熔体流动速率测试

合集下载

热塑性塑料熔体流动速率测定

热塑性塑料熔体流动速率测定

本文由shiling40521贡献 doc文档可能在WAP端浏览体验不佳。

建议您优先选择TXT,或下载源文件到本机查看。

热塑性塑料熔体流动速率测定 (一)实验目的 掌握用熔体流动速率仪 ( 熔体指数测定仪 ) 测定热塑性塑料熔体流动速率的方法,以预测塑料加工 工艺性能,并建立起熔体流动速率与聚合物相对分子质量大小的关系。

了解仪器的结构、工作原理和使用 方法。

 (二)实验原理 塑料熔体在规定的温度和负荷 ( 压力 ) 作用下, 10min 通过标准口模的质量 (g) 称为该塑料的熔 体流动速率 (MFR) ,测得结果表示为: g / 10min 。

 该项检测常用于衡量塑料在熔融状态下的流动性相熔体粘度的大小,以预测热加工时流动的难易、充 模速度的快慢等工艺问题。

同时,由于熔体流动速率与聚合物相对分子质量高低有密切关系,对于相同分 子结构的聚合物,熔体流动速率越大,平均相对分子质量越小,因此,熔体流动速率还可以作为制品选材 或用材的参考依据。

 (三)试祥与仪器 1 .试样 试样的形状为颗粒状、粉状、小块状、薄片状或其他形状。

 吸湿性塑料的试样,实验前必须按产品标准规定的条件进行严格干燥,否则从仪器毛细管挤压出的料 条必定出现气泡等缺陷。

 2 .仪器 熔体流动速率仪可因生产厂家的不同、型号不同而控制和操作方式有所不同,但基本原理是相同的。

 本实验对仪器的要求是能提供恒温恒压力的挤出速率、并且温度和负荷可调。

 (1) 仪器结构 熔体流动速率仪的基本结构见图 (2) 仪器组成 ①熔体压出系统 料筒:用抗腐蚀不锈钢制造,硬度大于 300Hv ,长度 160mm ,内径 φ (9 . 550 ± 0 . 025)mm 轴 线弯曲度不大于 0 . 02 / 100 ,圆筒内壁 ( 光洁度不低于▽8) 的粗糙度 Ra(0 . 32 一 0 . 63) μ m 。

