铁水预处理的顺序选择

合集下载

炼钢第二讲(1)铁水预处理

炼钢第二讲(1)铁水预处理

17
脱磷剂
氧化剂――――氧气、氧化铁、轧钢铁皮、连铸铁皮等 将铁水中的磷氧化 固定剂――――CaO,Na2CO3; 5NaCO3+4[P]=5(Na2O)+2(P2O5)+5C
3(Na2O)+(P2O5)=(3NaO· P2O5)
使磷稳定地结合在炉渣中 助熔剂――――CaF2,CaCl2。 生产低熔点的化合物,溶于渣中。 18
搅拌能 低 高
供氧 速率 低 高
氧气 比率 低 高
废钢比 低 高
建设投资 低 高
24
脱硫
脱硫原理
钢铁冶炼脱硫,就是要形成稳定的硫化物,并
能与钢或铁水顺利分离。
脱硫基本反应方程式如下:
Mg(g)+[S]=MgS(s) ΔGΘ=- 427367+180.67 T
25
脱硫剂
苏打灰(Na2CO3) 石灰粉(CaO) 电石粉(CaS) 金属镁
铁水“三脱”工艺
铁水三脱预处理( ORP法 )工艺流程
50
49
总用量大约为吨铁水35公斤。配比:CaO42%-Fe2O346%-CaF212%。
预脱磷方法
在高炉出铁沟或出铁槽内进行脱磷; 在铁水包或鱼雷罐车中进行预脱磷; 在专用转炉内进行铁水预脱磷。
19
铁水包喷吹法 优点: 铁水罐混合容易, 浸入 反应动力学条件好 缺点:
吹炼时间长,温降大 渣多
被铁水内部进行脱硫反应,从而达到脱硫的目的。
优点:脱硫效率高、脱硫剂耗量少、金属损耗低等。
38
非卷入型机械搅拌法
特点:在钢包内只设一个简单
的倒T字形耐火材料搅拌棒, 旋转搅拌棒使脱硫剂与铁水混合
进行脱硫。但脱硫时间长,

铁水预处理技术操作规程√

铁水预处理技术操作规程√

铁水预处理技术操作规程1、原料要求1.1 铁水条件铁水温度:T≥1250℃铁水硫含量:[S]≤0.140%处理铁水量:与转炉铁水装入量相符1.2 脱硫剂采用CaO系脱硫剂1.3 脱硫剂加入量范围处理前铁水s含量目标S 脱硫剂加入量(Kg/t铁)≤40 ≤20 4~4.5 ≤10 6.5-7.041~50 ≤40 3.0-3.5 ≤20 4.0~5.0 ≤10 6.0~6.551~60 ≤40 3.5-4.0 ≤20 6.0~6.5 ≤10 6.0~8.561~70 ≤40 3.5-4.5 ≤20 6.0~8.0 ≤10 7.5~9.071~80 ≤40 4.5-7.5≤20 7.5~9.0 ≤10 9.0~10.581~90 ≤40 5.5-7.0≤20 9.0~10.5 ≤10 10.0~12.591~100 ≤40 6.5-8.0≤20 10.5~11.5 ≤10 12.0~13.5101~110 ≤40 8.0-9.5≤20 11.5~12.5 ≤10 12.5~14.5>110 ≤40 ≥9.5≤20 13.0~14.5 ≤10 14.5~16.5注:(1)视脱硫剂理化指标上升、下降,可将前[S]减少或提高0.020%。

