或者云地之间放电产生的,电磁脉冲会使信号回路和信号装置发生过流或者过压的情况,而产生的电磁感应会干扰地底深层的电力线路,户外信号传输线和设备自身的电磁感应,从而导致磁感应范围内的相关铁路信号设施连锁破坏。
1.2 雷电直接冲击雷电发生之后由于大量电荷积聚,产生雷暴现象,在其波及的范围内直接入侵钢轨、地面构架、铁路信号线缆。
强大的电流会使击中地点与大地产生高压,并瞬间释放巨大的热量。
这种情况会给设备造成毁灭性的伤害,但是出现的几率很小,由于其波及的范围小、发生的概率低的原因,目前对于雷暴防护的研究并没有实际的意义。
1.3 雷电感应雷电感应是比较普遍的一个现象,自古就有,是由于雷电产生的电流遇到导体之后产生强大的电流或者电压,铁路信号设备一般在1000米内就会接受到雷电感应的打击,一般从电源端口、天线端口、信号设施钢铁构架以及铁路信号线口影响破坏,最终从外而内的影响到铁路信号系统。
雷电感应所波及的设备,除了遭到破坏性的打击,还会造成信号设备的放电,产生更多的威胁。
1.4 雷击浪涌随着电子信号设备的发展和广泛运用,雷击产生的电磁脉冲产生的暂态过电压,以传导、感应和耦合等方式入侵到铁路建筑的信号系统中,暂态过电压沿信号或者电源线路,在设备之间进行传输,产生感应电流并形成浪涌,包括静电浪涌和磁感应浪涌。
其中静电浪涌主要由于带有负电荷的雷云与带有正电荷的钢铁设备进行感应释放电流,破坏设备,磁感应浪涌则是由于闪电在空间内产生与时间具有相关性的磁场,作用于通信线路并造成破坏。
1.5 雷电的机械冲击当雷击作用于两平行的导体时,会产生巨大的安培力,物体或者导线会在安培力的作用下被劈开、折断或者受到拉伸而变形。
根据相关公式推导,对于具有折弯的金属构件,比如导线或者金属框架,在弯折处的夹角尽量保证大,最好是钝角,这样才能将雷击产生的电动力降低到最小,否则会导致构件的折断。
接地冲击 散流试验

接地冲击散流试验
接地冲击散流试验是电气设备在遭受雷电冲击时的一种重要试验方法。
这种试验旨在评估设备在雷电冲击下的耐受能力,以及其对地的绝缘性能。
这项试验通常包括两个部分,接地冲击试验和散流试验。
接地冲击试验主要是通过施加高能量的电压脉冲来模拟雷电冲击,以评估设备的绝缘能力和对地的连接性能。
这可以帮助确定设备在雷电冲击下的耐受能力,以及其对地绝缘系统的有效性。
通过这项试验,可以确保设备在雷电冲击下不会因为绝缘故障而受损或造成安全隐患。
散流试验则是评估设备在雷电冲击下的散流能力,即设备在雷电冲击时,能够将电流迅速散去,避免对设备本身和周围环境造成损害。
这项试验可以帮助确保设备在雷电冲击下能够有效地处理电流,保护设备和人员的安全。
综合来看,接地冲击散流试验是评估电气设备在雷电冲击下的安全性能的重要手段,通过这项试验可以全面了解设备在雷电环境下的表现,从而确保设备在实际使用中能够安全可靠地运行。
水平接地体的雷电冲击特性研究

第!"卷第#期!$$%年!月水&电&能&源&科&学’()*+,*-./+0*-(123.4*+ 5.67!"8.7#9*27!$$%收稿日期:!$$:;$%;#$,修回日期:!$$:;$<;!#作者简介:叶海峰(#<=!;),男,硕士研究生,研究方向为电力系统接地技术,>;?(@6:(AB#"C ).?70.?通讯作者:刘浔(#<:#;),男,教授,研究方向为电力系统接地技术,>;?(@6:D/1;6@/C -.E/70.1文章编号:#$$$;%%$<(!$$%)$#;$$F<;$B水平接地体的雷电冲击特性研究叶海峰&刘&浔(华中科技大学电气与电子工程学院,湖北武汉FB$$%F )摘要:为研究雷电流经水平接地体时的冲击特性,采用电磁暂态计算程序(GH3;>IH3)仿真法对水平接地体在脉冲电流下的冲击特性进行分析,得出接地体的几何尺寸和土壤电阻率对冲击接地特性的影响。
探讨了冲击电流和接地体电位达到峰值的时间差与接地体尺寸、土壤电阻率的关系。
仿真结果表明:冲击接地电阻的大小随接地体尺寸的增加而减小,趋势渐缓,直至稳定;冲击接地电阻大小与土壤电阻率成正比。
