污水源热泵系统设计方案
污水源热泵系统介绍

污水源热泵系统介绍供热空调的能源消耗占社会总能耗的比例大达30% ,而环境污染的20%也是由供热空调燃煤引起的。
因此,采用热泵技术,开发低位的、可再生的清洁能源用于建筑物的供热空调意义重大,是建筑节能减排的有效途径之一。
这些能源包括:大气、土壤、地下水、地表水、工业余热及城市污水等等。
其中污水在数量(水量)、质量(水温)及分布规律上(地理位置)具有明显优势。
预计2010年我国污水排放量达720亿t/a,水温全年在10-25T之间,按开发50%的水量计算,可供热空调的面积至少在5亿卅以上。
另外,原生污水均匀地分布在城市地下空间,为因地制宜地有效利用及建设分散式的热泵供热空调系统创造了有利条件。
而地表水源在南方水源丰富的地区以及沿海城市更具有广阔的应用前景。
1热泵原理各类低位的清洁能源利用是通过热泵技术实现的。
热泵空调技术是根据逆卡诺循环原理,将低温热源或低位能源(如城市污水、地下水等)中的低品位热能进行回收,转换为高品位热能的一种节能与环保性技术,利用这项技术的逆过程同时还可以达到制冷的目的,是以存在合适的低位能源为必要条件的。
45 °C系统水“ 50 °C2-冷凝器60 C1-压缩机4-蒸发器2C11 C水源水"6 C图1热泵工作原理示意图图1示意了一种水源热泵向建筑物供热的工作原理。
所谓水源热泵,就是指以环境中的水(污水、地表水、地下水等)作为热源。
热泵工质(例如氟利昂)在压缩机 1 的驱动下,在压缩机1、冷凝器2、膨胀装置3、蒸发器4 几个主要部件中循环运动。
工质的热力性质决定了蒸发器中的工质温度可以保持在例如2C (称为蒸发温度)左右,而冷凝器中则为60 C (称为冷凝温度)左右。
这里的水源虽然在冬季可能仅为1「C, 但却可以作为热泵系统的热源,因为当将它引入温度为2C的蒸发器时,它必然要把自身中的热能(称为内能)交给机组,变为例如6C排放出去。
获取了水源热能的工质被压缩机压缩到例如60 C,在冷凝器中加热来自建筑物的系统循环水,由该水将热量带到建筑物的散热设备中。
水源热泵方案及节能说明

水源热泵设计方案说明一、工程概况:本项目位于江苏省无锡市,建筑面积23729平方米,总空调面积约14290M2,其中一至二层为超市;三至四层为餐饮部,五到十层全部为客房,有热水需求。
根据客户提供情况,从节能环保角度考虑,采用中央空调提供制冷,主机采用水源热泵机组。
二、设计依据1、甲方提供的相关图纸及文件;2、《采暖通风与空气调节设计规范》;3、《通风与空调工程施工及验收规范》;4、《实用供热空调设计手册》及国家其它有关规范。
三、设计参数1、室外主要气象参数:夏季计算干球温度T g= 33.4 ℃,湿球温度T S=28.4 ℃。
2、室内空气设计参数:夏季温度为:T=24-28℃,冬季16-20℃四、设备选型与计算主要技术指标1、总冷负荷为:Q = 2186KW ,考虑将来同时最大使用系数和适应无锡夏季空调负荷日变化较大等因素。
故选用“宏星”牌水冷螺杆式水源热泵机组40STD-E645HS 1 台和“宏星”水冷螺杆式热回收水源热泵机组:40STD-E540HSB 2台(用于制取热水);40STD-E645HS 制冷量:645.4KW 双压缩机,输入功率105.8 KW;40STD-E540HSB 制热量:542.9KW热回收量:162.9Kw,输入功率89 KW;五、能量调节与控制主要控制设备1、空调主机:采用40STD-E645HS 40STD-E540HSB的“宏星”牌主机,该系列的机组为我司最成熟的机种之一,机组配备微电脑控制系统,具有故障显示、运行情况显示;装配缺相逆相保护、电机过载保护、防冻保护、高低压压力保护等多项保护措施;压缩机共有6级能量卸载,0%、33%、50%、66.5%、83%、100%通过检测冷冻水的供回水温度自动能量卸载和加载,极大的削减了其运行成本。
