空间解析几何与向量微分
微积分练习册[第七章]向量代数与空间解析几何
![微积分练习册[第七章]向量代数与空间解析几何](https://img.taocdn.com/s3/m/4513ee35182e453610661ed9ad51f01dc281571a.png)
习题7-1 空间直角坐标系1.填空题(1)下列各点所在象限分别是:a .(1,-2,3)在________________;b .(2,3,-4)在________________;c .(2,-3,-4)在________________;d .(-2,-3,1)在________________。
(2)点P(-3,2,-1)关于平面XOY 的对称点是_______,关于平面YOZ 的对称点是_________,关于平面ZOX 的对称点是__________,关于X 轴的对称点是__________,关于Y 轴的对称点是____________,关于Z 轴的对称点是____________。
(3)点A(-4,3,5)在XOY 平面上的射影点是_________,在YOZ 平面上的射影点是_________,在ZOX 面上的射影点是__________,在X 轴上的射影点是_________,在Y 轴上的射影点是__________,在Z 轴上的射影点是__________。
(4)已知空间直角坐标系下,立方体的4个顶点为A(,,a a a ---),B(,,a a a --),C(,,a a a --)和D (,,a a a ),则其余顶点分别为___________,_____________,___________, ___________。
2.已知三角形的三个顶点A(2,-1,4),B(3,2,-6),C(-5,0,2),求过A、B、C 三点的中线的长度。
3.已知平行四边形ABCD的两个顶点A(2,-3,-5),B(-1,3,2)及它的对角线的交点E(4,-1,7),求顶点C、D的坐标。
4.已知某直线线段AB被点C(2,0,2)及点D(5,-2,0)内分为3等分,求端点A、B的坐标。
5.求点M(-4,3,-5)到各坐标轴的距离。
6.在YOZ面上,求与三个已知点A(3,1,2),B(4,-2,-2)和C(0,5,1)等距离的点。
向量代数与空间解析几何

第六章.向量代数与空间解析几何本章内容在本课程当中是单独的一个部分,应该说是属于几何的内容,之所以需要在微积分的课程里进行单独的讨论,是因为我们在后面学习多元函数的微积分时,必须和这些几何知识发生关系,所谓多元的函数,从几何意义方面来理解,就是定义域在平面乃至更高维度的空间区域上,这样如果要想得到对于多元函数的直观几何理解,就必须对于平面乃至更高维度的空间中的几何现象具有一定的知识。
向量。
向量可以说是几何的最为基本的概念。
因为几何对象的两个基本要素:方向和长度,用一个向量就可以完全表达,从向量的概念出发,可以构造出整个的几何世界。
由于本课程的限制,我们不从一般的观念出发来展开向量的理论,而是基于直观的,运用向量来表示的几何当中的有向直线段,来说明我们需要涉及的有限的向量知识。
我们完全可以把一个向量理解为一根有向直线段,而不会出现任何理论上的错误。
基于向量的这种直观图象,可以定义向量的基本属性。
首先,我们定义两个向量相等的意思,就是两个向量的大小与方向都相同,对于这里的具体的一种向量—有向直线段,就是必须长度相等,而方向相同,所谓方向相同,按照几何的意义,就是两根直线段相互平行,而且指向相同。
注意,这里初学者常常产生误解的地方,就是认为要求两个有向直线段方向一样,就一定是要求它们在同一个直线上,或者是相互重合,这是因为还不习惯在一般的空间当中考虑问题,特别是要养成在三维空间当中考虑几何对象的习惯,记住方向相同,是与这两个向量的空间位置无关的,只要它们所在的直线相互平行,而指向一致即可。
在两个向量之间定义加法与减法,就是我们在力学当中以及很熟悉的力的合成的平行四边形法则,当然这是一种直接的基于几何图象的定义方式,下面我们通过在空间引入坐标,来得到更一般的定义。
空间直角坐标系以及向量代数。
在空间当中引入坐标的目的,和物理学当中引入单位制一样,是提供一个度量几何对象的方法,首先一个坐标系必须能够提供方向的定义,使得任意的方向都能够由于坐标系而得到确定与唯一的描述;然后必须能够提供长度的单位,基于这个单位能够度量空间长度。
微积分第七章空间解析几何与向量代数

第七章 空间解析几何与向量代数 为了学习多元函数微积分的需要,本章首先建立空间直角坐标系,并引进在工程技术 上有着广泛应用的向量,介绍向量的一些运算.然后以向量为工具来讨论空间的平面与直线 方程,最后介绍空间曲面与空间曲线及二次曲面.第一节 空间直角坐标系一、 空间直角坐标系众所周知,实数x 与数轴上的点是一一对应的,二元数组(x ,y )与坐标平面上的点是一一对应的,从而可以用代数的方法讨论几何问题.类似地,通过建立空间直角坐标系,把空间中的点与一个三元有序数组(x ,y ,z )建立一一对应关系,用代数的方法研究空间问题.1.空间直角坐标系的建立过空间定点O 作三条互相垂直的数轴,它们都以O 为原点,并且通常取相同的长度单位.这三条数轴分别称为x 轴、y 轴、z 轴.各轴正向之间的顺序通常按下述法则确定:以右手握住z 轴,让右手的四指从x 轴的正向以π/2的角度转向y 轴的正向,这时大拇指所指的方向就是z 轴的正向.这个法则叫做右手法则(图7-1).这样就组成了空间直角坐标系.O 称为坐标原点,每两条坐标轴确定的平面称为坐标平面,简称为坐标面.x 轴与y 轴所确定的坐标面称为xOy 坐标面.类似地有yOz 坐标面、zOx 坐标面.这些坐标面把空间分成八个部分,每一部分称为一个卦限(图7-2).x 、y 、z 轴的正半轴的卦限称为第Ⅰ卦限,从第Ⅰ卦限开始,从z 轴的正向向下看,按逆时针方向,先后出现的卦限依次称为第Ⅱ、Ⅲ、Ⅳ卦限,第Ⅰ、Ⅱ、Ⅲ、Ⅳ卦限下方的空间部分依次称为第Ⅴ、Ⅵ、Ⅶ、Ⅷ卦限。