(2)前[S]≤0.045%时,可将前[S]提高0.005~0.010%。

(3)根据搅拌头状况、铁水带渣量的多少,脱硫剂加入量可适当调整。

(4)特殊情况(如:设备故障、生产节奏紧、前硫未及时分析出来等)脱硫剂加入量可按照上限硫含量进行处理。

2、扒渣作业2.1 启动液压电机,将罐倾翻至扒渣角度(以铁水不能溢出为准)。

2.2 接通扒渣扒电源选择手动或自动操作方法,确认各信号是否正常及各分功能紧停开关位置。

2.3 确认压缩空气入口压力≥0.4Mpa,小车前进端极限在零位,后退端极限在十位上。

2.4 调整大臂高度,试扒后再调整适宜高度。

2.5 当罐内渣块≥600kg(目测)时,原则上不能强行扒渣,应将铁水返回混铁炉。

铁水预处理工艺技术操作规程

铁水预处理工艺技术操作规程

铁水预处理工艺技术操作规程铁水预处理是指在铁水离合器和连铸机结合的连续铸造系统中,对铁水进行处理和净化的工艺过程。

铁水预处理的目的是提高铁水的质量和连铸机的稳定性,同时减少钢坯的次级缺陷和浪费。

铁水预处理工艺技术的操作规程分为以下几个主要步骤:1. 接收铁水:接收到来自高炉的铁水后,首先要进行样品的采集和检测,以确认铁水的成分和温度是否符合要求。

然后,根据铁水的质量情况和连铸机的工艺要求,决定是否需要进行预处理。

2. 铁水过量处理:如果铁水的成分不合格或者超过了连铸机的要求,需要进行过量处理。

通常使用的方法有加入石灰、石油焦等添加剂来减少硫、磷等有害元素的含量。

3. 温度控制:连铸机对铁水的温度要求比较严格,因此需要对铁水进行冷却或加热处理,以使温度控制在合适的范围内。

一般使用的方法有喷淋冷却、电磁感应加热等。

4. 净化处理:铁水中含有固体杂质、气体和液体杂质,对质量和连铸过程稳定性均有不良影响。

因此,需要进行净化处理,常见的方法有脱硫、脱氧、脱气等。

5. 过滤处理:通过过滤处理可以进一步减少铁水中的固体杂质,避免它们对连铸机的阻塞和钢坯质量的影响。

过滤器的选择和使用需要根据铁水的成分和允许的杂质含量来确定。

6. 加样控制:加样是指向铁水中添加其它合金元素或化学剂的过程。

加样的目的是调整铁水的成分和温度,以满足连铸机的工艺要求。

加样的方法有固态加样和液态加样两种。

需要注意的是加样的量要准确、均匀,并且加样前要进行预热处理。

7. 铁水储存和运输:铁水预处理后,需要储存和运输到连铸机的喷包中。

为了保证铁水的质量不受污染和温度不受影响,储存和运输过程中需要采取相应的保护措施,如密封储存、隔热保温等。

8. 预处理设备的维护:铁水预处理设备是保证预处理工艺顺利进行的关键。

因此,需要定期对设备进行检查、维护和保养,保证设备的正常运转和使用寿命。

以上是铁水预处理工艺技术操作规程的主要内容。

在实际操作中,还需要根据具体的工艺要求和设备情况进行适当的调整和改进。

专题2---铁水预处理12.06

专题2---铁水预处理12.06

• 高炉铁沟中脱硅剂的加入方式有:
– 1)投撒给料法 向铁水流表面投入熔剂,并利用铁沟内铁水落差进 行搅拌。 – 2)气体搅拌法 在投撒给料法的基础上,向铁水表面吹压缩空气加 强搅拌促进脱硅反应进行。该法较投撒给料法熔剂利用率高。 – 3)液面喷吹法 依靠载气将熔剂喷向铁水表面。 – 4)铁液内喷吹法 通过耐火材料喷枪利用载气向铁水内喷吹熔剂