关键词:接地;冲击接地电阻;GH3;>IH3;时间差中图分类号:HI=:!文献标志码:G&&接地体在大冲击电流作用下的性能与在工频电流作用下的性能有较大的区别。
大电流将导致接地体周围的土壤电离,产生火花放电效应和电感效应[#]。
因此,研究接地体的冲击特性与研究工频情况下接地体特性的方法不同。
电磁暂态分析程序GH3;>IH3是电力系统暂态分析中使用较广的仿真工具,可模拟复杂网络和任意结构的控制系统[!]。
为研究在雷电流冲击下,土壤电阻率、接地体几何形状等因素对接地体冲击特性的影响,本文采用GH3的分析方法对水平接地体建立模型,改变参数,计算冲击接地电阻值。
110kV变电站的接地网与防雷设计

绪论随着近年来电力行业的不断发展,电力系统的供电安全成为一个很重要的问题,然而变电站在电力系统中占有重要位置,故变电站的安全可靠运行的工作就显得十分重要。
变电站接地系统的合理性是直接关系到人身和设备安全的重要问题。
随着电力系统规模的不断扩大,接地系统的设计也越来越复杂。
变电站接地包含工作接地、保护接地、雷电保护接地。
工作接地即为电力系统电气装置中,为运行需要所设的接地;保护接地即为电气装置的金属外壳、配电装置的构架和线路杆塔等,由于绝缘损坏有可能带电,为防止其危及人身和设备的安全而设的接地;雷电保护接地即为为雷电保护装置向大地泄放雷电流而设的接地。
变电站接地网安全除了对接地阻抗有要求外,还对地网的结构、使用寿命、跨步电位差、接触电位差、转移电位危害等提出了较高的要求。
雷电是影响变电站安全运行的重要因素,变电站发生雷击事故,将造成大面积的停电,严重影响社会生产和人民生活,因此变电所防雷措接地施必须十分可靠。
变电站对直击雷的防护方法是装设避雷针,将变电站的进线杆塔和室外电气设备全部置于避雷针的保护范围之内。
为了防止在避雷针上落雷时对被保护物产生“反击”过电压,避雷针与被保护物之间应保持一定的距离。
变电站内安装使用着各种类型的高、低压变、配电设备,这些设备均直接和供电系统的线路相连,而线路上发生雷电过电压的机会较多,因此更要注意防雷。
变电站中防雷的主要装置是避雷器,避雷器是一种防雷设备,它对保护电气设备、尤其是变压器起了很大的作用。
一旦出现雷击过电压,避雷器就很快对地导通,将雷电流泄入大地;在雷电流通过后,又很快恢复对地不通状态。
变电站进线段的防护变电站的进线段杆塔上装设一段避雷线,使感应过电压产生在规定的距离以外,侵入的冲击波沿导线走过这一段路程后,波幅值和陡度均将下降,使雷电流能限制在5kV,这对变电站的防雷保护有极大的好处。
对于本次设计,一方面汲取了指导老师的宝贵意见,一方面查阅了相关的文献,并经过自己学习、研究和大量的计算将其完整的做出,但限于设计者的专业水平有限,难免会出现错误和不足之处,热诚希望老师批评指正。
变电站接地网冲击特性模拟试验研究26

变电站接地网冲击特性模拟试验研究摘要:研究接地网的冲击特性是对电力系统及建筑物进行雷电防护的基础,目前国内外学者已对其开展了许多研究,取得了一定的成果。
本文以35 kV变电站接地网为依托,基于量纲相似原理设计和定制了接地网模型,通过模拟接地网导体变细、断裂和脱焊等典型故障,对接地网模型的冲击特性进行了试验研究。
关键词:变电站;接地网;冲击特性;设计;分析引言接地网对变电站的安全运行起着非常重要的作用,其性能一直是接地网研究的重要课题之一。
现有接地网设计重视其直流及工频电流作用下的安全特性是否能达标,而对接地网的冲击特性、地网均压等方面研究较少,但雷击可能会给变电站的电气设备以及接地装置造成严重危害。
当变电站受到雷击时,其接地网会受到高频雷电流的冲击,使其呈现出复杂的冲击特性,将会危及电力系统的正常运行以及电气设备与运行人员的安全。
另外,当接地网存在故障时,其冲击特性也会发生变化。
因此,在接地网设计时有必要考虑冲击特性影响并对其进行分析研究,这对接地系统性能研究至关重要的。
1 接地网冲击特性分析在冲击电流作用下,接地网的电阻称为暂态电阻,随时间而变化。
一般将冲击电压最大值与冲击电流最大值之比定义为冲击接地电阻。