2、冷冻水泵、冷却水泵启停可实现自动和手动二措施,确保系统的稳定使用。
六、热回收技术简介热回收冷水机组是广州恒星冷冻机械制造有限公司在普通水源热泵机组的基础上开发的新一代热能回收产品,其工作原理是利用热回收器把制冷过程中排放的大量废热回收起来制取卫生热水,在为客户提供冷冻水的同时,还可以供应大量的热水。
污水源热泵技术介绍

污水源热泵技术介绍(共10页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--城市原生污水源热泵系统技术解析报告北京和利时恒业热能科技有限公司二零一一年五月目录一. 建设污水源热泵的意义 (3)二、污水的热能利用 (4)三.污水源热泵的实现 (7)四.污水源热泵系统的效益分析 (8)一. 建设污水源热泵的意义:(1)缓解能源消耗紧张:在全国建筑能耗占总能耗的很大比例,而在建筑能耗中暖通空调的能耗更是占有举足轻重的位置,预测2020年我国暖通空调能耗量将达到10亿吨标煤,占总能耗的30%以上。
开发利用低位可再生洁净能源是暖通空调能源消耗的新模式。
可再生性清洁能源包括太阳能、风能、水能、生物质能、地热能和工业余热、城市废热等等,相对其他类型的冷热源,城市污水具有独特优势,是一种理想的低位冷热源。
利用污水作为冷热源对建筑进行采暖空调可以直接减少其他短缺能源的消耗,同时还可以达到废物利用的目的,是资源再生利用,发展循环经济,建设节约型社会,友好环境的重要措施。
目前满液式热泵机组在蒸发器进水温度1℃以上时,机组制热性能系数也在4以上,以火力发电效率计算,热泵机组的一次能源利用率大于。
而效率较高的集中供热系统(燃煤或燃气)一次能源利用率也仅在之间。
因此热泵系统节能量达50%。
(2)保护、友好环境:我国能源消耗中,煤占70%以上,以煤为主的能源结构下,暖通空调用能是大气污染的主要因素之一。
在全球空气污染最严重的10个城市中,中国占有5个,包括北京、上海、沈阳、西安和广州,北京冬季供暖期中TSP (总悬浮颗粒物)、2CO 、2SO 、x NO 等严重超标。
资料表明,70%的TSP 、90%的2SO 、60%的x NO 和85%的矿物燃料生成的2CO 来自燃煤,暖通空调引起的污染物排放量占总排放量的15%以上。
燃煤排放2SO 引起的酸雨污染已扩展全国整个面积的30%-40%,造成的经济损失接近国民生产总值的2%。
水源热泵方案设计思路

水源热泵方案设计思路一、项目前期调研在设计水源热泵方案之前,需要对项目进行充分的前期调研。
这包括了解项目所在地的气候条件、地质水文情况、建筑物的用途和功能、用户的需求和期望等。
1、气候条件了解当地的气温、湿度、降雨量、太阳辐射等气候参数,这些参数将直接影响水源热泵系统的负荷计算和设备选型。
2、地质水文情况对项目所在地的地质结构、地下水水位、水质、水温等进行勘察和分析。
地下水的水量和水温是决定水源热泵系统能否稳定运行的关键因素。
如果采用地表水作为热源或热汇,还需要了解河流、湖泊的流量、水质等情况。
3、建筑物用途和功能不同类型的建筑物(如住宅、商业、工业等)对空调系统的需求和使用时间不同。
例如,商业建筑在白天的空调负荷较大,而住宅建筑在晚上的负荷较大。
了解建筑物的用途和功能有助于合理确定系统的运行模式和设备容量。
4、用户需求和期望与用户进行充分沟通,了解他们对室内温度、湿度、舒适度的要求,以及对系统运行成本、维护管理等方面的期望。
二、负荷计算负荷计算是水源热泵方案设计的基础。
准确的负荷计算可以为设备选型和系统优化提供依据,确保系统能够满足建筑物的冷热需求。
1、建筑围护结构传热计算根据建筑物的结构、材料、朝向、窗户面积等参数,计算通过墙体、屋顶、窗户等围护结构的传热量。
2、室内人员、设备、照明散热计算考虑建筑物内人员的数量、活动情况,以及设备、照明的功率和使用时间,计算室内的散热负荷。
