最新高考物理天体运动知识点梳理

合集下载

高三天体运动知识点

高三天体运动知识点

高三天体运动知识点天体运动是宇宙中各类物体的运动规律,涵盖了天文学的基础知识。

作为高中生,了解天体运动的基本概念、规律和相关知识点是我们必不可少的一部分。

下面,我将为大家介绍几个高三天体运动的重要知识点。

知识点一:地球的自转和公转地球的自转是指地球以自己的轴为中心,在24小时内完成一次旋转。

这一自转运动使得地球表面上的天空看起来像是星星和太阳在我们头顶上运动。

地球自转的方向是由地球的北极指向南极,自西向东。

地球的公转是指地球绕太阳运动,公转周期为365.25天(即一年)。

这一运动决定了四季的变化,使地球上各个地区不同时间经历着不同的气候和天气变化。

知识点二:日地距离和地球的椭圆轨道地球与太阳之间的距离并非固定不变,而是处于一定的变化之中。

地球与太阳的距离最近时约为1.47亿公里,最远时约为1.52亿公里。

这种距离的变化称为地球的近地点和远地点。

地球绕太阳的轨道并非完全是一个圆形,而是近似于一个椭圆。

离心率是衡量椭圆轨道离圆的程度,地球的离心率约为0.017。

这一椭圆轨道使得地球在公转过程中距离太阳有所变化。

知识点三:地球的倾斜轴和地球两极地球的自转轴与公转平面倾斜约23.5度,这一倾斜角度被称为倾斜轴。

地球的倾斜轴是导致地球上季节变化的重要原因之一。

地球上的两个极点分别是北极和南极。

北极位于地球的北端,南极位于地球的南端。

由于地球自转轴倾斜,使得地球上不同区域的太阳照射角度和时间发生改变,从而形成了不同地区的气候特点和季节变化。

知识点四:日食和月食当月球处于地球和太阳之间,太阳的光线被月球遮挡,地球的观测者就会看到太阳被阴影遮蔽的现象,这就是日食。

日食分为全食、偏食和环食。

当月球进入地球和太阳之间,地球的阴影遮住了月球,使得月球暗淡或者完全消失,这就是月食。

月食分为全食、半影食和偏食。

知识点五:星座和星系星座是指人们观测到的天空上一组遥远星星的集合。

我们通常将天空划分成12个星座,其中每个星座都有其特定的名称和象征。

高中物理天体运动公式总结

高中物理天体运动公式总结

高中物理天体运动公式总结1. 天体运动基础知识在我们仰望星空的时候,天体的运动其实并不神秘,只要掌握了几个基本的公式,大家就能明白宇宙中那些美丽的运动规律啦。

1.1 行星运动首先,行星绕太阳运动的轨道是椭圆的,太阳在一个焦点上。

这个基本事实是由开普勒提出的哦。

开普勒定律中有个非常重要的公式:( T^2 / R^3 = text{常数} ),其中( T ) 是行星的公转周期,( R ) 是行星与太阳的平均距离。

简单来说,这就是“公转周期的平方与轨道半径的立方成正比”。

1.2 引力定律再说说牛顿的引力定律,这可是基础中的基础!牛顿告诉我们,两个天体之间的引力可以用公式表示:( F = G frac{m_1 cdot m_2}{r^2} )。

