维纳滤波(最小均方滤波)

合集下载

维纳滤波滤除同频的原理

维纳滤波滤除同频的原理

维纳滤波滤除同频的原理1.引言1.1 概述维纳滤波是一种广泛应用于信号处理领域的滤波算法,其主要用途是去除同频干扰。

在实际应用中,我们经常会遇到不同信号混杂在一起的情况,即使这些信号具有相同的频率,但它们可能具有不同的相位和幅度。

这些干扰信号会对我们所关注的信号产生干扰,影响我们对信号的分析和处理。

维纳滤波通过对输入信号进行加权求和的方式,将干扰信号的影响最小化,使我们能够更准确地恢复出所关注的信号。

其基本原理是通过对干扰信号和所关注信号进行统计特性的估计,然后通过最小均方误差准则确定滤波器的加权系数,最终实现对干扰信号的抑制。

同频干扰是指具有相同频率的干扰信号对所关注的信号产生的干扰作用。

由于干扰信号与我们所关注的信号相同频率,传统的滤波器往往难以区分它们并准确滤除。

而维纳滤波通过对信号的统计特性进行建模,可以较好地区分干扰信号和所关注信号,并实现对同频干扰的有效抑制。

维纳滤波在通信领域、图像处理领域等都有广泛的应用。

在通信系统中,维纳滤波可以用于抑制同频干扰信号,提高系统的抗干扰性能,从而提高通信质量。

在图像处理领域,维纳滤波可以用于去除同频干扰造成的图像噪声,提高图像的清晰度和质量。

总之,维纳滤波是一种重要的信号处理技术,能够有效地滤除同频干扰。

通过对信号的统计特性进行建模和优化滤波器的参数,维纳滤波能够在干扰较严重的情况下提供较好的抑制效果。

在实际应用中,我们可以根据具体的信号特点和要求选择合适的维纳滤波算法,以达到更好的滤波效果。

1.2文章结构文章结构部分应描述整篇文章的组织结构和各个部分的内容。

在这篇文章中,可以按照以下方式来编写文章结构的内容:文章结构:本篇长文将按照以下结构组织内容:1. 引言1.1 概述1.2 文章结构: 本节将介绍文章的结构和各个部分的内容安排。

1.3 目的2. 正文2.1 维纳滤波的基本原理: 本节将介绍维纳滤波的基本原理,包括维纳滤波的数学模型和算法。

2.2 同频干扰的特点: 本节将探讨同频干扰的特点,包括其在信号处理中的影响和表现形式。

第2章 维纳滤波讲解

第2章 维纳滤波讲解

J min (w R 1p) T R ( w R 1p) J min (w w o ) T R (w w o )
(该式表明最佳权向量与最小均方误差的对应关系)
为使误差性能曲面的表达式简单化,定义权偏差向量为
T , w1 ,, w w w w o w0 M 1
结论:维纳滤波器所得最小均方误差等于期望响应的方差与滤波器输出方差的差值。
6
第2章 维纳滤波
2.4 横向滤波器的维纳解 2.4.1 横向滤波器的维纳-霍夫方程及其解
u (n)
u ( n 1)
z w0
1
z
1

u (n M 2)
z
1
u ( n M 1)
w1


wM 2
wM 1
u (n) ,当前输出 y (n) ,期望响应为 d (n) 滤波器的当前输入值: 重写维纳-霍夫方程
M 1 i 0
w
oi
r (i k ) p(k ) k 0,1,2,
定义横向滤波器的抽头输入 u(n), u(n 1),, u(n M 1) 的相关矩阵为R,则
p E[u(n)d (n)] [ p(0), p(1),, p(1 M )]T
则横向滤波器的维纳-霍夫方程式的矩阵表示形式为 Rwo p ,即维纳解为 w o R 1p 式中: w o [wo,0 , wo,1 ,, wo,M 1 ]T 是横向滤波器最优抽头权向量。
J J J J J , ,, 0 w w0 w1 wM 1
T
而 故可推出
J 2Rw(n) 2p
Rwo p ,与维纳-霍夫方程一致。
10