图7-1 图7-22.空间中点的直角坐标设M 为空间的一点,若过点M 分别作垂直于三坐标轴的平面,与三坐标轴分别相交于P ,Q ,R 三点,且这三点在x 轴、y 轴、z 轴上的坐标依次为x ,y ,z ,则点M 唯一地确定了一个有序数组(x ,y ,z ).反之,设给定一个有序数组(x ,y ,z ),且它们分别在x 轴、y 轴和z 轴上依次对应于P ,Q 和R 点,若过P ,Q 和R 点分别作平面垂直于所在坐标轴,则这三个平面确定了唯一的交点M .这样,空间的点就与一个有序数组(x ,y ,z )之间建立了一一对应关系(图7-3).有序数组(x ,y ,z )就称为点M 的坐标,记为M (x ,y ,z ),它们分别称为横坐标、纵坐标和竖坐标.显然,原点O的坐标为(0,0,0),坐标轴上的点至少有两个坐标为0,坐标面上的点至少有一个坐标为0.例如,在x轴上的点,均有y=z=0;在xOy坐标面上的点,均有z =0.图7-3 图7-4二、空间两点间的距离公式设空间两点M1(x1, y1, z1)、M2 (x2, y2, z2),求它们之间的距离d=12M M.过点M 1,M2各作三个平面分别垂直于三个坐标轴,形成如图7-4所示的长方体.易知 2222121212()d M M M Q QM M QM==+∆是直角三角形222121()M P PQ QM M PQ=++∆是直角三角形222122M P P M QM''''=++()()()222212121x x y y z z=-+-+-所以d=(7-1-1 )特别地,点M(x,y,z)与原点O(0,0,0)的距离(图7-3)d OM==例1在z轴上求与两点A(-4,1,7)和B(3,5,-2)等距离的点.解因所求的点M在z轴上,故设该点坐标为M(0,0,z),依题意MA MB=,即=解得z=149,所求点为M ( 0,0,149).习题7-11.在空间直角坐标系中,定出下列各点的位置:A (1,3,2),B (1,2,-1),C (-1,-2,3),D(0,-2,0),E (-3,0,1).2. 求点(a ,b ,c )关于(1) 各坐标面;(2) 各坐标轴;(3) 坐标原点的对称点的坐标.3. 自点P 0(x 0, y 0, z 0)分别作各坐标面和坐标轴的垂线,写出各垂足的坐标.4. 求点M (4,-3,5)到各坐标轴间的距离.5. 在y Oz 面上,求与三个已知点A (3,1,2),B (4,-2,2)和C (0,5,1)等距离的点.6. 试证明以三点A (4,1,9),B (10,-1,6),C (2,4,3)为顶点的三角形是等腰直角三角形.第二节 向量及其运算一、 向量的概念在物理学和工程技术中经常会碰到一些既有大小又有方向的量,如力、速度等,我们把这类量称为向量(或矢量).空间中的向量常用具有一定长度且标有方向的线段(称为有向线段)来表示。
高数第七章 向量与空间解析几何

第七章向量与空间解析几何空间解析几何是多元函数微积分学必备的基础知识.本章首先建立空间直角坐标系;然后引进有广泛应用的向量及其运算,以它为工具,讨论空间的平面和直线;最后介绍空间曲面和空间曲线的部分内容.第一节空间直角坐标系平面解析几何是我们已经熟悉的,所谓解析几何就是用解析的,或者说是代数的方法来研究几何问题.引起这场数学史上伟大革命的正是坐标系的建立.代数运算的基本对象是数,几何图形的基本元素是点.正如我们在平面解析几何中所见到的那样,通过建立平面直角坐标系使几何中的点与代数的有序数之间建立一一对应关系.在此基础上,引入运动的观点,使平面曲线和方程对应,从而使我们能够运用代数方法去研究几何问题.同样,要运用代数的方法去研究空间的图形——曲面和空间曲线,就必须建立空间内点与数组之间的对应关系.一、空间直角坐标系空间直角坐标系是平面直角坐标系的推广.过空间一定点O,作三条两两互相垂直的数轴,它们都以O为原点.这三条数轴分别叫做x轴(横轴)、y轴(纵轴)、z轴(竖轴),统称坐标轴.它们的正方向按右手法则确定,即角度转向以右手握住z轴,右手的四个手指指向x轴的正向以π2y轴的正向时,大拇指的指向就是z轴的正向(见图7-1),这样的三条坐标轴就组成了一空间直角坐标系O x y z,点O叫做坐标原点.图7-1三条坐标轴两两分别确定一个平面,这样定出的三个相互垂直的平面:x O y,y O z,z O x,统称为坐标面.三个坐标面把空间分成八个部分,称为八个卦限,上半空间(0)z>中,从含有x轴、y轴、z轴正半轴的那个卦限数起,按逆时针方向分别叫做Ⅰ,Ⅱ,Ⅲ,Ⅳ卦限;下半空间(0)z<中,与Ⅰ,Ⅱ,Ⅲ,Ⅳ四个卦限依次对应的叫做Ⅴ,Ⅵ,Ⅶ,Ⅷ卦限(见图7-2).图7-2确定了空间直角坐标系后,就可以建立起空间点与数组之间的对应关系.设M 为空间的一点,过点M 作三个平面分别垂直于三条坐标轴,它们与x 轴、y 轴、z 轴的交点依次为,,P Q R (见图7-3).这三点在x 轴、y 轴、z 轴上的坐标依次为x ,y ,z .这样,空间的一点M 就唯一地确定了一个有序数组(,,)x y z ,它称为点M 的直角坐标,并依次把x , y 和z 叫做点M 的横坐标、纵坐标和竖坐标.坐标为(,,)x y z 的点M ,通常记为(,,)M x y z .图7-3反过来,给定了一有序数组(,,)x y z ,我们可以在x 轴上取坐标为x 的点P ,在y 轴上取坐标为y 的点Q ,在z 轴上取坐标为z 的点R ,然后通过P ,Q 与R 分别作x 轴、y 轴与z 轴的垂直平面,这三个平面的交点M 就是具有坐标(,,)x y z 的点(见图7-3).