3、新风负荷计算根据建筑物的使用功能和人员密度,确定新风量,并计算新风处理所需的冷热量。
4、同时使用系数和负荷系数的确定考虑建筑物内不同区域、不同设备的使用时间和负荷变化情况,确定同时使用系数和负荷系数,以对计算得到的负荷进行修正。
三、水源系统设计水源系统是水源热泵系统的重要组成部分,其设计的合理性直接影响系统的性能和运行效率。
1、水源类型选择根据项目所在地的地质水文条件和用户需求,选择合适的水源类型。
常见的水源类型有地下水、地表水(河流、湖泊)和城市再生水等。
沈水湾污水处理厂污水源热泵系统设计

到 4 W・ h以上 的热 量 , 能 3% ̄7 %。 暖费 与燃 k 节 0 5 采 煤 供 热相 比为 7%, 燃 气相 比为 5%, 0 与 0 与燃 油相 比 为 3 % 。采 暖 时 每 使 用 1t 水 , 获 得 500 0 污 可 0 ~ 1 0 cl 能 ,相 当于 1 ~3 标 煤供 热 的有 效 00 0ka热 . 5
根据 甲方提 供 相关 数据 ,处理 后 污水 参 数 为 : 冬 季 污 水温 度 1 .~ 1 . , 5 25℃ 夏季 污 水温 度 2 ~2 1 0 2℃, 污 水 处理 量 为 1 x 0 t ; 0 l / 出水 水质 : H: .~ 8 ; S d P 7O . S : 2
Y ANG De
(io igPo icaB i igDeina dR sac stt, hn a g1 0 0, hn) La nn rvn i ul n s n eerhI tue S ey 10 5C ia l d g ni n
Ab ta t A c r i d a tg o sc n t no’ h n h i a e a e t am n l t tesw g — o reh a p m  ̄tm i ui e s r c : o dn t a v na e u odio S e s uw n S w g r t e t a , h e a e s uc e u p s e t i d c go i J e pn t s l z
4 污 水 源热 泵 系统 设 计
41 室 内设 计 参数 .
B
4 热 负 、 负荷的计算 . 2 荷 冷 结合沈阳地区实际经验, 对该项 目热负荷、 冷负荷 的计 算 为 : 负 荷 为 2 0k 冷 7 W,冷 负 荷 指 标 9 m2 OW/ ; 热 负荷 为 6 0 W , 负荷 指标 8 m 3 k 热 4W/ 。 43 污水 源热 泵机房设 计 - 水 源 热泵机 房 是整个 厂 区改造 的重点 , 是采 暖 也 空调 实现 的大 脑 , 虑 到污 水特 殊 性 , 考 水源 热 泵 系 统 由螺 杆 式水 源 热泵 机 组 、 宽流 道板 式换 热 器 、 冻 水 冷 循环 泵 、 却 水循 环 泵 、 水提 升 泵 、 水 泵 、 化 水 冷 污 补 软 箱等 组成 。水源热 泵原 理参 见 图 1污 水源侧 , 水经 , 污 取水 口提 升后 输送 至水 源热 泵机 房 , 与换 热器 换热 后 排掉 , 提取 了污水 5℃温 差 ; 却水侧 , 却水 通 过换 冷 冷 热器 与污 水换 热后 进入 水源 热泵 机组 , 环换 热 。冷 循 冻水 侧 , 冻水 经水源 热泵 机组后 输送 至各个 末端 。 冷 由设在 锅 炉 房 内的 2台螺 杆 式水 源 热 泵机 组提 供冷、 热源 , 供夏 、 冬季 空 调使 用 , 季 仅 开 启 1台水 夏 源 热泵 机 组 制冷 , 季 采 暖 时 2台 同时运 行 , 组制 冬 机 冷 / 热量 能根据 末端 负荷情 况 自动进行 调节 。选用 制 螺杆水源热泵机组 2台 , 制冷 / 制热量 4954 0 w, 3 . 7.k / 2 冷水 / 水流量 7 ./5 /, 热 567 . ma 冷却 水流量 7 . m3 , 6 h 56 / h 冷 水 1/ , 热 水 4/0℃ , 制 冷 / 热 耗 电量 27℃ 54 制 8 . 