根据接地网的冲击接地电阻,可依据雷电流大小对接地网可能出现的最大暂态电位进行估算。
2 接地网冲击特性模拟试验2.1 接地网模型的设计研究对象源于某供电公司的35kV变电站接地网,该接地网占地面积为34.4m×42.6m,由5根横向水平导体、5根纵向水平导体及若干垂直接地极构成。
其中,水平导体为25×6mm镀锌扁钢,垂直接地极为直径38mm、长2.5m的圆钢,接地网埋深0.8m。
依据量纲相似原理中的几何相似,对实际接地网进行了接地网模型的设计。
由于变电站改造,实际接地网的形状不甚规则。
为简化模拟试验,本文在量纲相似的基础上进行简化,将接地网模型设计为规则形状,使接地网原型的边框尺寸与接地网模型中对应长度尺寸的比值为5~6,并确保接地网模型工频接地电阻与实际接地电阻比值同样为5~6,从而得到规则形状的接地网模型。
接地标准

总则1.0.1为防止移动通信基站遭受雷害,确保移动通信基站内设备的安全和正常工作,确保构筑物、站内工作人员的安全,-特制定本规范。
1.0.2本规范适用于新建移动通讯基站的防雷与接地设计。
对于改建、扩建移动通信基站的防雷与接地设计,已建基站的防雷与接地技术改造亦可参照执行。
设在综合通信楼内移动通信基站的防类与接地设计应按YDJ26-89《通信局(站)接地设计暂行技术规定》与本规范一并执行。
对于利用商品房(居民住宅、商用办公楼等)作机房的通信基站,亦应参照本规范执行, 其地网应根据现场环境条件的可能进行布没,但机房的工作接地、保护接地、建筑防雷接地应共用同一个地网。
1.0.3移动通信基站的防雷与接地设计应本着综合治理、全方位系统防护的原则,统筹设计、统筹施工,以确保工程质量,切实做到安全可靠。
1.0.4移动通信基站的防雷与接地工程设计中应采用有理论依据、经实践证明行之有效、并经部级主管部门鉴定合格的产品。
2 术语2.0.1 环形接地装贯围绕移动通信基站机房四周,按规定深度埋设于地下的封闭环形拔地体(含垂直接地体 )。
2.0.2 接地体埋入地下并直接与大地接触的导体。
2.0.3 接地汇集线引出机房、电力室等各种接地线的公共接地母线。
2.0.4 接地引入线接地汇集线与接地体之间的连接线。
2.0.5 接地线通信设备与接地汇集线之间的连线。
2.0.6 接地系统接地线、接地汇集线、接地引入线以及接地体的总称。
3 移动通信基站的防雷与接地3.1 供电系统的防雷与接地3.1.1 移动通信基站的交流供电系统应采用三相五线制供电方式。
3.1.2 移动通信基站宜设置专用电力变压器,电力线宜采用具有金属护套或绝缘护套电缆穿钢管埋地引人移动通信基站,电力电缆金属护套或钢管两端应就近可靠接地。
3.1.3 当电力变压器设在站外时,对于地处年雷暴日大于20天、大地电阻率大于100 Ω·m的暴露地区的架空高压电力线路,宜在其上方架设避雷线,其长度不宜小于 500m。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
#电磁兼容技 术#
5 电工技术杂志6 2002 年第 12 期
接地网格的雷电冲击特性
高延庆 何金良 曾 嵘
( 清华大学电机工程系 100084)
摘 要 系统地分析了发、变电站接地网格在雷电流作用下的冲击暂态特性, 建立了基于分 布的、时变电路参数的等效电路模型。该模型考虑了接地导体周围土壤电离引起的动态、非线性 火花效应以及导体间互感的影响; 详尽分析了不同接地装置的结构、雷电流波形以及雷电流注入 点等因素对接地网格冲击特性的影响。
C = Cl ( a) + Cl ( 2h - a)
( 3)
为了模拟非线性的火花放电, 接地体的等值半
径在一定条件下是时变的。接地体与半径紧密相连
的电气参数, 包括对地电导和对地电容也是根据一 定的函数关系时变的。由于火花区域边界的电场强
度为土壤的临界击穿场强, 则各段的等值半径可通 过下式求得
Ji =
关键词 暂态性能 接地网格 冲击电流
1 引言
接地装置的冲击接地特性对于提高电力系统安 全运行的可靠性起着十分重要的作用。变电站及输 电线路的接地装置冲击特性的好坏直接影响其防雷 性能。