从而对应于一有序数组(,,)x y z ,必有空间的一个确定的点M .这样,就建立了空间的点M 和有序数组(,,)x y z 之间的一一对应关系.如图7-3所示. x 轴、y 轴和z 轴上的点的坐标,分别为(,0,0)P x ,(0,,0)Q y ,(0,0,)R z ;x O y 面、y O z 面和z O x 面上的点的坐标,分别为(,,0)A x y ,(0,,)B y z ,(,0,)C x z ;坐标原点O 的坐标为(0,0,0)O .它们各具有一定的特征,应注意区分.二、 空间两点间的距离设11112222(,,),(,,)M x y z M x y z 为空间两点,为了用两点的坐标来表达它们间的距离d ,我们过12M M 各作三个分别垂直于三条坐标轴的平面.这六个平面围成一个以12,M M 为对角线的长方体(见图7-4).根据勾股定理,有图7-42221212M MM NN M=+222111.M P M Q M R +=+因为11221M P P P xx ==-, 11221M Q Q Q y y ==-, 11221M R R R z z ==-,所以12d M M =.特别地,点(,,)M x y z 与坐标原点(0,0,0)O 的距离为d O M =第二节 向量及其运算一、 向量及其线性运算1. 向量概念我们曾经遇到的物理量有两种:一种是只有大小的量,叫做数量,如时间、温度、距离、质量等;另一种是不仅有大小,而且还有方向的量,叫做向量或矢量,如速度、加速度、力等.在数学上,往往用一条有向线段来表示向量,有向线段的长度表示向量的大小,有向线段的方向表示向量的方向.如图7-5所示,以1M 为始点、2M 为终点的有向线段所表示的向量,用记号12M M表示.有时也用一个黑体字母或上面加箭头的字母来表示向量,如向量,,,a b i u 或 ,,,a b i u等.图7-5向量的大小叫做向量的模,向量12M M或a 的模分别记为12M M或a . 在研究向量的运算时,将会用到以下几个特殊向量与向量相等的概念: 单位向量 模等于1的向量称为单位向量.逆向量(或负向量) 与向量a 的模相等而方向相反的向量称为a 的逆向量,记为-a . 零向量 模等于0的向量称为零向量,记作0,零向量没有确定的方向,也可以说它的方向是任意的.向量相等 两个向量a 与b ,如果它们方向相同,且模相等,就说这两个向量相等,记作=a b .自由向量 与始点位置无关的向量称为自由向量(即向量可以在空间平行移动,所得向量与原向量相等).我们研究的向量均为自由向量,今后,必要时可以把一个向量平行移动到空间任一位置2. 向量的线性运算 (1) 向量的加(减)法.仿照物理学中力的合成,我们可如下规定向量的加(减)法. 定义1 设a ,b 为两个(非零)向量,把a ,b 平行移动使它们的始点重合于M ,并以a ,b 为邻边作平行四边形,把以点M 为一端的对角线向量1M N定义为a ,b 的和,记为+a b(见图7-6).这样用平行四边形的对角线来定义两个向量的和的方法,叫做平行四边形法则.由于平行四边形的对边平行且相等,所以从图7-6可以看出,+a b 也可以按下列方法得出:把b 平行移动,使它的始点与a 的终点重合,这时,从a 的始点到b 的终点的有向线段1M N就表示向量a 与b 的和+a b (见图7-7).这个方法叫做三角形法则.图7-6 图7-7定义2 设a ,b 为两个(非零)向量,b 的逆向量为-b .称向量a 与向量-b 的和向量为向量a 与向量b 的差向量,简称为向量a 与向量b 的差.即-=+a b a b.按定义容易用作图法得到向量a 与b 的差.把向量a 与b 的始点放在一起,则由b 的终点到a 的终点的向量就是a 与b 的差-a b (见图7-8).图7-8在定义1与定义2中,我们都假设a ,b 为非零向量.其实这只是为了几何直观的需要,事实上a ,b 都可以是零向量.根据零向量的定义,我们可以将零向量看成一个没有方向的点.这样我们就可以约定:任何向量与零向量的和与差都等于该向量自己. 向量的加法满足下列性质:+=+a b b a; (交换律)()()++=++a b c a b c ; (结合律)+=a 0a ; ()0+-=a a (2) 向量与数量的乘法.定义3 设λ是一实数,向量a 与λ的乘积λa 是一个这样的向量:当>0λ时,λa 的方向与a 的方向相同,它的模等于a 的λ倍,即λλ=a a ; 当<0λ时,λa 的方向与a 的方向相反,它的模等于a 的λ倍,即λλ=a a ; 当0λ=时,λa 是零向量,即0λ=a .向量与数量的乘法满足下列性质(λ,μ为实数): ()()λμλμ=a a ; (结合律) ()λμλμ+=+a a a ; (分配律) ()λλλ+=+a b a b . (分配律)设a e 是方向与a 相同的单位向量,则根据向量与数量乘法的定义,可以将a 写成a =a a e这样就把一个向量的大小和方向都明显地表示出来.由此若a 为非零向量,也有a =a e a就是说把一个非零向量除以它的模就得到与它同方向的单位向量.二、 向量的坐标表示1. 向量在轴上的投影为了用分析方法来研究向量,需要引进向量在轴上的投影的概念. (1) 两向量的夹角.设a ,b 为两个非零向量,任取空间一点O ,作O A =a , O B =b,则称这两向量正向间的夹角θ为两向量a 与b 的夹角(见图7-9),记作(,)θ=ab 或 π(,),0θθ=≤≤b a . 当a 与b 同向时,0θ=;当a 与b 反向时,πθ=.图7-9(2) 点A 在x 轴上的投影.