RLS、LMS及维纳滤波

RLS、LMS及维纳滤波
图3.1 RLS算法下的误差信号以及滤波处理后的输出信号
图3.2 LMS算法下的误差信号以及滤波处理后的输出信号
图3.3维纳滤波的输入受干扰信号以及滤波输出信号
上图中红色是滤波后的输出信号,通过对比可以发现RLS算法下的输出信号比LMS算法下的输出信号要稳定的多。可以看到在RLS算法下的误差信号在迭代次数200次左右的时候变化较快较大,这是因为滤波器的阶数是200。可以看到在LMS算法下的输出信号在迭代次数200次以前是还没有达到收敛的,这是因为自适应滤波器的阶数是200阶,在200次之后,信号才是真正的滤波器的输出信号。由维纳滤波器的输出信号可以看到,在前200次,波形都是不稳定的,这是因为滤波器的阶数是200,在这之前还没有求得最佳的滤波器的系数,之后输出波形基本稳定,并且有效的抑制了噪声。但是基于维纳滤波器的求解过程中要求知道信号的统计特性,因此适用范围有限,并且计算自相关矩阵以及求其逆时需要占用极大的内存。

[1]张贤达.现代信号处理[M].北京:清华大学出版社,2004.
[2]丁玉美.数字信号处理[M].西安:西安电子科技大学出版社,2003.
[3]王正林,刘明.精通MATLAB 7[M].北京:电子工业出版社,2006(7).

课程设计
RLS、LMS及维纳滤波算法在噪声背景下的信号提取
院系:
专业:
学生姓名:
学号:
指导教授:
二○一三年十二月

噪声无处不在,在通信领域,噪声干扰是屡见不鲜的事情。前人做了很多从噪声中提取信号的相关工作。在本次实验中,主要是运用经典的最小均方误差方法,使用的是LMS准则,以及最小二乘方法,使用的是RLS准则,对这两种方法的降噪效果进行对比和分析。
3

最优估计之维纳滤波

最优估计之维纳滤波

设计目的:滤除按照统计方式干扰信号的噪声。
9
连续系统维纳滤波器的信息流程图 W ( s) Y(t)
+ -
X(t)
+ +
Z(t)
G(s)
e( t ) ˆ t X
V(t)
X(t) —— 有用随机信号; V(t) —— 随机干扰信号; G(s) —— 实际滤波器传递函数; W(s) —— 理想滤波器传递函数; ˆ t —— G(s) 的真实输出信号; X Y(t) —— W(s) 的理想输出信号。
ˆ t e(t ) Y (t ) X
W(s) = 1 ------ 滤波问题 s 预测问题 W ( s) e-----W(s) = s ------ 微分平滑问题
10
什么是维纳滤波

目的:设计传递函数G(s),使e(t) 尽可能小。 ˆ t X (t ) X ˆ t 误差信号: e(t ) Y (t ) X
为求极值:
1 T 2 E e (t ) lim [ X ( t ) h ( ) z ( t ) d ] dt min 0 T 2T T 采用泛函变分方法。定 义泛函: 滤波器脉冲响应 h( ) 的函数, 2


定义在集合 h( ) 上的范函。

1 J [h( )] lim T 2T
S zx ( ) G ( j ) S zz ( )
G( j ) h(t )e jt dt
0




Rzx ( ) e j d Rzz ( ) e j d16

另一方面,可得:
ˆ X t h( ) Z (t )d
8
维纳滤波的特点

维纳滤波

维纳滤波

维纳滤波7.2 维纳滤波从连续的(或离散的)输入数据中滤除噪声和干扰以提取有用信息的过程称为滤波,而相应的装置称为滤波器。

根据滤波器的输出是否为输入的线性函数,可将它分为线性滤波器和非线性滤波器两种。

滤波器研究的一个基本课题就是:如何设计和制造最佳的或最优的滤波器。

所谓最佳滤波器是指能够根据某一最佳准则进行滤波的滤波器。

20世纪40年代,维纳奠定了关于最佳滤波器研究的基础。

即假定线性滤波器的输入为有用信号和噪声之和,两者均为广义平稳过程且知它们的二阶统计特性,维纳根据最小均方误差准则(滤波器的输出信号与需要信号之差的均方值最小),求得了最佳线性滤波器的参数,这种滤波器被称为维纳滤波器。