雷击变电站时, 巨大的雷电流通过地面装置及 接地系统流入土壤, 如此大的电流所产生的电磁场 可能对设备造成破坏并可能危及工作人员。随着变 电站控制设备的复杂性、灵敏度的不断提高, 如何 处理电磁兼容及电磁干扰等问题变得越来越重要。 准确的模拟及预测接地体在大的冲击电流作用下的 性能是非常重要的。
图 10 不同的雷电流注入点示 意图
的论述, 并通过大量的模拟计算, 分析了不同接地 网尺寸、不同引流方式等各种因素对水平接地网冲 击特性的影响。
参考文献
1 Geri A, Garbagnati E et al1 Non - linear behaviour of ground electrodes under lig htning surg e currents: computer modelling and compar ison with ex perimental results1I EEE T ransactions on M ag netics, 1992, 28 ( 2)
径。
由于冲击电流频率很高, 接地体本身的电感作
用非常明显, 阻碍冲击电流向接地体远端流动。接
地体各点的散流极不均衡, 各点电位相差很大, 因
此火花放电的程度亦不相同, 也即各点的等值半径
不同, 如图 1 所示。
图 1 接地体周围火花放电区域形状
)9 )
5 电工技术杂志6 2002 年第 12 期
由图 1 可以看出, 越靠近电流注入点接地体流 散的电流就越多, 这里的电流密度就越大, 击穿的 土壤也就越厚。所以在接地极周围, 火花放电的形 状呈锥形, 而不是一般所认为的圆柱形。
大量的研究证实, 接地系统在大冲击电流作用 下的性能与在低频小电流作用下的性能有很大的区 别。大电流将导致接地体周围的土壤电离, 从而使 接地系统呈现出典型的非线性冲击响应。土壤在大 冲击电流作用下发生的非线性电离与许多电、几何 参数有关, 其动态趋势是很难预测的, 以至于很难 建立一个准确的模型。
图 6 不同面积的地网示意图
图 7 所示为冲击电流波形 ( 波前时间和幅值) 和土壤电阻率一定时, 冲击接地电阻与接地网面积 之间的关系曲线。图 7 中横坐 标为地网的等 效半 径, 即与地网面积相等的圆形地网的半径, 此处用
图 7 冲击接地电阻随地网面积的变化 1 ) Q= 1008 #m 2 ) Q= 5008 #m 3 ) Q= 10008 #m 4 ) Q= 20008 #m
4 Daw alibi F, Xiong W et al1 T ransient perfo rmance of substation structures and associated grounding systems1I EEE T ransactions on I ndustry A pplicatio ns, 1995, 31 ( 3)
图 3 非均匀分布的接地体等值回路
图 3 中 R i 、L i 、Ci 和 Gi 分别是第 i 段导体的 电阻、电感、电容和电导。在无限大均匀媒质中长
为 l 、半径为 a 的金属导体的对地电容为
Cl( a) =
a l
+
ln l +
2PEl
l2 + a
a2 -
1+
a2 l
( 2) 当导体埋于 h 米深的大地中时, 根据镜像理 论, 假想地上空气中还有一相距 2h 的同样长度的 镜像导体, 此时导体的对地电容为
接地网面积一定时, 改变水平导体间距 ( 即改 变子网格数目) 也将对地网的冲击阻抗产生较大影 响。以面积均为 40 @ 40m2 但水平导体间距不同的 地网为例, 如图 8 所示, n 为接地网中子网格的个 数。图 9 所示为接地网最大暂态 GPR 随 n 变化的 关系曲线。
图 8 面积一定、导体间距不同的接地网示意图
2 Leonid D G, M ar kus H1 Frequency dependent and tr ansient characteristics of substation g rounding systems1I EEE T ransactions on P ower Delivery, 1997, 12 ( 1)