过点A 作与x 轴垂直的平面,交x 轴于点A ',则点A '称为点A 在x 轴上的投影(见图7-10).图7-10 图7-11(3) 向量AB 在x 轴上的投影.首先我们引进轴上的有向线段的值的概念设 AB 是x 轴上的有向线段.如果数λ满足λA B = ,且当AB 与x 轴同向时λ是正的,当 AB 与x 轴反向时λ是负的,那么数λ叫做x 轴上有向线段AB 的值,记作A B ,即λA B =.设,A B 两点在x 轴上的投影分别为A ',B '(见图7-11),则有向线段''A B 的值A B ''称为向量AB 在x 轴上的投影,记作j P r x A B A B ''= ,它是一个数量. x 轴叫做投影轴.这里应特别指出的是:投影不是向量,也不是长度,而是数量,它可正,可负,也可以是零.关于向量的投影,有下面两个定理.定理1 向量 AB 在x 轴上的投影等于向量 AB 的模乘以x 轴与向量AB 的夹角α的余弦,即j P r cos x A B A B a =.证 过A 作与x 轴平行,且有相同正向的x '轴,则x 轴与向量AB 间的夹角α等于x '轴与向量AB 间的夹角(见图7-12).从而有j j P r P r cos x x A B A B A B A B a '''==.图7-12显然,当α是锐角时,投影为正值;当α是钝角时,投影为负值;当α是直角时,投影为0定理2 两个向量的和在某轴上的投影等于这两个向量在该轴上投影的和,即j j j 1212P r ()P r P r x x x a a a a +=+图7-13证 设有两个向量12,a a 及某x 轴,由图7-13可以看到j j j 12P r ()P r ()P r x x x A B B C A C A C ''+=+==a a,而j j j j 12P r P r P r P r x x x x A B B C A B B C A C ''''''+=+=+=a a,所以j j j 1212P r ()P r P r x x x +=+a a a a显然,定理2可推广到有限个向量的情形,即j j j j 1212P r ()P r P r P r x n x x x n +++=+++a a a a a a2. 向量的坐标表示 (1) 向量的分解.设空间直角坐标系O x y z ,以,,i j k 表示沿x 轴、y 轴、z 轴正向的单位向量,并称它们为这一坐标系的基本单位向量.始点固定在原点O 、终点为M 的向量O M =r,称为点M的向径.图7-14设向径O M终点M 的坐标为(,,)x y z .过点M 分别作与三条坐标轴垂直的平面,依次交坐标轴于,,P Q R (见图7-14),根据向量的加法,有O M O P P M M M ''==++r,但 ,P M O P M M O Q ''==, 所以 O P O Q O R=++r. 向量,,O P O Q O R ,分别称为向量O M =r在,,x y z 轴上的分向量.根据数与向量的乘法,得,O P x =i ,O Q y =j O R z =k .因此,有O M x y z ==++r i j k.这就是向量r 在坐标系中的分解式,其中,,x y z 三个数是向量O M =r在三条坐标轴上的投影.一般地,设向量12,=aM M 12,M M 的坐标分别为1111(,,)M x y z 及2222(,,)M x y z ,如图7-15所示.由于图7-15122121M M O M O M =-=-r r,而 2222x y z =++r i j k ,1111x y z =++r i j k ,所以()()=++-++a i j k i j k x y z x y z 222111 ()()()-+-+-i j k =x x y y z z 212121.这个式子称为向量12M M按基本单位向量的分解式,其中三个数量212121,,x y z a x x a y y a z z =-=-=-是向量12M M =a在三个坐标轴上的投影.我们也可以将向量a 的分解式写成.x y z a a a =++a i j k(2) 向量的坐标表示.向量a 在三个坐标轴上的投影,,x y z a a a 叫做向量a 的坐标,并将a 表示为(),,x y za a a =a ,上式叫做向量a 的坐标表示式.从而基本单位向量的坐标表示式是()()()1,0,0,0,1,0,0,0,1===i j k .零向量的坐标表示式为0,0,00=().起点为(),,M x y z 1111、终点为(),,M x y z 2222的向量的坐标表示式为()21212112,,M M x x y y z z ---=,特别地,向径的坐标就是终点的坐标,即(),,=O M x y z(3) 向量的模与方向余弦的坐标表示式.向量可以用它的模和方向来表示,也可以用它的坐标来表示.为了找出向量的坐标与向量的模、方向之间的联系,我们先介绍一种表达空间方向的方法.与平面解析几何里用倾角表示直线对坐标轴的倾斜程度相类似,我们可以用向量12M M =a 与三条坐标轴(正向)的夹角,,αβγ来表示此向量的方向,并规定π0α≤≤、π0β≤≤、π0γ≤≤ (见图7-16),,,αβγ叫做向量a 的方向角.过点12,M M 各作垂直于三条坐标轴的平面,如图7-16所示.可以看出,由于12,P M Mα∠=又21M P M P ⊥,所以1cos cos 12x a M P M M ααa===,1c o s c o s 12y a M Q M M ββ===a, (7-2-1)1cos=cos 12.z a M R M M γ==aa z =M 1R =||cos γ=|a |cos γ.