0.28 1.17 65.2 103.2 0.14
0.030 156
0.455 1.23 61.6 94.4 0.20
铁水脱硫工艺发展路径
• 喷射法
• 喷射法是利用喷枪把气体与脱硫剂混合后喷射到铁水 中,使铁水与脱硫剂充分混合,促进脱硫反应。
图 2 ATH法脱硫装置示意图
1 —喷枪 2—喷粉罐 3—操作平台 4—鱼雷罐车
铁水脱Si工艺技术—工艺方法
• 鱼雷罐车或铁水罐中喷射脱硅剂脱硅
– 优点:工作条件好,处理能力大,脱硅效率高且稳定。 – 缺点:占用时间长,温降较大。喷吹分吹氧和喷粉,粉 剂主要使用的是烧结矿粉或集尘粉。
• 实践当中的问题:
– 当铁水含硅量低于0.4%时,可采用简单的铁水沟脱硅 法 – 当硅含量大于0.4%时,脱硅剂用量增大,泡沫渣严重 – 扒渣?
铁水脱Si工艺技术—工艺方法
• 铁水预脱硅主要有三种方法:
– 1)在高炉出铁沟脱硅
– 2)鱼雷罐车或铁水罐中喷射脱硅剂脱硅
– 3)“两段式”脱硅,即为前两种方法的结合,先在铁 水沟内加脱氧剂脱硅,然后在鱼雷罐车中喷吹脱硅
铁水脱Si工艺技术—工艺方法
• 在高炉出铁沟脱硅
– 该方法是直接将脱氧剂加入高炉铁水沟中脱硅,脱氧剂一般是铁鳞 – 优点:脱硅不占用时间,能大量处理,温降小,时间短,渣铁分离 方便。 – 缺点:是用于脱硅反应的氧的利用率低和工作条件较差。

铁水预处理技术

铁水预处理技术

不同脱硅方法对铁水温度的影响
1 2 3 氧化铁随氧气一起喷入TPC 氧化铁随氧气一起喷入 氧化铁随氧气一起由顶部加入 顶部加入氧化铁
10
Northeastern University
铁水预脱硅方法及其选择
铁水预脱硅主要有三种方法: 铁水预脱硅主要有三种方法: 1)在高炉出铁沟脱硅 2)鱼雷罐车或铁水罐中喷射脱硅剂脱硅 3)“两段式”脱硅,即为前两种方法的结合, 两段式”脱硅,即为前两种方法的结合, 先在铁水沟内加脱氧剂脱硅, 先在铁水沟内加脱氧剂脱硅,然后在鱼雷罐车中喷 吹脱硅
Northeastern University
第二讲
铁水炉外处理技术
战东平
1
Northeastern University
2.1 铁水预处理简介
铁水预处理:是指铁水兑入炼钢炉之前对其进行脱 铁水预处理: 除杂质元素或从铁水中回收有价值元素的一种铁水 处理工艺。 处理工艺。 铁水预处理: 铁水预处理: 普通铁水预处理 特殊铁水预处理 普通铁水预处理:铁水脱硫、脱硅和脱磷、 普通铁水预处理:铁水脱硫、脱硅和脱磷、铁水同 时脱硅、脱磷、脱硫( 三脱” 时脱硅、脱磷、脱硫(即“三脱”)。 特殊铁水预处理: 特殊铁水预处理:针对铁水中的特殊元素进行提纯 精炼或资源综合利用而进行的处理过程, 精炼或资源综合利用而进行的处理过程,如铁水提 提铌、提钨等。 钒、提铌、提钨等。
8
Northeastern University
[Si] + 2(FeO) = SiO2(s) + 2Fe ∆G1=-356020+130.47T J·mol-1 [Si] + Fe2O3(s) = SiO2(s) + Fe(l) ∆G2=-287800+60.38T J·mol-1 [Si] + Fe3O4(s) = SiO2(s) + Fe(l) ∆G3=-275860+156.49T J·mol-1