 压料活塞: 由抗腐蚀不锈钢制成, 硬度略低于料筒材料。

pbt熔体质量流动速率测试条件

pbt熔体质量流动速率测试条件

pbt熔体质量流动速率测试条件
PBT是聚对苯二甲酸丁二醇酯的缩写,是一种工程塑料。

熔体质量流动速率(MFR)是衡量塑料熔体流动性能的指标,通常用于评估塑料的加工性能。

在进行PBT熔体质量流动速率测试时,需要考虑以下条件:
温度,测试温度通常在230°C左右,这是PBT的常规加工温度范围,确保熔体在合适的温度下进行测试。

负荷,通常使用2.16kg的标准负荷进行测试,这是塑料行业常用的负荷标准之一,能够提供相对可靠的比较数据。

时间,测试时间通常为10分钟,这是常见的测试时间,可以确保熔体在一定时间内达到稳定状态,从而得到准确的测试结果。

这些是进行PBT熔体质量流动速率测试时的一般条件。

当然,具体的测试条件还会根据不同的标准和实验室的要求而有所不同。

在进行测试时,确保按照相关标准和方法进行,以获得准确可靠的测试数据。

熔体流动速率测试

熔体流动速率测试
流动速率对熔体流动速率测试结果的影响主要体现在流动速率对熔体粘度的影响上。随 着流动速率的增加,熔体的粘度会降低,流动速率会增大。
在熔体流动速率测试中,通常需要选择合适的流动速率范围,以确保测试结果的稳定性 和准确性。
流动速率的稳定性是测试的关键因素之一,因为流动速率波动会影响测试结果的可重复 性和准确性。同时,流动速率的控制也需要根据具体的材料和测试标准来确定。
温度稳定性
在测试过程中,保持温度 稳定,避免温度波动对测 试结果的影响。
实验操作流程
启动测试
在满足测试条件的前提下,启动测试程序, 记录测试数据。
结束测试
在规定的时间内完成测试,关闭测试装置, 清理现场。
观察与记录
观察熔体的流动情况,记录流速和压力等参 数,确保数据准确无误。
数据处理与分析
对测试数据进行处理、分析和比较,得出结 论。
安装试样
将试样安装在测试装置中,确保 安装稳定、无泄漏,并按照规定 调整试样位置。
检查试样安装
在开始测试前,检查试样是否正 确安装,确保测试结果的准确性 和可靠性。
温度设定与校准
01
02
03
设定温度
根据测试标准,设定适当 的温度,确保熔体在测试 过程中保持恒温状态。
校准温度
对测试装置的温度控制系 统进行校准,确保温度控 制精度符合要求,以提高 测试结果的准确性。
1
温度越高,熔体的粘度越低,流动速率越快。因 此,控制测试温度是确保测试结果准确性的关键 因素之一。
2
在熔体流动速率测试中,通常需要将温度控制在 一定范围内,以确保测试结果的稳定性和准确性。
3
选择合适的温度范围需要根据具体的材料和测试 标准来确定,以确保测试结果能够准确地反映材 料的流动性能。

实验10 塑料熔体流动速率的测定

实验10 塑料熔体流动速率的测定

实验10 塑料熔体流动速率的测定1. 实验目的了解热塑性塑料熔体流动速率与加工性能的关系,掌握熔体流动速率的测试方法。

2. 实验原理熔体流动速率(MFR)的定义是热塑性树脂试样在一定温度、恒定压力下,熔体在10min内流经标准毛细管的质量值,单位是g/(10min),通常用MFR来表示。

熔体流动速率以前称为熔融指数(MI)。

表征高聚物熔体的流动性好坏的参数是熔体的粘度。

熔体流动速率仪实际上是简单的毛细管粘度计,结构简单,它所测量的是熔体流经毛细管的质量流量。

由于熔体密度数据难于获得,故不能计算表观粘度。

但由于质量与体积成一定比例,故熔体流动速率也就表示了熔体的相对的粘度量值。

因而,熔体流动速率可以用作区别各种热塑性材料在熔融状态时的流动性的一个指标。

对于同一类高聚物,可由此来比较出分子量的大小。

一般来说,同类的高聚物,分子量愈高,其强度、硬度、韧性、缺口冲击等物理性能也会相应有所提高。

反之,分子量小,熔体流动速率则增大,材料的流动性就相应好一些。

在塑料加工成型中,对塑料的流动性常有一定的要求。

如压制大型或形状复杂的制品时,需要塑料有较大的流动性。

如果塑料的流动性太小,常会使塑料在模腔内填塞不紧或树脂与填料分头聚集(树脂流动性比填料大),从而使制品质量下降,甚至成为废品。

而流动性太大时,会使塑料溢出模外,造成上下模面发生不必要的黏合或使导合部件发生阻塞,给脱模和整理工作造成困难,同时还会影响制品尺寸的精度。

由此可知,塑料流动性的好坏,与加工性能关系非常密切。

在实际成型加工过程中,往往是在较高的切变速率的情况下进行的。

为了获得适合的加工工艺,通常要研究熔体黏度对温度和切变应力的依赖关系。

掌握了它们之间的关系以后,可以通过调整温度和切变应力(施加的压力)来使熔体在成型过程中的流动性符合加工以及制品性能的要求。

由于熔体流动速率是在低切变速率的情况下获得,与实际加工的条件相差很远,因此,熔体流动速率的应用上,主要是用来表征由同一工艺流程制成的高聚物其性能的均匀性,并对热塑性高聚物进行质量控制,简便地给出热塑性高聚物熔体流动性的度量,作为加工性能的指标。