图7-16公式(7-2-1)中出现的不是方向角αβγ,,本身而是它们的余弦,因而,通常也用数组cos cos cos αβγ、、来表示向量a 的方向,叫做向量a 的方向余弦.把公式(7-2-1)代入向量的坐标表示式,就可以用向量的模及方向余弦来表示向量()cos cos cos αβγ=++a a i j k , (7-2-2)而向量a 的模为12M M ==a由此得向量a 的模的坐标表示式=a (7-2-3)再把(7-2-3)式代入(7-2-1)式,可得向量a 的方向余弦的坐标表示式cos cos ,cos a αa βa γ⎧⎪=⎪⎪⎪=⎨⎪⎪⎪=⎪⎩(7-2-4)把公式(7-2-4)的三个等式两边分别平方后相加,便得到222cos cos cos 1αβγ++=,即任一向量的方向余弦的平方和等于1.由此可见,由任一向量a 的方向余弦所组成的向量()cos cos cos ,,αβγ是单位向量,即cos cos cos =αβγ++a e i j k .例1 已知两点()1225,,P -及()2167,P -,,试求:(1) 12P P 在三条坐标轴上的投影及分解表达式; (2) 12P P 的模;(3) 12P P的方向余弦;(4)12P P 上的单位向量12e PP .解 (1)设12(,,)x y z P P a a a =,则12P P在三条坐标轴上的投影分别为:3,8,2x y z a a a =-==于是12P P的分解表达式为38212P P i j k++=-.(2)12P P ==(3)12cos x a α==P P12cos ya β==p p ,12cos za γ==p p .(4))e 38212i j k =++-PP .(4) 用坐标进行向量的线性运算.利用向量的分解式,向量的线性运算可以化为代数运算. 设λ是一数量,,x y z x y z a a a b b b b =++=++a i j k i j k ,则()()x y z x y z a a a b b b ±=±a b i j k i j k ++++()()()x x y y z z a b a b a b =±+±+±i j k ;()x y z x y z λλa a a λa λa λa =++=++a i j k i j k或()()(),,,,,,xy z x y z x x y y z zaa ab b b a b a b a b ±±±±=,()(),,,,x y z x y z λa a a λa λa λa =.这就是说,两向量之和(差)的坐标等于两向量同名坐标之和(差);数与向量之积,等于此数乘上向量的每一个坐标.例2 从点()217,A -,沿向量8912=+-a i j k 的方向取线段A B ,使AB 34=,求点B 的坐标.解 设点B 的坐标为(,,)x y z ,则()()()217A B x y z -+++-i j k=.按题意可知AB上的单位向量与a 上的单位向量相等,即=A B a e e .而34A B =,17a ==,所以127343434A By x z +--==++e i j kAB AB, 8912171717a ==++a e i j k a比较以上两式,得283417x -=, 193417y +=, 7123417z -=-. 解得 181717,,x y z ===-.所以,点B 的坐标为1817,17()-,.例3 22345 ,,=-+=+-a i j k b i j k 求3-a b 方向的单位向量.解 因为()()3322345=-=-+-+-c a b i j k i j k3711=-+i j k.于是c ==,所以371133c c a b i j k c a b-===-+-e ).三、 向量的数量积与向量积1. 两向量的数量积在物理学中,我们知道当物体在力F 的作用下(见图7-17),产生位移s 时,力F 所做的功图7-17()cos ,W =F s Fs .这样,由两个向量F 和s 决定了一个数量 ()cos ,F s Fs .根据这一实际背景,我们把由两个向量F 和s 所确定的数量 ()cos ,F s Fs 定义为两向量F 与s 的数量积. 定义4 a 与b 的模与它们的夹角余弦的乘积,叫做a 与b 的数量积,记为a·b ,即()cos ,⋅=a b a b ab .因其中的 ()cos ,b ab 是向量b 在向量a 的方向上的投影,故数量积又可表示为 Prj ⋅=a a b a b,同样 Prj⋅=b a b b a . 数量积满足下列运算性质:(1)⋅=⋅a b b a ; (交换律)(2)()++⋅⋅⋅a b c =a b a c ; (分配律) (3)()()()λλλ⋅=⋅=⋅a b a b a b .(结合律)由数量积的定义,容易得出下面的结论: (1)2⋅=a a a ;(2)两个非零向量a 与b 互相垂直的充要条件是0⋅=a b . 数量积的坐标表示式设,x y z x y z a a a a b b b b =++=++i j k i j k ,由于基本单位向量,,i j k 两两互相垂直,从而,⋅=⋅=⋅=⋅=⋅=⋅=i j j k k i j i k j i k .又因为,,i j k 的模都是1,所以1⋅=⋅=⋅=i i j j k k ,因此,根据数量积的运算性质可得x x y y z z a b a b a b ⋅=++a b ,即两向量的数量积等于它们同名坐标的乘积之和.由于 ()co s ,⋅=a b a b ab ,当a ,b 都是非零向量时,有 ()cos ,a b a b a b ++⋅==a b ab a b.这就是两向量夹角余弦的坐标表示式.