在维纳研究的基础上,人们还根据最大输出信噪比准则、统计检测准则以及其他最佳准则求得的最佳线性滤波器。

实际上,在一定条件下,这些最佳滤波器与维纳滤波器是等价的。

因而,讨论线性滤波器时,一般均以维纳滤波器作为参考。

维纳滤波理论用于解决最小均方误差下的线性滤波问题。

设接收到(或观测到)的信号为随机信号(7-1)其中s(t)是未知的实随机信号,n(t)是噪声。

要设计的线性滤波器,其冲击响应为h(t, τ),输入为x(t),输出为,即(7-2)令为估计误差。

冲击响应h(t, τ)按最小均方误差准则确定,即h(t, τ)必须满足使(7-3)达到最小。

根据最小均方误差估计的正交条件,有以下关系成立(7-4)令(7-5)(7-6)则有(7-7)上述方程通常称为非平稳随机过程条件下的维纳-霍甫(Wiener-Kolmogorov)积分方程。

特别当x(t),s(t)均为广义(或宽)平稳随机信号,而滤波器是线性时不变系统的情况下,x(t)与s(t)必为联合平稳,式(7-7)可写为(7-8)令,,则有(7-9)此处,“*”号表示卷积,对上式两边取Fourier变换,可得(7-10)(7-11)对于因果线性系统,有(7-12)采用完全相同的分析方法,推得因果平稳维纳-霍甫积分方程如下(7-13)(7-14)其中,表示的零、极点位于,表示的零、极点位于。

第八章 维纳滤波

第八章 维纳滤波
k 0 n n
rxx(λ-k)
rzx(λ)
第八章 维纳滤波 维纳-何甫积分方 程式(离散形式):
中原工学院
N xx
机电学院
h(k )r
k 0
N
( k ) rzx ( ) 或 h(k )rxx (k ) rzx ( )
k 0
自相关函数为偶函数
▲ 维纳滤波器 如果已知x(n)与所要求的输出信号z(n),则当x(n)的自相关函 数和z(n)与x(n)的互相关函数为已知时,求解维纳-何甫方程,即可求得满足均 方误差最小的滤波因子h(n)。这就是按照最小平方准则设计的线性滤波系统, 它是一个最佳系统,通常称为维纳滤波器。 这是一个对 称 矩阵 。 卷积形式:
第八章 维纳滤波
中原工学院
机电学院
第二节
反滤波
一、回声鸣震现象及反滤波
问题的提出:在某些情况下(例如,在大礼堂内演讲,由于墙壁多次反射, 而造成回声交混,形成一片轰鸣声,使人们听不清讲话内容)所录取的信号, 可认为是原始信号经过几个物理系统(信号传输的路径或通道)作用的结果, 或者看成是源信号经过几个物理滤波器以串联形式滤波的结果。这时,采用 反滤波方法可以使真正源信号从干扰中恢复出来。
n n n n
期望输出s(n)与输入x(n)的互相关函数为
n n
rsx (k ) s(n k ) x(n) s(n k )[s(n) n(n)] rss (k )
如果以 Rss(ejω) 和 Rnn(ejω) 分别表示 rss(k) 和 rnn(k) 的频谱,即分别为 s(n) 和 n(n) 的功率谱,则在对维纳滤波的时间范围不加限制的情况下,由式H(ejω)=Rzs(ejω)/ Rxx(ejω),可以得到维纳滤波器的频率响应应为:

IIR滤波FIR滤波及维纳滤波简介、程序及仿真结果

IIR滤波FIR滤波及维纳滤波简介、程序及仿真结果

IIR 滤波器、FIR 滤波器与维纳滤波器所谓数字滤波器,是指输入、输出均为数字信号,通过一定运算关系改变输入信号所含频率成分的相对比例或者滤除某些频率成分的器件。