其中,( G ) 是引力常数,( m_1 ) 和( m_2 ) 是两个天体的质量,( r ) 是它们之间的距离。

这个公式告诉我们,距离越远,引力越小;质量越大,引力越大。

2. 运动公式的实际应用了解了这些基本公式后,我们就可以运用这些理论来解决实际问题啦。

2.1 计算天体轨道如果我们知道了一个行星的公转周期 ( T ) 和距离 ( R ),我们可以利用开普勒定律来计算其他行星的运动情况。

例如,如果你想知道火星的轨道特性,只需要知道火星的周期和它离太阳的平均距离就行了,计算出来的结果非常可靠。

2.2 星体的速度天体的速度也是一个很有意思的话题!使用公式 ( v = sqrt{G frac{M}{r}} ),你可以计算天体在其轨道上的线速度。

其中 ( M ) 是天体的质量,( r ) 是天体到天体的距离。

这个公式说明了,天体离中心越近,速度越快。

3. 天体运动中的特殊现象在天体运动中,还有一些特别的现象值得一提,它们有时让我们感到惊奇和震撼。

3.1 行星逆行比如说行星逆行现象,这可真是天文界的奇妙现象。

在某些时候,一些行星看起来好像在自己的轨道上倒退了。

这其实是因为地球和这些行星之间的相对运动造成的,虽然有点拗口,但你可以把它想象成交通堵塞的时候你看别人车子倒退的感觉。

物理高考专题-天体运动

物理高考专题-天体运动

天体运动一、开普勒行星运动定律(不仅适用于行星绕太阳,也适用于卫星绕行的运动)第一定律:轨道定律——行星(卫星)绕太阳的运动轨迹是椭圆,太阳(行星)处于椭圆的一个焦点上。

第二定律:面积定律——行星(卫星)与太阳(行星)的连线在相等的时间内扫过相等的面积。

推论:离中心天体越近,线速度越大,角速度越大。

第三定律:周期定律——轨道半长轴的三次方与周期平方的比值是一个定值,该定值与中心天体有关。

k Ta =23二、求解天体质量的两个思路1、黄金代换式 2gR GM =➩GgR M 2=G :引力常量 M :天体自身质量 g :天体表面重力加速度 R :天体自身半径 2、利用环绕天体做匀速圆周运动的相关物理量计算中心天体质量——万有引力提供向心力r T m r m r v m r Mm G 2222)2(πω===(r :环绕天体到中心天体球心的距离)➪ G r v M 2= G r M 32ω= 2324GT r M π= GT v M π23= 3、对应天体密度公式VM=ρ GRgπρ43=3243GR r v πρ= 33243GR r πωρ= 3233R GT r πρ= 32383GR T v πρ=三、中心天体与环绕天体系统各物理量的变化关系rGMv =r ↑ v ↓ 3rGM=ω r ↑ ω↓ GM r T 32π= r ↑ T ↑ 2rGMa n =r ↑ n a ↓ 四、变轨问题升空过程:1→2→3需在Q 点和P 点分别点火加速速度关系:1Q v <2Q v 2P v <3P v又因为1和3轨道均为圆轨道,由r ↑ v ↓可知:2P v <3P v <1Q v <2Q v (2轨道上Q →P 过程中引力做负功)回收过程:3→2→1需在P 点和Q 点分别点火减速,故速度关系仍满足2P v <3P v <1Q v <2Q v 加速度关系:mF a 引=,故21Q Q a a =>32P P a a =。

2025高考物理总复习天体运动的四大问题

2025高考物理总复习天体运动的四大问题
m1+m2= 2 。

=
2

1
二、多星模型
所研究星体所受万有引力的合力提供做圆周运动的向心力,除中央星体外,
各星体的角速度或周期相同。常见的多星模型及规律:

Gm 2
(2R)2
+
Gm 0 m
=ma 向
R2
常见的三星模型
Gm 2
② L 2 ×cos
30°×2=ma 向
Gm 2
① L 2 ×cos
一、星球的瓦解问题
当星球自转越来越快时,星球对“赤道”上的物体的引力不足以提供向心力
时,物体将会“飘起来”,进一步导致星球瓦解,瓦解的临界条件是赤道上的
0
物体所受星球的引力恰好提供向心力,即 2 =mω2R,得
ω>
0
时,星球瓦解;当
3

ω<
ω=
0
。当
3
0
时,星球稳定运行。
2
=m

r
,
=m

1
1
2
1
2 r2。
2
2
(2)两星的周期、角速度相同,即T1=T2,ω1=ω2。
(3)两星的轨道半径与它们之间的距离关系为r1+r2=L。
(4)两星到圆心的距离
1
r1、r2 与星体质量成反比,即
2
(5)双星的运动周期 T=2π
(6)双星的总质量
3