(铁水预处理)炼钢工艺学

(铁水预处理)炼钢工艺学
现代化的钢铁企业都不采用此法。但在设备简陋、铁
水含硫又高的小钢铁厂,还经常被采用。
机械搅拌法
靠旋转沉入铁水中的搅拌器或转动盛铁水的容器使铁水 与脱硫剂搅拌混合。
采用搅拌器和采用转动容器机械搅拌法,均可控制铁水 与脱硫剂的搅拌时间和搅拌强度,用CaC2作脱硫剂能得到 >90%的脱硫效率(单向摇包法搅拌混合较差,脱硫率比双向 摇包法约低10%),可以把铁水中的硫稳定地降低到<0.010%。
1、铁水预脱磷的基本原理
铁水中的磷首先氧化成P2O5,然后与强碱性氧化物结合成 稳定的磷酸盐而去除。
在铁水预脱磷过程中,首先要有适当的氧化剂将溶解于 铁水中的磷氧化,然后采用强有力的固定剂,使被氧化 的磷牢固地结合在炉渣中。
4.4 铁水预脱磷工艺
2、铁水预脱磷方法 ◆ 在高炉出铁沟或出铁槽内进行脱磷 ◆ 在铁水包或鱼雷罐车中进行预脱磷 ◆ 在专用转炉内进行铁水预脱磷
武钢旋转实心搅拌器的KR机械搅拌法,铁水的含硫量 可从0.06%降低到0.005%。实践证明,此类脱硫设备可以用 价廉的石灰进行有效的脱硫。设备最简单,脱硫效率高。
转动容器的回转炉法和摇包法,由于设备复杂,维修费用高 和难于大型化,发展前途不大。
搅拌器法
旋转实心搅拌器的 搅拌法(KR法)
旋转空心搅拌器的搅 拌法(DORA法)
4.5 铁水“三脱”工艺
铁水三脱工艺特点 o 优点: ▪ 可实现转炉少渣冶炼(渣量< 30 kg/t)。 ▪ 铁水脱硫有利于冶炼高碳钢、高锰钢、低磷钢、特殊钢
(如轴承钢、不锈钢)等。 ▪ 可提高脱碳速度,有利于转炉高速冶炼。 ▪ 转炉吹炼终点时钢水锰含量高,可用锰矿直接完成钢水合
金化。 o 缺点: ▪ 铁水中发热元素减少,转炉的废钢加入量减少。 转炉少渣炼钢工艺——铁水预处理将S、P(脱P需先脱Si )

铁水预处理技术

铁水预处理技术

3
Northeastern University
各国铁水预处理技术的情况
先进国家铁水预处理已成为钢铁生产的必备工序 ,有的厂铁水实现了100%的预处理。平均约80% 的铁水经过脱硫;日本50%左右的铁水经过脱硅, 40%以上的铁水经过脱磷处理。
4
Northeastern University
我国铁水预处理技术发展过程


50年代初:开始用苏打铺撒法处理高炉铁水 70年代:开始自行开发铁水预处理技术 70年代:武钢二炼钢厂从新日铁引进KR法 1985年:宝钢一炼钢从新日铁引进TDS法投产 1988 年:太钢从国外引进部分关键设备,国内配套建成 了首座铁水三脱预处理站 1998 年:本钢从北美引进铁水包喷吹 CaO+Mg 粒铁水预 脱硫技术 1998年:宝钢从北美引进铁水包喷吹 CaC2+Mg粒铁水预 脱硫技术 近几年:全国有许多钢厂已经或正在建设铁水预处理设备, 但大多以引进为主
[Si] + Fe3O4(s) = SiO2(s) + Fe(l) ΔG3=-275860+156.49T J· mol-1 (3)
吹氧脱硅
[Si] + O2(g) = SiO2 (s) ΔG4=-821780+221.16T J· mol-1
(4)
由ΔG与温度的关系可知,在通常的高炉铁水温度 (1300~1400℃)范围内,ΔG4<ΔG2<ΔG1<ΔG3<0,硅的 氧化反应均为放热反应,且气体脱硅剂比固体脱硅剂的 反应更容易进行。
6
Northeas耗量的关系
7
Northeastern University
铁水预脱硅基本原理

铁水预处理工艺

铁水预处理工艺

投资成本(—)