熔体流动速率仪的测试方法是怎样的

熔体流动速率仪的测试方法是怎样的

熔体流动速率仪的测试方法是怎样的熔体流动速率仪是用来测量聚合物在熔体状态下的流动特性的工具,通常用于监测塑料、橡胶、纺织品等材料的流动性能。

在使用熔体流动速率仪进行测试之前,需要进行一系列的准备工作,包括准备样品、校验仪器、选择测试条件等。

准备样品在进行测试之前,需要准备与被测试材料相似的标准样品。

标准样品的制备需要参照不同的标准或规范,比如 ASTM 标准 D1238,该标准针对塑料熔体流动速率的测试进行了详细的制备方法和测试程序。

需要注意的是,样品的制备应该尽量精确,避免影响测试结果。

并且,在进行测试之前需要对样品进行加热、压力均衡等处理,以获得准确的测试结果。

校验仪器在进行测试之前,需要对熔体流动速率仪进行校验。

校验可以通过对标准样品进行测试,或者通过其他物理方法来检验仪器的准确性。

在校验仪器时,需要注意检查仪器的加热和恒温设备是否正常工作,避免因仪器问题导致测试结果不准确。

选择测试条件在进行测试之前,需要确定合适的测试条件。

测试条件包括测试温度、载荷、筒长度等参数。

在不同的测试规范中,测试条件的选择有所差异。

一般来说,测试温度越高,测试得到的熔体流动速率越大。

载荷和筒的长度也会影响测试结果,在选择测试条件时需要根据具体材料的特性和要求进行灵活调整。

进行测试在完成上述准备工作后,就可以进行熔体流动速率的测试了。

测试时需要按照所选的测试条件逐步加热样品,将样品放入测试筒中,并施加适当的载荷。

测试过程中需要注意仪器的读数,并记录测试结果。

在测试完毕后,需要对测试筒和样品进行清洗,以便下一次测试的进行。

结论熔体流动速率仪的测试方法并不复杂,但需要按照一定的流程进行操作。

在进行测试之前,需要准备标准样品、校验仪器、选择合适的测试条件等。

进行测试时需要注意仪器读数和记录测试结果,最后对测试筒和样品进行清洗,备下次使用。

通过正确的测试方法,可以获得准确的熔体流动速率指标,为制定更加合理的产品生产工艺和材料选择提供参考。

熔体流动速率测试

熔体流动速率测试
熔体流动速率
熔体流动速率。(MFR),也指熔融指数(MI,melt index), 是在标准化熔融指数仪中于一定的温度和压力下,树脂熔料通过 标准毛细管在一定时间内(一般10min)内流出的熔料克数,单位 为g/10min。熔体流动速率是一个选择塑料加工材料和牌号的重要 参考依据,能使选用的原材料更好地适应加工工艺的要求,使制 品在成型的可靠性和质量方面有所提高。
5
数据的记录
组别 1 2 3 4 5 6 7 8 9
重量(kg) 0.2215 0.2220 0.2272 0.2283 0.2285 0.2309 0.2310 0.2316 0.2318
6
结果计算
MFR=m/9x60=13.6853g/10min
7
影响因素 影响因素
原因分析
弹性因素
高聚物熔体是一种粘弹性液,在外力作用下, 发生不可逆的弹性流动,但同时发生可回复的 弹性形变,在试验中发现,将负荷骤然施加于
活塞上,熔体挤出量最初反映出是下降的,这 主要是由弹性因素造成的。
解决方法
把试料加入料筒后,先加 上负荷的一部分,可使熔 体弹性得到一定的衰减。
容量效应
测试过程中,熔体流速逐渐增大,表现出挤出 速率与料筒中熔体高度有关,这可能是由于熔 体与料筒有粘附力,这种力阻碍活塞杆下移。
应在同一高度截取样条。
热降解的影响
在塑料加工中,熔体流动速率是用来衡量塑料熔体流动性的一 个重要指标。通过测定塑料的流动速率,可以研究聚合物的结构因 素
1
仪器设备
2
仪器设备
主要结构 炉体:有控温装置,波动在±0.5℃, 温度监测装置,精度±0.1℃ 活塞:长度大于料筒,放入料筒后, 下标环形记号与料筒口平齐,活塞底 面与标准口模的上端相距约50mm 标准口模:碳化钨制成,外径与料筒 内径成间隙配合 负荷:活塞杆与砝码的质量之和