( 1 + 2 )
4π 2 3
1


2
=
2-1
(n=1,2,3,…)。
2
典题6 (2023哈师大附中模拟)“海王星冲日”是指地球处在太阳与海王星之

高中物理天体运动知识点总结

高中物理天体运动知识点总结

高中物理天体运动知识点总结一、质点的运动(1)------直线运动1)匀变速直线运动1.平均速度V平=s/t(定义式)2.有用推论Vt2-Vo2=2as3.中间时刻速度Vt/2=V平=(Vt+Vo)/24.末速度Vt=Vo+at5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/26.位移s=V平t=Vot+at2/2=Vt/2t7.加速度a=(Vt-Vo)/t{以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0}8.实验用推论Δs=aT2{Δs为连续相邻相等时间(T)内位移之差}9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。

注:(1)平均速度是矢量;(2)物体速度大,加速度不一定大;(3)a=(Vt-Vo)/t只是量度式,不是决定式;(4)其它相关内容:质点、位移和路程、参考系、时间与时刻〔见第一册P19〕/s--t图、v--t图/速度与速率、瞬时速度〔见第一册P24〕。

2)自由落体运动1.初速度Vo=02.末速度Vt=gt3.下落高度h=gt2/2(从Vo位置向下计算)4.推论Vt2=2gh注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;(2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。

(3)竖直上抛运动1.位移s=Vot-gt2/22.末速度Vt=Vo-gt(g=9.8m/s2≈10m/s2)3.有用推论Vt2-Vo2=-2gs4.上升最大高度Hm=Vo2/2g(抛出点算起)5.往返时间t=2Vo/g(从抛出落回原位置的时间)注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;(2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;(3)上升与下落过程具有对称性,如在同点速度等值反向等。

2024高考物理一轮复习--天体运动专题--卫星运行参量的分析、近地、同步卫星与赤道上物体的比较

2024高考物理一轮复习--天体运动专题--卫星运行参量的分析、近地、同步卫星与赤道上物体的比较

卫星运行参量的分析、近地、同步卫星与赤道上物体的比较一、卫星运行参量与轨道半径的关系1.天体(卫星)运行问题分析将天体或卫星的运动看成匀速圆周运动,其所需向心力由万有引力提供. 2.物理量随轨道半径变化的规律G Mmr 2= ⎩⎪⎨⎪⎧ma →a =GM r 2→a ∝1r2m v 2r →v =GM r →v ∝1r mω2r →ω=GM r 3→ω∝1r3m 4π2T 2r →T =4π2r3GM→T ∝r 3即r 越大,v 、ω、a 越小,T 越大.(越高越慢)3.公式中r 指轨道半径,是卫星到中心天体球心的距离,R 通常指中心天体的半径,有r =R +h .4.同一中心天体,各行星v 、ω、a 、T 等物理量只与r 有关;不同中心天体,各行星v 、ω、a 、T 等物理量与中心天体质量M 和r 有关.5.所有轨道平面一定通过地球的球心。

如右上图6.同步卫星的六个“一定”二、宇宙速度1.第一宇宙速度的推导 方法一:由G Mm R 2=m v 12R,得v 1=GMR = 6.67×10-11×5.98×10246.4×106m/s≈7.9×103 m/s.方法二:由mg =m v 12R得v 1=gR =9.8×6.4×106 m/s≈7.9×103 m/s.第一宇宙速度是发射人造卫星的最小速度,也是人造卫星的最大环绕速度,此时它的运行周期最短,T min =2πRg=2π 6.4×1069.8s≈5 075 s≈85 min. 2.宇宙速度与运动轨迹的关系(1)v 发=7.9 km/s 时,卫星绕地球表面做匀速圆周运动. (2)7.9 km/s<v 发<11.2 km/s ,卫星绕地球运动的轨迹为椭圆. (3)11.2 km/s≤v 发<16.7 km/s ,卫星绕太阳运动的轨迹为椭圆.(4)v 发≥16.7 km/s ,卫星将挣脱太阳引力的束缚,飞到太阳系以外的空间.三、近地卫星、同步卫星及赤道上物体的运行问题1.如图所示,a 为近地卫星,半径为r 1;b 为地球同步卫星,半径为r 2;c 为赤道上随地球自转的物体,半径为r 3。