从这个公式可以看出,两非零向量互相垂直的充要条件为0x x y y z z a b a b a b ++=. (7-2-5)例4 求向量()322,,=-a 和()3,0,0=b 的夹角.解 因为 ()3320209⋅=⋅+-⋅+⋅=a b ,5==a ,=3b ,所以()93cos ,535⋅===⨯a b a b a b.故其夹角()arccos 5383,5=≈︒'a b .例5 求向量()412,,=-a 在()31,,0=b 上的投影. 解 因为 ()43112011⋅=⋅+-⋅+⋅=a b ,==b ,所以Prj ⋅===b a b a b.例6 在x O y 平面上,求一单位向量与437(,,)=-p 垂直. 解 设所求向量为(),,a b c ,因为它在x O y 平面上,所以0c =.又(),,0a b 与()437,,=-p 垂直,且是单位向量,故有22-43=10a b a b +=+,.由此求得34,55a b =±=±, 因此所求向量为34,,055⎛⎫±± ⎪⎝⎭.2. 两向量的向量积在研究物体转动问题时,不但要考虑此物体所受的力,还要分析这些力所产生的力矩.下面举例说明表示力矩的方法.图7-18设O 为杠杆L 的支点,有一个力F 作用于这杠杆上P 点处,F 与OP 的夹角为θ(见图7-18).由物理学知道,力F 对支点O 的力矩是一向量M ,它的模sin M O Q O P θ=F F=.而M 的方向垂直于 OP 与F 所确定的平面(即M 既垂直于OP ,又垂直于F ),M 的指向按右手规则,即当右手的四个手指从OP 以不超过π的角转向F 握拳时,大拇指的指向就是M 的指向.由两个已知向量按上述规则来确定另一向量,在其他物理问题中也会遇到,抽象出来,就是两个向量的向量积的概念.定义5 设a ,b 为两个向量,若向量c 满足(1) sin (,)=c a b ab ,即等于以,a b 为邻边的平行四边行的面积; (2)c 的方向垂直于,a b 所确定的平面,并且按顺序,,a b c 符合右手法则.则称向量c 为向量a 与向量b 的向量积,记为⨯a b (如图7-19),即=⨯c a b.图7-19向量积满足下列规律:(1)⨯=-⨯a b b a (向量积不满足交换律); (2)()+⨯=⨯+⨯a b c a c b c ;(3)()()()λλλ⨯=⨯=⨯a b a b a b .由向量积的定义,容易得出下面的结论: (1)⨯=a a 0;(2) 两个非零向量a 与b 互相平行的充要条件是⨯=a b 0. 3. 向量积的坐标表示式设,x y z x y z a a a b b b =++=++a i j k b i j k .则()()x y z x y z a a a b b b ⨯=⨯a b i j k i j k ++++()()()x x x y x z a b a b a b =⨯⨯⨯+i i i j i k ++ y x y y y za b a b a b ⨯⨯⨯+j i j j j k ()+()+()z x z y z za b a b a b ⨯⨯⨯k i k j k k ()+()+(). 由于⨯=⨯=⨯=i i j j k k 0, ⨯=i j k , ,⨯=j k i⨯=k i j ,⨯=j i k -, ⨯=k ji -, ⨯=i k j -.因此()()().y z z y z x x z x y y x a b a b a b a b a b a b ⨯=-+-+a b i j k -这就是向量积的坐标表示式.这个公式可以用行列式(行列式的定义及简单运算见本书后附录)写成下列便于记忆的形式,即⨯=ij k a b xy z xyza a ab b b从这个公式可以看出,两非零向量a 和b 互相平行的条件为0,0,0y z z y z x x z x y y x a b a b a b a b a b a b -=-=-=,或y x z xyza a ab b b ==. (7-2-6)例7 设2=+-ai j k,2=-+bi j k.计算⨯a b .解 211112i j k a b ⨯=--()()()212111222111⎡⎤⎡⎤⎡⎤=⋅--+-⋅-⋅+⋅--⋅⎣⎦⎣⎦⎣⎦i j k53=--i j k.例8 求以()123A ,,,()345B ,,,()247,,C 为顶点的三角形的面积S . 解 根据向量积的定义,可知所求三角形的面积S 等于12A B A C ⨯ . 因为=222A B ++i j k , 24A C +i j k=+,222124A B A C ⨯=ij k=462-+i j k ,所以12S A B A C =⨯==.例9 已知()211,,=a ,()111,,=-b ,求与a 和b 都垂直的单位向量. 解 设=⨯c a b ,则c 同时垂直于a 和b .于是,c 上的单位向量是所求的单位向量.因为23=⨯=--c a b i j k ,==c ,所以==c e c c⎛⎫-=-⎝c e 都是所求的单位向量.第三节 空间直线与平面本节将以向量为工具,在空间直角坐标系中建立最简单的空间图形——平面和直线的代数方程.一、 曲面方程的概念平面解析几何把曲线看作动点的轨迹,类似地,空间解析几何可把曲面当作是一个动点或一条动曲线按一定规律而运动产生的轨迹.一般地,如果曲面S 与三元方程(),,0F x y z =之间存在如下关系: (1) 曲面S 上任一点的坐标都满足方程(),,0F x y z =;(2) 不在曲面S 上的点的坐标都不满足这个方程,满足方程的点都在曲面上. 那末称(),,0F x y z =为曲面S 的方程,而曲面S 称为方程的图形.二、 空间直线的方程在平面解析几何中,我们知道,x O y 平面上的一定点和一非零向量就确定了一条直线.在三维空间的情形也是一样.