125l 。夏季 冷冻 水 供水温 度 为 7℃ , 32 0 . / 回水温 度为 l ; 2℃ 夏季 污 水 供 水温 度 为 2 1℃, 回水温 度 为 2 7℃ ; 冬季 污水 供水 温度 为 1 , 2℃ 回水 温 度 为 7℃; 冬季空调热水供水温度为 4 ℃, 5 热水回水温度 为 4 ℃ 。 0 污 水 取 水 口设 在 污 水 处 理 厂 汇 水 口, 水 口为 汇 3条 污 水 处 理 流 线 的 汇 合 点 ,是 污 水 处 理 流线 的 终 点, 水质 最 好 , 污水 泵 2台 , 用 1 , 污 水 提 升 设 1 备 将 送 至 水源 热 泵 机房 ,跟 换 热器 换 热 后排 至 附近 污 水 井 。另外污 水处 理厂 每 隔一段 时 间要停 产检 修 , 水 汇 口会 出现 断 水情 况 , 因此 , 设计 考 虑 在 其 中一 个 澄 清 池 内设 污水 泵 2台,在厂 区污 水 处理流 线做 检修 时 , 澄 清池 内的水 可满 足 2 h用 水量 , 4 以做 备用 。
污水源热泵系统工程技术要求规范

实用文档污水源热泵系统工程技术规(草拟稿)Technical code for sewage source air-conditioning system 起草单位:广西瑞宝利热能科技起草人:昊目录1 总则 (2)2 术语 (3)3 工程勘察 (4)4 污水换热系统设计 (6)5 室系统 (12)6、整体运转、调试与验收 (13)7、附录A 换热盘管外径及壁厚 (15)1 总则1.0.1 为使污水源热泵系统工程设计、施工及验收,做到技术先进、经济合理、安全适用,保证工程质量,制定本规。
1.0.2 本规适用于以污水源为低温热源,以污水为传热介质,采用蒸汽压缩热泵技术进行供热、空调或加热生活热水的系统工程的设计、施工及验收。
1.0.3 污水源热泵系统工程设计、施工及验收除应符合本规外,尚应符合国家现行有关标准的规定。
2 术语2.0.1 污水源热泵系统sewage source heat pump system以污水源为低温热源,由污水换热系统、污水源热泵机组、建筑物系统组成的供热空调系统。
2.0.2 污水源sewage source含有固体悬浮物的城市污水、江河湖水、海水等,统称污水源。
2.0.3 污水源热泵机组sewage source heat pump unit以污水或与污水进行热能交换的中介水为低温热源的热泵。
2.0.4 污水换热系统sewage heat transfer system与污水进行热交换的污水热能交换系统。
分为开式污水换热系统和闭式污水换热系统。
2.0.5 开式污水换热系统open-loop sewage heat transfer system污水在循环泵的驱动下,经处理后直接流经污水源热泵机组或通过中间换热器进行热交换的系统。
2.0.6 闭式污水换热系统closed-loop sewage heat transfer system将封闭的换热盘管按照特定的排列方法放入具有一定深度的污水体中,传热介质通过换热管管壁与污水进行热交换的系统。
污水源热泵工程设计与应用研究

图1
1 方案设计依据 污水处理厂日处理污水量为 60000 吨 / 天,考虑尖峰和
低谷的因素,按平均小时排水量 1250m3/h 计算,以此水量进 行换热器选型计算依据。污水源热泵机组夏季冷凝器设计温 度为 45/40℃,冬季蒸发器设计温度为 9/6℃,污水进行换 热器时,冬季参数较为不利,因此,以冬季工况进行选型计算。
中国设备工程 2020.03 (上) 183
Research and Exploration 研究与探索·工程技术与创新
=9℃;
污水侧冷水流量 G1=1250000kg/h;污水冷却流入温度