2024届高考物理一轮复习:天体运动热点问题

2024届高考物理一轮复习:天体运动热点问题

第四章曲线运动天体运动热点问题【考点预测】1.卫星的变轨问题2. 星球稳定自转的临界问题3. 双星、多星模型4. 天体的“追及”问题5.万有引力定律与几何知识的结合【方法技巧与总结】卫星的变轨和对接问题1.变轨原理(1)为了节省能量,在赤道上顺着地球自转方向发射卫星到圆轨道Ⅰ上,如图所示.(2)在A点(近地点)点火加速,由于速度变大,万有引力不足以提供卫星在轨道Ⅰ上做圆周运动的向心力,卫星做离心运动进入椭圆轨道Ⅱ.(3)在B点(远地点)再次点火加速进入圆形轨道Ⅲ.2.变轨过程分析(1)速度:设卫星在圆轨道Ⅰ和Ⅲ上运行时的速率分别为v1、v3,在轨道Ⅱ上过A点和B 点时速率分别为v A、v B.在A点加速,则v A>v1,在B点加速,则v3>v B,又因v1>v3,故有v A>v1>v3>v B.(2)加速度:因为在A点,卫星只受到万有引力作用,故不论从轨道Ⅰ还是轨道Ⅱ上经过A点,卫星的加速度都相同,同理,卫星在轨道Ⅱ或轨道Ⅲ上经过B点的加速度也相同.(3)周期:设卫星在Ⅰ、Ⅱ、Ⅲ轨道上的运行周期分别为T1、T2、T3,轨道半径分别为r1、r2(半长轴)、r3,由开普勒第三定律r3T2=k可知T1<T2<T3.(4)机械能:在一个确定的圆(椭圆)轨道上机械能守恒.若卫星在Ⅰ、Ⅱ、Ⅲ轨道的机械能分别为E1、E2、E3,从轨道Ⅰ到轨道Ⅱ,从轨道Ⅱ到轨道Ⅲ,都需要点火加速,则E1<E2<E3. 【题型归纳目录】题型一:卫星的变轨问题题型二:星球稳定自转的临界问题题型三:双星模型题型四:天体的“追及”问题【题型一】卫星的变轨问题【典型例题】例1.(2023·安徽·校联考模拟预测)《天问》是中国战国时期诗人屈原创作的一首长诗,全诗问天问地问自然,表现了作者对传统的质疑和对真理的探索精神,我国探测飞船天问一号发射成功飞向火星,屈原的“天问”梦想成为现实,也标志着我国深空探测迈向一个新台阶,如图所示,轨道1是圆轨道,轨道2是椭圆轨道,轨道3是近火圆轨道,天问一号经过变轨成功进入近火圆轨道3,已知引力常量G,以下选项中正确的是()A.天问一号在B点需要点火加速才能从轨道2进入轨道3B.天问一号在轨道2上经过B点时的加速度大于在轨道3上经过B点时的加速度C.天问一号进入近火轨道3后,测出其近火环绕周期T,可计算出火星的平均密度D.天问一号进入近火轨道3后,测出其近火环绕周期T,可计算出火星的质量【方法技巧与总结】卫星的变轨问题卫星变轨的实质卫星速度突然增大卫星速度突然减小练1.(2023·广东·广州市第二中学校联考三模)天问一号火星探测器搭乘长征五号遥四运载火箭成功发射意味着中国航天开启了走向深空的新旅程。

(完整版)天体运动总结

(完整版)天体运动总结

天体运动总结一、处理天体运动的基本思路1.利用天体做圆周运动的向心力由万有引力提供,天体的运动遵循牛顿第二定律求解,即G Mmr 2=ma ,其中a=v 2r =ω2r =(2πT)2r ,该组公式可称为“天上”公式. 2.利用天体表面的物体的重力约等于万有引力来求解,即G MmR 2=m g ,gR2=GM ,该公式通常被称为黄金代换式.该式可称为“人间”公式.合起来称为“天上人间”公式.二、对开普勒三定律的理解 开普勒行星运动定律1.所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。