常用塑料熔体流动速率

常用塑料熔体流动速率

常用塑料熔体流动速率塑料的熔体流动速率是指塑料在一定温度下熔化后,流动的速度。

它是评估塑料流动性能的一个重要指标,直接关系到塑料制品的成型质量。

塑料的熔体流动速率通常使用MFR(melt flow rate)或者MI (melt index)来表示,单位为g/10min。

常用的测试方法是根据ISO 1133标准。

测试时,将一定质量的塑料料粒放入加热筒中,通过提高加热筒的温度使其熔化,然后在一定压力下通过一个标准孔模将熔体流出,流出的塑料重量除以流动的时间,即可得到熔体流动速率。

塑料的熔体流动速率受到多种因素的影响。

首先,塑料的分子结构和分子量对熔体流动速率有重要影响。

分子量较高的塑料具有更高的粘度,流动速率相对较慢;而分子量较低的塑料则具有较低的粘度,熔体流动速率相对较快。

其次,塑料的熔点也会对熔体流动速率造成影响。

熔点较高的塑料在同样的温度下需要更高的能量才能熔化,因此熔体流动速率相对较慢。

再次,塑料的添加剂和填充料也会对熔体流动速率产生影响。

某些添加剂和填充料具有增塑效果,可以使塑料的熔体流动速率增加。

塑料的熔体流动速率在实际应用中具有重要意义。

首先,它可以用来评估塑料的加工性能。

熔体流动速率越大,代表塑料的加工性能越好,适合用来制作薄壁、大型或复杂形状的制品。

其次,熔体流动速率也可以用来预测塑料制品的物理性能。

通常情况下,熔体流动速率较大的塑料制品具有较好的强度和韧性。

此外,熔体流动速率还可用于塑料的配方设计和质量控制。

生产过程中,可以通过调整塑料的熔体流动速率来获得所需的加工性能和产品质量。

不同类型的塑料具有不同的熔体流动速率。

例如,聚乙烯(PE)具有较高的熔体流动速率,适合制作一些注塑和挤出产品;而聚丙烯(PP)的熔体流动速率相对较低,适合制作一些薄膜和纤维制品。

此外,根据具体用途的不同,对塑料熔体流动速率的要求也不同。

例如,制作塑料瓶的PET塑料需要具有较高的熔体流动速率,以便在注塑过程中能够充分填充模具;而制作充气膜的LLDPE塑料则需要具有较低的熔体流动速率,以防止产生不必要的流动。