数字滤波器从实现的网络结构或者从单位脉冲响应分类,可以分为无限脉冲响应(IIR )滤波器和有限脉冲响应(FIR )滤波器。

它们的系统函数分别为:1.1n N n z n h z H --=∑=10)()( 1.21.1中的H(z)成为N 阶IIR 滤波器,1.2中的H(z)称为(N-1)阶FIR 滤波器函数,这两种类型的设计方法有很大的区别。

IIR 数字滤波器的设计既可以从模拟滤波器的设计入手来进行,也可以直接利用指标参数,通过调用滤波器设计子程序或函数来进行。

可以利用脉冲响应不变法来设计IIR 数字低通滤波器,按照技术要求设计一个模拟低通滤波器,得到模拟低通滤波器的传输函数,再按一定的转换关系将传输函数转换成数字低通滤波器的系统函数H(z)。

设模拟滤波器的传输函数是s H a (),相应的单位冲激响应是)(t h a ,对)(t h a 进行等间隔采样,采样间隔为T ,得到)(nT h a ,将h(n)= )(nT h a 作为数字滤波器的单位取样响应,那么数字滤波器的系统函数便是h(n)的z 变换,因此脉冲响应不变法是一种时域上的转换方法,它使h(n)在采样点上等于)(t h a∑=-=Ni iia s s A s H 1)( 1.3 ∑=--=Ni T s iz eA z H i 111)( 1.4 将s H a ()在s 平面上沿虚轴按照周期2pi/T 延括后,再按标准映射关系sT e z =,映射到z 平面上,就得到了H(z)。

脉冲响应不变法的优点是频率坐标变化时线性的,如果不考虑频率混叠现象,用这种方法设计的数字滤波器会很好的重现模拟滤波器的频率特性。

以下为用matlab 仿真的一个IIR 低通滤波器: % IIR Lowpass Use Butterworth % copyright by Etual clear;fs=20;fpass=4;fstop=5;∑∑=-=--=Nk kk Mk k k z a z b z H 101)(Ap=0.5;As=10;wp=2*pi*fpass/fs;ws=2*pi*fstop/fs;omegap=tan(wp/2);omegas=tan(ws/2);ep=sqrt(10^(Ap/10)-1);es=sqrt(10^(As/10)-1);N=ceil(log(es/ep)/log(omegas/omegap));omega0=omegap/ep^(1/N);K=floor(N/2);for i=1:Ktheta(i)=pi*(N-1+2*i)/(2*N);endfor i=1:KG(i)=omega0^2/(1-2*omega0*cos(theta(i))+omega0^2);endfor i=1:Ka1(i)=2*(omega0^2-1)/(1-2*omega0*cos(theta(i))+omega0^2);endfor i=1:Ka2(i)=(1+2*omega0*cos(theta(i))+omega0^2)/(1-2*omega0*cos(theta(i))+omeg a0^2);endif K<(N/2)G0=omega0/(omega0+1);a0=(omega0-1)/(omega0+1);endw=0:pi/300:pi;Hw2=1./(1+(tan(w/2)/omega0).^(2*N));plot(w/pi,Hw2);grid;图一IIR滤波器频谱图IIR数字滤波器能保留一些典型模拟滤波器优良的幅度特性,但设计中只考虑了幅度特性,没考虑相位特性,所设计的滤波器相位特性一般是非线性的。