设空间直线L 过定点0000(,,)M x y z ,且平行于非零向量m n p =++s i j k这时直线的位置就完全确定了(如图7-20),下面我们来求这条直线的直线方程.图7-20设(,,)M x y z 是直线L 上任意一点,因为L 平行于向量s ,所以0000()()()M M x x y y z z =-+-+-i j k0M M平行于向量s ,由两向量平行的充要条件式(7-2-6)有x x y y z z mnp---== (7-3-1)(7-3-1)称为直线L 的对称式方程,也叫做直线L 的标准式方程. 在建立直线L 的标准式方程(7-3-1)时,我们用到了向量0M M平行于向量s 的充要条件,即这两个向量的对应坐标成比例.如果我们设这个比列系数为t ,则有x x y y z z tmnp---===,那么000,,x x m t y y n t z z p t =+=+=+ (7-3-2)当t 从-∞变到+∞时,方程(7-3-2)就是过点0000(,,)M x y z 的直线L 的参数方程,其中t 是参数,向量s 称为直线L 的方向向量.向量s 的坐标,,m n p 叫做直线的方向数.例1 求过两点()1111,,M x y z ,()2222,,M x y z 的直线的方程 解 可以取方向向量()21212112,,M M x x y y z z =---s=.由直线的标准式方程可知,过两点12,M M 的直线方程为111212121x x y y z z x x y y z z ---==---.上式称为直线的两点式方程.例2 用标准式方程及参数式方程表示直线10,2340.x y z x y z +++=⎧⎨+++=⎩解 为寻找直线的方向向量s ,在直线上找出两个点即可,令=10x ,代入题中方程组,得 000,2y z ==- 同理,令1=0x ,代入题中方程组,得1113,22y z ==-即点(0)-,,A 12与点13(0)2,,B 2在直线上. 取()111,,22AB ==-s .因此,所给直线标准式方程为12211y x z -+==- 参数方程为12,,2.x t y t z t =-⎧⎪=⎨⎪=-+⎩, 注意 本例提供了化直线的一般方程为标准方程和参数方程的方法.三、 平面及其方程垂直于平面的非零向量叫做该平面的法向量.容易看出,平面上的任一向量都与该平面的法向量垂直.我们知道,过空间一点可以作,而且只能作一平面垂直于一已知直线,所以当平面Π上的一点0000(,,)M x y z 和它的法向量(,,)A B C =n 为已知时,平面Π的位置就完全确定了.图7-21设0000(,,)M x y z 是平面Π上一已知点,(,,)A B C =n 是它的法向量(见图7-21),(,,)M x y z 是平面Π上的任一点,那么向量0M M必与平面Π的法向量n 垂直,即它们的数量积等于零:00M M ⋅=n . 由于(,,)A B C =n ,0000(,,)M M x x y y z z =---,所以有000()()()0A x x B y y C z z -+-+-= (7-3-3)因为所给的条件是已知一定点0000(,,)M x y z 和一个法向量(,,)A B C =n ,方程(7-3-3)叫做平面的点法式方程.例3 求过点23(0)-,,及法向量(1,2,3)=-n 的平面方程.解 根据平面的点法式方程(7-3-3),得所求平面的方程为(2)2(3)30x y z --++= 或2380x y z =+-=.将方程(7-3-3)化简,得A xB yC zD +++=, (7-3-4)其中000D A x B y C z =---.由于方程(7-3-3)是,,x y z 的一次方程,因此任何平面都可以用三元一次方程来表示.反过来,对于任给的一个形如(7-3-4)的三元一次方程,我们取满足该方程的一组解000,,x y z ,则0000A x B y C z D +++= (7-3-5)由方程(7-3-4)减去方程(7-3-5),得000()()()0A x x B y y C z z -+-+-= (7-3-6)把它与方程(7-3-3)相比较,便知方程 (7-3-6)是通过点0000(,,)M x y z ,且以(,,)A B C =n 为法向量的平面方程.因为方程(7-3-4)与(7-3-6)同解,所以任意一个三元一次方程(7-3-4)的图形是一个平面.方程(7-3-4)称为平面的一般式方程,其中,,x y z 的系数就是该平面的法向量n 的坐标,即(,,)A B C =n .例4 如图7-22所示,平面Π在三个坐标轴上的截距分别为,,a b c ,求此平面的方程(设0,0,0a b c ≠≠≠).图7-22解 因为,,a b c 分别表示平面Π在x 轴、y 轴、z 轴上的截距,所以平面Π通过三点(,0,0),(0,,0),(0,0,)A a B b C c ,且这三点不在一直线上.先找出平面Π的法向量n ,由于法向量n 与向量A B ,A C都垂直,可取A B A C =⨯n ,而(,,0),(,0,)A B a b A C a c =-=-,所以得00A B A C ab ac=⨯=--ij k nb c a c a b =++i j k.再根据平面的点法式方程(7-3-3),得此平面的方程为()(0)(0)0bc x a ac y ab z -+-+-=. 由于0,0,0ab c ≠≠≠,上式可改写成1y xz a b c++=. (7-3-7) 式(7-3-7)叫做平面的截距式方程.下面我们讨论一下特殊位置的平面方程.(1) 过原点的平面方程. 因为平面通过原点,所以将0x y z ===代入方程(7-3-4),得0D =.