熔体流动速率

熔体流动速率

在实际生产中,通常通过优化流道几何形状来提高熔 体流动速率。例如,在挤出成型中,采用渐变式流道 设计可以减小流道阻力,提高熔体流动速率,从而增 加产量。
流速分布
流速分布对熔体流动速率的影响不容忽视。流速分布 不均匀会导致局部流动速率过高或过低,影响产品质 量和产量。因此,需要合理设计流速分布。
在实际生产中,可以通过数值模拟和实验等方法来研究 流速分布对熔体流动速率的影响。例如,在注塑成型中 ,采用计算机模拟技术可以预测流速分布对充模过程的 影响,从而优化模具设计和注射工艺参数。
在实际生产中,通常通过添加增塑剂、润滑 剂等来降低熔体的粘度,从而提高其流动速 率。例如,在生产塑料袋时,加入增塑剂可 以降低塑料熔体的粘度,使其更容易流动,
从而提高生产效率。
流道几何形状
流道几何形状对熔体流动速率的影响较大。流道截面 尺寸、长度、弯曲程度等因素都会影响熔体的流动速 率。流道截面尺寸越大、长度越短、弯曲程度越小, 则熔体流动速率越大。
塑料加工过程中,熔体流动速率是一个重要的参数,它决定了塑料在成型 过程中的流动行为和产品质量。
通过控制熔体流动速率,可以优化塑料制品的外观、尺寸和性能,提高生 产效率和产品质量。
熔体流动速率对塑料加工过程中的温度、压力和剪切速率等参数有直接的 影响,因此需要综合考虑各种因素来制定最佳的加工条件。
在橡胶加工中的应用
VS
在国际单位制中,也使用其他单位如 kg/hr或lbs/hr来表示熔体流动速率。
02
熔体流动速率的影响因 素
温度
温度对熔体流动速率的影响是显著的。随着温度的升高,熔体的粘度降低,流动性增强,流动速率增大。因此,提高温度可 以促进熔体的流动。
在实际生产中,通常通过调整温度来控制熔体的流动速率,以满足生产工艺的要求。例如,在塑料加工中,通过调节温度来 控制塑料熔体的流动速率,从而控制产品的质量和产量。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3
实验条件
因为我们选择的材料是PP,根据试验标准温度在 230℃,口模内径为2.095mm,标准口径为2016kg。
4
试验步骤
1 、清洗仪器。在开始做一组试验前,要保证料筒在选定温度恒温不少于 15min。 2 、根据预先估计的流动速率,将5g样品装入料筒。 3 、在装料完成后,把选定的负荷加到活塞上。让活塞在重力的作用下降, 直到挤出没有气泡的细条。这个操作时间不应超过1min。用切断工具切断 挤出物,并丢弃。然后让加负荷的活塞在重力作用下继续下降。当环形标 线到达料筒顶面时,开始用秒表计时,同时用切断工具切断挤出物并丢弃 之。 4 、逐一收集按一定时间间隔 的挤出物切段,切段时间间隔取决于熔体流 动速率,选定的时间为10s。 5 、当切割的样条达到十根时,试验结束,清理实验仪器。
5
数据的记录
组别 1 2 3 4 5 6 7 8 9
重量(kg) 0.2215 0.2220 0.2272 0.2283 0.2285 0.2309 0.2310 0.2316 0.2318
6
结果计算
MFR=m/9x60=13.6853g/10min
7
影响因素 影响因素
原因分析
弹性因素
高聚物熔体是一种粘弹性液,在外力作用下, 发生不可逆的弹性流动,但同时发生可回复的 弹性形变,在试验中发现,将负荷骤然施加于
聚合物在料筒中,受热发生降解,特别是粉状 对于粉状试样,尽量压实,
聚合物,由于空气中的氧更加加速热降解效应, 减少空气,同时加入一些
使粘度降低,从而加快聚合物的流动速率。
热稳定剂;另一方面测试
时通入氮气保护,这样可
以使降解减到最小。Fra bibliotek温度波动的影响 熔体流动速率与温度的关系十分密切。温度偏 高流动速率大,温度偏低则反之。
活塞上,熔体挤出量最初反映出是下降的,这 主要是由弹性因素造成的。
解决方法
把试料加入料筒后,先加 上负荷的一部分,可使熔 体弹性得到一定的衰减。
容量效应
测试过程中,熔体流速逐渐增大,表现出挤出 速率与料筒中熔体高度有关,这可能是由于熔 体与料筒有粘附力,这种力阻碍活塞杆下移。
应在同一高度截取样条。
热降解的影响
熔体流动速率
熔体流动速率。(MFR),也指熔融指数(MI,melt index), 是在标准化熔融指数仪中于一定的温度和压力下,树脂熔料通过 标准毛细管在一定时间内(一般10min)内流出的熔料克数,单位 为g/10min。熔体流动速率是一个选择塑料加工材料和牌号的重要 参考依据,能使选用的原材料更好地适应加工工艺的要求,使制 品在成型的可靠性和质量方面有所提高。
在测试中要求温度稳定, 波动尽量控制在±0.1℃以 内。
试样中水分含量 的影响
试样中含水的量对熔体流动速率是有影响的。 水分子是极性分子,就类似于加入了增塑剂一 样,水分含量越大,熔体流动速率就越大。
在试验前,有必要对试样 进行干燥处理。
8
在塑料加工中,熔体流动速率是用来衡量塑料熔体流动性的一 个重要指标。通过测定塑料的流动速率,可以研究聚合物的结构因 素
1
仪器设备
2
仪器设备
主要结构 炉体:有控温装置,波动在±0.5℃, 温度监测装置,精度±0.1℃ 活塞:长度大于料筒,放入料筒后, 下标环形记号与料筒口平齐,活塞底 面与标准口模的上端相距约50mm 标准口模:碳化钨制成,外径与料筒 内径成间隙配合 负荷:活塞杆与砝码的质量之和
相关文档
最新文档