维纳滤波器图像处理

维纳滤波器图像处理

维纳滤波器及其在图像处理中的应用摘要图像由于受到如模糊、失真、噪声等的影响,会造成图像质量的下降,形成退化的数字图像。

退化的数字图像会造成图像中的目标很难识别或者图像中的特征无法提取,必须对其进行恢复。

所谓图像复原就是指从所退化图像中复原出原始清晰图像的过程。

维纳波是一种常见的图像复原方法,该方法的思想是使复原的图像与原图像的均方误差最小原则恢复原图像。

本文进行了对退化图像进行图像复原的仿真实验,分别对加入了噪声的退化图像、运动模糊图像进行了维纳滤波复原,并给出了仿真实验效果以及结果分析。

实验表明退化图像在有噪声时必须考虑图像的信噪比进行图像恢复,才能取得较好的复原效果。

关键词:维纳滤波;图像复原;运动模糊;退化图像AbstractDue to factors such as blurring distorting and noising, image quality deteriorated and led to degenerated digital images which is getting harder to discern the target image or extract the image features. Wiener Filter is often used to recover the degraded image. The principle of the method expects to minimize the mean square error between the recovered image and original image. This paper carried out a restoration simulation experiments on degraded image,restoration of motion blurred images, and the result shows, SNR noise of the autocorrelation function for image restoration must be taken into consideration when restoring degraded images in a noise. Key words:Wiener Filter; motion blurred;degraded image;image restoration概述图像在形成、传输和记录的过程中都会受到诸多因素的影响,所获得的图像一般会有所下降,这种现象称为图像“退化”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(3-10)
其中������������������ (������, ������ )为噪声功率谱,������������������ (������, ������)为图像功率谱。由式(2.5)可以看出, 当没有噪声时,有P u, v = 1/H(u, v),维纳滤波器就可以简化的看成是逆滤波 器。 在有噪声的情况下, 维纳滤波也用信噪功率比作为修正函数对逆滤波器进行 了修正,但它在均方误差最小的意义上提供最佳恢复。 通常将噪声假设为白噪声,即噪声功率谱������������������ (������, ������ )为常数,若������������������ (������, ������)在频 谱空间上高频区下降比������������������ (������, ������ )快得多,这种假设就近似正确。于是可以认为 ������������������ ������, ������ = ������������������ 0,0 = 常数(3-11) 如果噪声时各态历经的,可以用一幅噪声图像进行计算从而求得������������������ 0,0 ,
∞ ������(������ , ������ )������(������ −∞
− ������, ������ − ������ )������������������������(3-6)
式中,������(������, ������)为维纳滤波器的点扩散函数。按照均方误差最小准则,������ ^ x, y 应该满足 ������ 2 = ������ ������ ������, ������ − ������ ^ x, y
∞ ������(������ , ������)������(������ −∞ ∞ ������(������ , ������)������(������ −∞
− ������ , ������ − ������)������������������������
2
(3-8)
− ������ , ������ − ������)������������������������
ቤተ መጻሕፍቲ ባይዱ
(3-12) ������ ,������ |2 +������
K 是根据信噪比的某种先验知识来确定的常数。 下面是维纳滤波的复原效果:
(a)原图(b)退化
(c)复原 图 3-3 维纳滤波复原实验
维纳滤波(最小均方滤波)
避免逆滤波固有的弊端的另一种方法就是寻找图像f x, y 的一种估值 ������ ^ x, y ,使得f x, y 和������ ^ x, y 之间的均方误差最小。均方误差最小准则是由维纳 (Wiener)在 1949 年首先提出并用来对一维平稳时间序列进行估值。因此这种 方法被称为维纳滤波,也被称为最小均方误差滤波。 设g x, y 、f x, y 、n x, y 分别为退化图像、原始图像和噪声,并设他们都是 均匀随机的,且噪声的均值为零,并与图像不相关。可以得到 ������ ^ x, y =
2
= 0(3-9)
时,式(3-7)取最小值。 经过证明可以得到维纳滤波的转移函数为 P u, v = ������ (������ ,������) |������
1 |������ ������ ,������ |2 ������ ,������ |2 + ������������������ (������ ,������ )/������������������ (������ ,������ )
2
(3-7)
为最小。 我们把������ ^ x, y 称为已知g x, y 时f x, y 的线性最小均方估计。 将(2.2) 带人(2.1)式,得到 ������ 2 = ������ ������ ������, ������ − 可以证明当 ������ 2 = ������ ������ ������, ������ −
图像功率谱������������������ (������, ������ )则可利用与原始图像统计性质相同的一类图像来确定。如果 不知道有关随机场的统计性质,也常用下式近似计算转移函数: P u, v = ������ (������ ,������) |������
1 |������ ������ ,������ |2
相关文档
最新文档