一般
较高
铁水预脱硫条件优于钢水脱硫条件,原因:
1.铁水中含有较高的C、Si、P等元素,提高了铁水中 硫的活度系数; 2.铁水中氧含量低,提高渣铁之间硫分配比,脱硫效 率高; 3.铁水含氧量低,因而可以使用强脱硫剂强化脱硫而 不会造成强烈氧化; 4.铁水脱硫费用低于高炉、转炉和炉外精炼的脱硫费 用。
4.3.3 铁水预脱硫的意义 4.3.4 铁水预脱硫的基本原理
A 金属、氧化物及碳化物脱硫 B 碱性渣脱硫 4.3.5 铁水预脱硫的方法 投掷法:将脱硫剂投入铁水中脱硫 喷吹法:用载气将脱硫剂喷入铁水中脱硫 搅拌法(KR法):通过中空机械搅拌器向铁水
内加入脱硫剂,搅拌脱硫
脱硫工艺的技术比较
脱硫工艺方法
2.Mg/CaC2复合脱硫剂 喷吹Mg/CaC2复合脱硫剂的体系,由于CaC2与[O]
反应生成CaO,MgS(固)不能稳定存在于该体系中,由于 Mg/CaC2复合脱硫剂体系与Mg/CaO复合脱硫体系的脱 氧、脱硫平衡反应是相同的,因此对脱氧、脱硫能力 而言,喷吹这两种复合脱硫剂效果是一样的。
但是,由于CaC2比CaO 昂贵且不安全,因此从脱 硫成本及储运、使用的安全性方面考虑,使用Mg/ CaO复合脱硫剂更安全、成本更低。
高碱度烧结矿
颗粒
0
20-40
O2+烧结矿 50%
40-80
反应速率常数 (min-1) 0.25
0.06
处理后 [Si]%
0.13 0.10 ≤0.10%
4.3 铁水预脱硫工艺 4.3.1 国外铁水预脱硫技术的发展背景与现状
历史背景:60年代,氧枪转炉炼钢的崛起工业的发展 给钢铁材料质量提出了更高要求。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

铁水预处理顺序的选择
1 CaO作“三脱”剂
(1)脱硅-脱硫-脱磷顺序
——铁水沟处铁鳞脱硅
铁水脱硅是放热反应,铁水温度越低,脱硅的效果越好。

考虑到铁水的脱硫温降和运输、等待温降,若将脱硅置于脱硫之后,脱硅时的铁水温度将较铁水沟脱硅更低,铁水预脱硅工序应尽量置于脱硫之后,而不是在脱硫之前。

——脱硫
反应平衡时 [%S]达10-4数量级,可满足所有钢种的要求;温度的变化对铁水脱硫效果的影响很小,因此脱硫可考虑提至脱硅之前,在确保脱硫效果的同时使脱硅也处于较好的热力学条件下。

——转炉内脱硅、脱磷
有资料表明:铁水中[%Si]大于0.15时为脱硅期,[%Si]小于0.15时脱磷反应才会开始,脱磷反应是放热反应,较低温度的脱磷炉内脱硅的热力学条件应是最佳的。

因此应取消铁水沟处的高温脱硅,将其移至脱硫之后的脱磷转炉内和脱磷一同进行。

(2)脱硫-脱硅、磷顺序
“脱硫—脱硅、脱磷”顺序的情况下,脱硫反应平衡时量[%S]下降了一个数量级。

将脱硅任务放在脱硫之后完成,能明显改善CaO粉剂脱硫的热力学条件。

(3)脱硅、脱磷-脱硫顺序
在“脱硅、脱磷—脱硫”顺序的情况下,脱硫反应平衡时 [%S]为10-3数量级,而在“脱硅—脱硫—脱磷”顺序下,[%S]为10-4数量级,在“脱硫—脱硅、脱磷”顺序下,[%S]为10-5数量级。

显然“脱硫—脱硅、脱磷”顺序下CaO粉剂脱硫反应的热力学条件更好。

(4)同时“三脱”
机理研究表明:用氮氧复合气体作载气喷吹CaO粉同时进行铁水预处理“三脱”反应时,脱硅、脱磷主要是在喷枪附近的高氧势区进行的瞬时接触反应;脱硫则是还原性渣和铁水之间的持久接触反应。