2.对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积。

3.所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等.此比值的大小只与有关,在不同的星系中,此比值是不同的.(R 3T 2=k )1.开普勒第一定律说明了不同行星绕太阳运动时的椭圆轨道是不同的,但有一个共同的焦点. 2.行星靠近太阳的过程中都是向心运动,速度增加,在近日点速度最大;行星远离太阳的时候都是离心运动,速度减小,在远日点速度最小.3.开普勒第三定律的表达式为a 3T 2=k ,其中a 是椭圆轨道的半长轴,T 是行星绕太阳公转的周期,k是一个常量,与行星无关但与中心天体的质量有关.三、开普勒三定律的应用1.开普勒定律不仅适用于行星绕太阳的运转,也适用于卫星绕地球的运转.2.表达式a 3T 2=k 中的常数k 只与中心天体的质量有关.如研究行星绕太阳运动时, 常数k 只与太阳的质量有关,研究卫星绕地球运动时,常数k 只与地球的质量有关.四、太阳与行星间的引力1.模型简化:行星以太阳为圆心做匀速圆周运动,太阳对行星的引力提供了行星做匀速圆周运一、太阳与行星间的引力 2.万有引力的三个特性(1)普遍性:万有引力不仅存在于太阳与行星、地球与月球之间,宇宙间任何两个有质量的物体之间都存在着这种相互吸引的力.(2)相互性:两个有质量的物体之间的万有引力是一对作用力和反作用力,总是满足牛顿第三定律.(3)宏观性:地面上的一般物体之间的万有引力很小,与其他力比较可忽略不计,但在质量巨大的天体之间或天体与其附近的物体之间,万有引力起着决定性作用.五.万有引力和重力的关系1. 万有引力和重力的关系如图6-2、3-3所示,设地球的质量为M,半径为R,A处物体的质量为m,则物体受到地球的吸引力为F,方向指向地心O,由万有引力公式得F=G Mmr2.引力F可分解为F1、F2两个分力,其中F1为物体随地球自转做圆周运动的向心力F n,F2就是物体的重力mg2.近似关系:如果忽略地球的自转,则万有引力和重力的关系为:mg=GMm R2,g为地球表面的重力加速度.关系式2G Mm/Rmg=即2grG M=3.随高度的变化:在高空中的物体所受到的万有引力可认为等于它在高空中所受的重力mg′=GMm(R+h)2,在地球表面时mg=GMmR2,所以在距地面h处的重力加速度g′=R2(R+h)2g.六.天体质量和密度的计算(一).“天体自身求解”:若已知天体(如地球)的半径R和表面的重力加速度g,根据物体的重力近似等于天体对物体的引力,得mg=G MmR2,解得天体质量为M=gR2G,因g、R是天体自身的参量,故称“自力更生法”.(2)“借助外援法”:借助绕中心天体做圆周运动的行星或卫星计算中心天体的质量,常见的情况:G Mmr2=m⎝⎛⎭⎪⎫2πT2r⇒M=4π2r3GT2,已知绕行天体的r和T可以求M.观测行星的运动,计算太阳的质量;观测卫星的运动,计算行星的质量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最新高考物理天体运动知识点梳理
高考物理天体运动知识点
高考物理知识点
万有引力
1.开普勒第三定律:T2/R3=K(=4&pi;2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}
2.万有引力定律:F=Gm1m2/r2
(G=6.67&times;10-11N?m2/kg2,方向在它们的连线上)
3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)}
4.卫星绕行速度、角速度、周期:V=(GM/r)1/2;&omega;=(GM/r3)1/2;T=2&pi;(r3/GM)1/2{M:中心天体质量}
5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r 地)1/2=7.9km/s;V2=11.2km/s;V3
=16.7km/s
6.地球同步卫星GMm/(r地+h)2=m4&pi;2(r地+h)/T2{h&asymp;36000km,h:距地球表面的高度,r地:地球的半径}
摩擦力
1、定义:当一个物体在另一个物体的表面上相对运动(或有相对运动的趋势)时,受到的阻碍相对运动(或阻碍相对运动趋势)的力,叫
摩擦力,可分为静摩擦力和滑动摩擦力。