到目前为止, 国内外学者进行了大量的关于接 地系统冲击特性的 研究, 但都 是基于一些假 设条 件, 对一些结构比较简单的水平接地体和垂直接地 体建立了简化数学模型。在以往文献的分析和计算 中, 一般都没有考虑火花放电对接地装置冲击特性 的影响。本文提出了对这一问题的有效解决方法, 即基于电路理论的数值计算方法, 通过建立动态数 学模型考虑土壤中火花放电的影响, 得出了一些结 论。
5 雷电流注入点对冲击特性的影响
我们已经知道, 接地网的工频接地电阻基本不 受电流注入点的影响, 因为在低频下, 可以忽略接 地导体的电感, 认为整个接地网各处导体是等电位 的。而在冲击电流作用下, 冲击电流注入点的位置 将对地网的冲击产生很大影响。图 10 所示为不同 的雷电流注入点示意图。不同的雷电流注入点对最 大暂态 GPR 的影响如图 11 所示。
描述的基于电路理论的数学模型, 与以前国内外文 献中提出的模型相比, 这一模型做了部分简化。
为了比较不同接地装置的暂态性能以及分析不
同参数对暂态性能的影响, 通常要用 到最大暂态 GP R ( 地电位升) , 即电流注入点的 GPR。最大暂 态 GPR 给出了暂态周期中接地导体与远处大地之 间最大的可能电压值, 这在 EM C 研究中是特别关 注的。
另外经常用来描述接地系统性能的参数是冲击 接地电阻。冲击接地电阻定义为接地体上最大冲击
电压和最大冲击电流的比值
Ri =
U max I max
( 5)
本文中除特别指出, 均假定土壤临界击穿场强
E c 为 300kV / m。
3 接地网格的冲击特性
由于冲击电流的等值频率比工频高很多, 使得 接地网的电感效应非常显著, 其结果是冲击电流在 接地网格各点的分布极不均匀, 网格上各点的电位 分布相差很大。图 4 所示为一个 20 @ 20m2 的接地 网, 埋深 018m, 在雷电流波形为 216/ 50Ls, 幅值 为 10kA, 土壤电阻率为 Q= 5008#m, 介电常数 Er = 9 的条件下, 雷击点在地网的边角 1 处时, 位置 1 和位置 2 处的电位变化如图 5 所示。
图 4 雷击地网示意图
从图 5 可以看出, 接地网格上不同点处的电压 分布是极不均匀的。起始时刻接地网电流随注入电流的增大而迅速增大, 由于电流 的传导, 随着时间的推移, 接地网上远离注入点 1 处的电压依次逐渐升高。若导体各段向土壤中流散 的电流超过了临界 值, 则各段 将相继发生火 花放 电, 导致等值半径增大。最终电流注入点 1 处的电 压逐渐下降, 接地网上各点的电压逐渐趋于一致。
Ec Q
=
$ ii 2Pr i $l
ri =
$ ii 2PJ i $l
( 4)
) 10 )
接地网格的雷电冲击特性
式中 Ji ) ) ) 通过第 i 段导体流散的电流密度 $i i ) ) ) 通过第 i 段导体流散的电流 $l ) ) ) 每段导体的长度 E c ) ) ) 土壤临界击穿强度
根据不同时 刻各导体段流散 的电流值, 由式 ( 4) 确定各导体段的等值半径 ( 随时间变化) , 进 而求得各导体段的参数, 然后根据电路理论计算出 各点的电压、电流值。文中的模拟计算应用了上面
5 电工技术杂志6 2002 年第 12 期
r 表示。 从图 7 可以看出, 在土壤及雷电流参数不变的
情况下, 随着接地网面积的不断增大, 地网的冲击 接地电阻很快减小并趋于某一定值; 当接地网面积 超过一定值时, 地网面积的增加对冲击接地电阻的 影响就非常小了。此外, 只有在地网面积不太大的 情况下, 地网尺寸对冲击接地阻抗才有比较大的影 响。雷电流作用下的冲击接地阻抗随接地网面积变 化的情况与工频时有所不同。在工频时, 接地网尺 寸对接地电阻值有着巨大的影响, 地网的接地电阻 随地网面积的增加迅速减小。 412 水平导体间距对冲击特性的影响
不断增加, 靠近接地体的土壤的电场强度如果超过
土壤的临界击穿场强, 则在靠近接地导体区域的土