对铁水预处理脱硅来说,脱磷转炉顶吹氧加CaO粉剂脱硅的热力学条件是最优的。

CaO的脱磷能力受铁水温度的影响很大,在其它操作条件允许的情况下,应该尽量在低温下脱磷。

“脱硫-脱硅、脱磷”顺序下,专用脱磷转炉脱磷时铁水的温度较同时“三脱”时低。

综合比较认为:Ca O作三脱剂时,脱磷应在脱硫之后,并在专用转炉内进行最佳。

喷吹CaO粉剂同时进行铁水“三脱”的脱硫能力相对最弱。

从热力学角度分析原因:同时“三脱”在同一个容器中既要实现氧化脱磷、脱硅,又要完成还原脱硫,两者都要兼顾,在热力学上存在着矛盾,工艺上也不好实现。

而将脱硅、脱磷和脱硫分阶段处理,分别创造氧化和还原的气氛,显然比同时“三脱”的热力学条件更优化。

由以上计算与分析可知,CaO作三脱剂时的最佳预处理顺序为:脱硫-脱硅、脱磷。

2 镁粉作脱硫剂,CaO作脱硅、脱磷剂
从热力学角度看,理论上“脱硅、脱磷-脱硫”顺序下镁粉能将铁水中的[%S]降至10-6~10-7数量级,而“脱硫-脱硅、脱磷”顺序下镁粉只能将铁水中的[%S]降至10-5~10-6数量级。

但由图1可知,温度对脱硫的影响较小,但对硅磷却有着很大的影响,高温不利于脱硅磷,1500℃时,硅、磷含量在0.01%以上,不能满足要求,此时硫含量为20ppm,满足要求,因此综合考虑,镁粉作脱硫剂,CaO作脱硅、脱磷剂最佳顺序为:脱硫-脱硅、脱磷。

图1 镁粉为脱硫剂时温度对“三脱”效果的影响
3 CaC2作脱硫剂,CaO作脱硅、磷剂
CaC2脱硫的反应式为:CaC2+[S]=CaS(S)+ 2[C],计算结果见表1、2。

表1 脱硫-脱硅、磷顺序反应平衡时[%S]
表2 脱硅、磷-脱硫顺序反应平衡时[%S]
表3 专用转炉脱硅脱磷平衡时[%P]
比较表1、2可以看出,CaC2作脱硫剂时,不同预处理顺序对脱硫效果影响不大,但由表13知,低温利于脱硅、磷,因此“脱硫-脱硅、脱磷”顺序能改善脱硅、脱磷反应的热力学条件。

4 苏打灰作脱硫剂,CaO作脱硅、磷剂
苏打灰的主要成分为Na2CO3,用苏打灰脱硫,工艺和设备简单,主要缺点是:铁水中加入苏打时产生
大量的氧化钠挥发物,操作环境恶劣。

此外,渣中氧化钠侵蚀铁水包衬,并且因渣的流动性过好,造成机械扒渣困难。

Na2CO3与铁水中[S]的作用,一般认为按下式进行:Na2CO3(l)+[S]+2[C]=Na2S(l)+3CO(g)。

经过热力学计算,不同预处理顺序下的结果如表4、5所示。

表4 脱硫-脱硅脱磷顺序反应平衡时[%S]
表5 脱硅、脱磷-脱硫顺序反应平衡时[%S]
比较表4、5可知,“脱硫-脱硅、脱磷”顺序更具优势,分析其的有利条件包括:1)在相对较高的温度下脱硫,Na2CO3脱硫反应是吸热反应,高温更有利于Na2CO3脱硫反应的热力学要求;2)脱硫时铁水中含有较高的
[Si]、[C]、[P],这三种溶质提高了铁水中硫的活度系数,从而提高铁水中硫的活度,促进了Na2CO3脱硫反应的进行。