t2′=11℃;污水冷却流入出温度 t2〞=10℃。
(2)计算温度及物性参数:
污水冷却水的定性温度 t2=(t1′+t1〞)/2=(10+11)/2=10.5℃; 冷却水的密度查物性表得 ρ2=992.9kg/m3; 冷却水的比热查物性表得 Cp2=4.174kJ/kg.℃;
运西污水现场实际情况是污水经过处理后,通过一段污 水排放池后,排入市政污水管道。这段排放池长 40 多米, 宽 2 米,内设紫外线消毒渠、巴氏计量槽,该装置对污水排 放流道有一定要求,如图示。考虑这种特殊要求,将专门的 污水源换热器设置在污水进入排放池的前面,充分利用污水 自身流速进行换热(如图 1)。
关键词:污水源热泵;污水源换热器;传热系数 中图分类号:TU83 文献标识码:A 文章编号:1671-0711(2020)03(上)-0183-03
某污水处理厂污水源热泵工程位于沧州市迎宾大道以 西,经一路与渤海路交口西南角的位置,小流津河东岸。一 期工程的厂区综合楼、污泥脱水间、加药间、配电室值班等 室内需要供暖,供暖面积 3000 余平米。原设计采用市政热源, 通过厂区新建换热站为厂区提供热媒。一次网供回水温度为 105/55℃,二次网供 / 回水温度 70/45℃。
《污水源热泵》课件

Part Three
污水源热泵系统组 成
污水换热器
功能:将污水中的 热量传递给清洁水
结构:由换热管、 壳体、密封件等组 成
工作原理:利用污 水与清洁水之间的 温差进行热交换
应用:广泛应用于 污水处理厂、工业 废水处理等领域
热泵机组
压缩机:将低压气体压缩 成高压气体,提高温度
冷凝器:将高压气体冷却 成液体,释放热量
运行
常见故障及处理方法
压缩机故障:检查压缩机 是否正常工作,如有问题 需及时更换
冷凝器故障:检查冷凝器 是否正常工作,如有问题 需及时清洗或更换
蒸发器故障:检查蒸发器 是否正常工作,如有问题 需及时清洗或更换
控制系统故障:检查控制 系统是否正常工作,如有 问题需及时维修或更换
管道堵塞:检查管道是否 堵塞,如有问题需及时疏 通
工业废水处理: 利用工业废水中 的热量进行热交 换,降低能源消 耗
农业灌溉:利用 农业灌溉水中的 热量进行热交换, 提高灌溉效率
建筑供暖:利用 污水源热泵为建 筑提供供暖,降 低能源消耗和碳 排放
污水源热泵的优势与局限性
优势:节能环保,可利用污水中的热量进行供暖或制冷 优势:运行稳定,不受外界环境影响 局限性:需要定期维护和清洗,以保证设备的正常运行 局限性:对水质要求较高,不适用于含有大量杂质或腐蚀性物质的污水
膨胀阀:控制制冷剂流量, 调节蒸发压力
蒸发器:吸收污水中的热 量,使污水降温
辅助系统
水泵:用于输送污水和热泵系统之 间的循环水
控制系统:用于控制热泵系统的运 行和调节
添加标题
添加标题
添加标题
添加标题
换热器:用于将污水中的热量传递 给热泵系统
过滤器:用于过滤污水中的杂质, 保护热泵系统
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
污水源热泵系统设计方案
一、工程概况
***某办公楼:建筑面积20000m2
二、编制依据
1、热泵系统技术参数及相关配置;
2、《采暖通风与空气调节设计规范》GB50019——2003;
3、《全国民用建筑工程设计技术措施·暖通空调·动力分册》
4、《给水排水设计手册》第二册
三、冷热负荷计算
1、热负荷计算公式:
供热量(W)=供暖面积(m2)×供暖热指标(W/m2)=20000×50=1000kW
2、冷负荷计算公式:
供冷量(W)=供冷面积(m2)×供冷指标(W/m2)=20000×80=1600kW
四、冷热源系统方案
1、能量提升系统
依据上述计算热负荷为1000kW,冷负荷为1600kW。
根据负荷计算负荷,考虑建筑的夏季制冷同时使用系数,主机设备配置见下表:
主机型号数量制热量制热功率制冷量制冷功率
台kW kW kW kW
MWH480CC 1 1289 361 1664 303
2、能量采集系统
能量采集采用城市污水处理厂提供污水源为冷热源,冬季采集来自污水的大量低品位热能,给室内取暖;夏季热泵机组运行,将室内的余热排放到污水中。
它有以下的特点
环保效益显著:污水源热泵是利用污水作为冷热源进行能量转换的供暖空调系统,相对传统采暖制冷方式,供热同时省去燃煤、燃气、燃油等锅炉设备,没有燃烧过程,避免了排烟污染;供冷时省去冷却腿,避免了冷凝废热引起的城市热岛效应及霉菌污染,不产生任何废渣、废水、废气和污染
高效节能:冬季污水的温度要比环境气温高的多,热泵的蒸发温度提高,能效比也提高。
夏季污水温度比环境气温要低,冷却效果要远好于冷却塔,机组效率体高。
运行稳定可靠:污水的温度一年四季相对稳定
3、能量释放系统
末端采用风机盘管+新风系统
4、系统水处理及系统定压补水
⑴、水处理:采用全自动软水器。
⑵、定压补水:采用全自动补水定压装置。
设软水箱、补水泵、定压罐等设备组成气压罐闭式定压补水系统,设压力传感器测得系统压力并与设定值比较低点启动补水泵、高点停泵,同时将压力信号送至定压罐上的电动阀及安全阀使其在不同的设定压力下开启,保证系统安全稳定运行。
5、系统节能控制
⑴、主机为微电脑全自动控制,具备自动调节功能,根据设定参数进行能级调节,在满足冷热负荷的同时最大限度节能;
⑵、主机与水泵连锁,主机开启,相对应的泵依次启动运行,如主机关闭则关闭相应的泵也依次关闭;
⑶、本系统由主机自带PLC进行群组控制,各主机按累计运行时间优先启停;
⑷、主机设RS485通讯接口,可与外界远程通讯传输数据。
6、机房设备清单
表四:机房设备表
7、配套条件
①机房设备总功率:441kW;
②机房位置及土建要求:机房占地面积小,无需其他辅助建筑,机房布置灵活。
③供暖要求:机房无需供暖设施。
五、热泵的经济性评价
拟定供热以及制冷工况如下:
供热天数:90天时间:16小时/天合计1440小时
制冷天数:120天时间:12小时/天合计1440小时
已知:当地电价0.5元/度,天然气 2.3元/m3,现将地表水源热泵系统与燃气供热系统运行费用进行比较
冬天供热时:
夏天制冷时:
由以上预算可知,地表水源热泵系统供暖和制冷的费用要比传统供暖制冷的燃气系统更节
省费用。
参考文献
[l]李亚峰,陈平. 利用热泵技术回收城市污水中的热能[J]. 可再生能源, 2002 (6): 23 - 24. [2]刘世梅,何凤璟,孙云海. 污水源热泵技术的应用实例及可行性分析[J]. 山西建筑,2008,
34(18):195-196.
[3]郭安,王宗山,端木琳等. 污水源热泵空调系统在实际工程中的应用[J]. 可再生能源. 2008,26(3):91-95.
[4]伍培,付祥钊,林真国等. 重庆地区污水源热泵系统的可行性分析与方案设想[J]. 建筑给排水,2007,33(5):174-181.
[5]尹军,韦新东. 我国主要城市污水中可利用热能状况初探[J]. 中国给水排水,2001,17(4): 27-30.
[6]白莉,齐子姝,石岩. 污水源热泵空调系统节能减排性能分析[J]. 电力需求侧管理,2008, 10(2):33-36.
[7]叶青,沈国民. 污水源热泵用于武汉地区的可行性分析[J]. 洁净与空调技术,2006(1):34-38..
[8]马最良,姚杨,杨自强等.水环热泵空调系统设计[M].北京:化学工业出版社, 2005.(责任编辑郑燕凌)
[9]陆亚俊,马最良,邹平华.暖通空调〔M〕.北京:中国建筑工业出版社,2002,345-350.
[10]奚士光,吴味隆,蒋君衍.锅炉房及锅炉房设备〔M〕.北京:中国建筑工业出版社,2004,24-38.
[11]陆耀庆.实用供热空调设计手册〔M〕.北京:中国建筑工业出版社,1993,244-268.。