2、产生条件:①接触面粗糙;②相互接触的物体间有弹力;③接触面间有相对运动(或相对运动趋势)。

说明:三个条件缺一不可,特别要注意"相对"的理解。

3、摩擦力的方向:
①静摩擦力的方向总跟接触面相切,并与相对运动趋势方向相反。

②滑动摩擦力的方向总跟接触面相切,并与相对运动方向相反。

说明:(1)"与相对运动方向相反"不能等同于"与运动方向相反"。

滑动摩擦力方向可能与运动方向相同,可能与运动方向相反,可能与运动方向成一夹角。

(2)滑动摩擦力可能起动力作用,也可能起阻力作用。

4、摩擦力的大小:
(1)静摩擦力的大小:
①与相对运动趋势的强弱有关,趋势越强,静摩擦力越大,但不能超过最大静摩擦力,即0&le;f&le;fm 但跟接触面相互挤压力FN 无直接关系。

具体大小可由物体的运动状态结合动力学规律求解。

②最大静摩擦力略大于滑动摩擦力,在中学阶段讨论问题时,如无特殊说明,可认为它们数值相等。

③效果:阻碍物体的相对运动趋势,但不一定阻碍物体的运动,可以是动力,也可以是阻力。

高考物理复习技巧
1.模型归类
做过一定量的物理题目之后,会发现很多题目其实思考方法是一样的,我们需要按物理模型进行分类,用一套方法解一类题目。

例如宏观的行星运动和微观的电荷在磁场中的偏转都属于匀速圆周运动,关键都是找出什么力提供了向心力;此外还有杠杆类的题目,要想象出力矩平衡的特殊情况,还有关于汽车启动问题的考虑方法其实同样适用于起重机吊重物等等。

物理不需要做很多题目,能够判断出物理
模型,将方法对号入座,就已经成功了一半。

2.解题规范
高考越来越重视解题规范,体现在物理学科中就是文字说明。

解一道题不是列出公式,得出答案就可以的,必须标明步骤,说明用的是什么定理,为什么能用这个定理,有时还需要说明物体在特殊时刻的特殊状态。

这样既让老师一目了然,又有利于理清自己的思路,还方便检查,最重要的是能帮助我们在分步骤评分的评分标准中少丢几分。

3.大胆猜想
物理题目常常是假想出的理想情况,几乎都可以用我们学过的知识来解释,所以当看到一道题目的背景很陌生时,就像今年高考物理的压轴题,不要慌了手脚。

在最后的20分钟左右的时间里要保持沉着冷静,根据给出的物理量和物理关系,把有关的公式都列出来,大胆地猜想磁场的势能与重力场的势能是怎样复合的,取最值的情况是怎样的,充分利用图像提供的变化规律和数据,在没有完全理解题目的情况下多得几分是完全有可能的。

4.知识分层
通常进入高三后,老师一定会帮我们梳理知识结构,物理的知识不单纯是按板块分的,更重要是按层次分的。

比如,力学知识从基础到最高级可以这样分:物体的受力分析和运动公式,牛顿三大定律(尤其是牛顿第二定律),动能定理和动量定理,机械能守恒定律和动量守恒定律,能量守恒定律。

越高级的知识越具有一般性,通常高考中关于力学、电学、能量转化的综合性问题,需要用到各个层次的知识。

这也提醒我们,当遇到一道大题做不出或过程繁杂时,不妨换个层次考虑问题。

5.观察生活
物理研究物体的运动规律,很多最基本的认识可以通过自己平时对生活的细致观察逐渐积累起来,而这些生活中的常识、现象会经常在题目中出现,丰富的生活经验会在你不经意间发挥作用。

比如,你仔细体会过坐电梯在加速减速时的压力变化吗?这对你理解视重、超重、失重这些概念很有帮助。

你考虑过自行车的主动轮和从动轮的区别吗?你观察过发廊门口的旋转灯柱吗?你尝试过把杯子倒扣在水里观察杯内外水面的变化吗?我觉得物理学习也需要一种感觉,这就是凭经验积累起的直觉。

猜你感兴趣:
1.高考物理易错知识点总结
2.高中物理必修2行星的运动知识点归纳
3.高考物理天体运动公式归纳
4.高考物理天体运动公式
5.高考物理天体运动专题复习。

相关文档
最新文档