因此,使用Na2CO3做脱硫剂时,“脱硫-脱硅、脱磷”顺序下Na2CO3脱硫反应的热力学条件更好,能明显改善脱硅、脱磷反应的热力学条件。

预处理容器及方法选择 1 预处理脱硫
有研究用FLUENT 软件计算出260t 鱼雷罐的速度分布图,如图2所示。

图2 喷头在中心点时的速度图
图3 铁水包KR 法脱硫的流场示意图
由图2知:鱼雷罐内流场极不均匀,漩涡横向发展,造成的死角多,尤其是鱼雷罐两头、底部、以及中间部分区域的铁水流动性较差,在很大程度上恶化了脱硫的动力学条件;由于喷吹的搅拌对上述区域的铁水影响较小,粉剂不易到达,加之粉剂很快上浮,所以脱硫终了时这部分铁水的含硫量仍相对较高,影响到整罐铁水的脱硫效果。

铁水包KR法流场如图3所示,KR搅拌形成了铁水的循环流动,大大改善了脱硫的动力学条件,减少了脱硫剂的消耗。

武钢生产实践表明:搅拌时间只需要5分钟就可使脱硫剂得到充分的利用,脱硫速度快、效果好,铁水原始硫含量为300ppm时,处理终点硫含量可达10个ppm以下。

有文献认为:较之喷吹法,搅拌法的出现使得脱硫过程中的动力学条件得到了根本性的改善。

铁水包喷吹法脱硫流场如图4所示:
图4 铁水包喷吹法脱硫的流场示意图
由图4可知,铁水罐底部及与喷吹口成90°夹角的区域是喷吹的死区,由于喷吹角度的限制及脱硫剂上浮的原因脱硫剂始终到不了这一区域,该区域内铁水流动不足,动力学条件较差,使得该这部分铁水的脱硫效果基本上等于零。

脱硫完毕,死区内铁水的硫就会渐渐扩散到整罐铁水中,使得铁水硫量回升。

铁水包喷吹法脱硫的基本原理是靠一定压力和流量的载气,把脱硫剂喷入到铁水中脱硫。

脱硫剂在上浮的过程中与铁水的硫进行化学反应,同时载气和脱硫剂的冲击与上浮能够带动铁水流动起到搅拌作用,但它们上浮造成的铁水对流运动是很弱的(动量平衡原理),脱硫剂只有部分与硫反应,导致脱硫剂耗量比KR法大,脱硫效率较低。

综合比较,在三种预处理脱硫工艺中,铁水包KR法脱硫的动力学条件是最优的。

在实际生产中的数据也表明, KR法的脱硫效率更高,粉剂消耗更少。

2 预处理脱硅
为了提高脱硅反应速度、充分利用脱硅剂,动力学要求必须加强搅拌,以降低扩散层厚度和增加反应界面面积。

鱼雷罐和铁水包的容积小,容易产生喷溅,限制了喷吹的强度。

特别是鱼雷罐车,其形状是两头小中间大,反应空间决定了它的动力学条件较差。

而转炉的熔池大,渣层较薄、渣铁接触面积大于鱼雷罐和铁水包;炉容比大,几乎不存在喷溅问题,可以允许更高的喷吹强度,若加上底吹,可进一步改善了其动力学条件,缩短了处理时间。

3 预处理脱磷
图5、图6是两种脱磷方法的曲线图。

图5 鱼雷罐脱磷曲线
图6 转炉脱磷曲线
比较两图可知,专用转炉喷CaO粉脱磷只需要10分钟就能将磷脱至50个ppm以下,而鱼雷罐则需要40分钟左右,说明转炉脱磷的动力学条件优于鱼雷罐,效率更高。

结论
(1)通过对不同“三脱”剂、不同处理顺序的热力学计算比较得出最佳铁水预处理顺序为:预处理脱硫-预处理脱硅、脱磷。

(2)对不同处理容器、不同处理方法的动力学条件比较得出预处理容器应选定为:铁水包KR脱硫,专用转炉脱硅、脱磷。

(3)铁水预处理模式确定为:高炉铁水-铁水包KR法脱硫-专用转炉脱硅、脱磷
来源:华夏铸造。

相关文档
最新文档