故过原点的平面方程为0A x B y C z ++=, (7-3-8)其特点是常数项0D =.(2) 平行于坐标轴的平面方程.如果平面平行于x 轴,则平面的法向量(,,)A B C =n 与x 轴的单位向量(1,0,0)=i 垂直,故0⋅=n i ,即1000A B C ⋅+⋅+⋅=由此,有A =从而得到平行于x 轴的平面方程为B yC zD ++=,其方程中不含x .类似地,平行于y 轴的平面方程为0A x C z D ++=;平行于z 轴的平面方程为A xB y D ++=.(3) 过坐标轴的平面方程.因为过坐标轴的平面必过原点,且与该坐标轴平行.根据上面讨论的结果,可得过x 轴的平面方程为B yC z +=;过y 轴的平面方程为0A x C z +=;过z 轴的平面方程为0Ax B y +=.(4) 垂直于坐标轴的平面方程. 如果平面垂直于z 轴,则该平面的法向量n 可取与z 轴平行的任一非零向量(0,0,)C ,故平面方程为0C z D +=.类似地,垂直于x 轴的平面方程为0A x D +=,垂直于y 轴的平面方程为0B y D +=;而z =表示x O y 坐标面,0x =表示y O z 坐标面,0y =表示z O x 坐标面. 例5 指出下列平面位置的特点,并作出其图形: (1) 4x y +=; (2) 2z =.解 (1) 4x y +=,由于方程中不含z 的项,因此平面平行于z 轴(见图7-23). (2) 2z =,表示过点2(00),,且垂直于z 轴的平面(见图7-24).图7-23 图7-24四、 有关平面与直线的位置关系1. 两平面的夹角及平行、垂直的条件设平面1Π与2Π的法向量分别为1111(,,)A B C =n 和2222(,,)A B C =n .如果这两个平面相交,它们之间有两个互补的二面角(见图7-25),其中一个二面角与向量1n 与2n 的夹角相等.所以我们把这两平面的法向量的夹角中的锐角称为两平面的夹角.根据两向量夹角余弦的公式,有12cos cos(,)θ==n n (7-3-9)图7-25从两非零向量垂直、平行的条件,立即推得两平面垂直、平行的条件. 两平面12,ΠΠ互相垂直的充要条件是1212120A A B B C C ++=; (7-3-10)两平面12,ΠΠ互相平行的充要条件是111222A B C A B C ==. (7-3-11)例6 设平面1Π与2Π的方程分别为260x y z -+-=及250xy z ++-=,求它们的夹角.解 根据公式(7-3-9)得1cos 2θ==,所以平面1Π与2Π的夹角为π3θ=. 例7 一平面通过点1(1,1,1)P 和2(0,1,1)P -,且垂直于平面0x y z ++=,求这平面的方程.解平面0x y z ++=的法向量为1(1,1,1)=n ,又向量12(1,0,2)P P =--在所求平面上,设所求平面的法向量为n ,则n 同时垂直于向量12P P及1n ,所以可取112(1,1,1)(1,0,2)(2,1,1)P P =⨯=⨯--=-n n,故所求平面方程为2(1)(1)(1)0x y z --+-+-=,或20x y z --=.2. 两直线的夹角及平行、垂直的条件 设两直线1L 和2L 的标准式方程分别为111111x x y y z z m n p ---==和222222x x y y z z m n p ---==,两直线的方向向量()111,,m n p 1s =与()222,,m n p 2s =的夹角(这里指锐角或直角)称为两直线的夹角,记为θ,则cos θ=. (7-3-12)由此推出,两直线互相垂直的充要条件是121212 0m m n n p p ++=; (7-3-13)两直线互相平行的充要条件是111222m n p m n p == . (7-3-14)例8 求直线113:141y x z L -+==-和直线22:221y x zL +==--的夹角. 解 直线1L 的方向向量()1,41-1s =,,直线2L 的方向向量为()221--2s =,,,故直线1L 与2L 的夹角θ的余弦为cos θ===. 所以 π4θ=. 例9 求经过点()2,0,1-且与直线2360,42390x y z x y z -+-=⎧⎨-++=⎩平行的直线方程.解 所求直线与已知直线平行,其方向向量可取为()()()231423728,,,,,,=⨯-⨯-=--12s n n =.根据直线的标准式方程,得所求直线的方程为21728y x z -+==--. 例10 求过点213(),,,且与直线11321y x z-+==-垂直相交的直线方程. 解 先作一平面过点213(),,,且垂直于已知直线,那么这平面的方程应为()()()32+2130.x y z ----=再求已知直线与这平面的交点.把已知直线的参数方程13,12,x t y t z t =-+⎧⎪=+⎨⎪=-⎩代入平面方程,解之得37t =.再将求得的t 值代入直线参数方程中,即得 2133,,777x y z ===-. 所以,交点的坐标是2133,,777⎛⎫- ⎪⎝⎭. 于是,向量2132133,,777⎛⎫---- ⎪⎝⎭是所求直线的一个方向向量,故所求直线的方程为1232133213777y x z --==-----, 即123214y x z ---==-. 3. 直线与平面的夹角及平行、垂直的条件直线L 与它在平面Π上的投影所成的角称为直线L 与平面Π的夹角,一般取锐角(见图7-26).图7-26设直线L 的方程为ox x y y z z mnp---==,其方向向量(),,m n p =s ;平面Π的方程为0Ax B y C z D +++=,其法向量(),,A B C =n ,则πcos 2θ⎛⎫-=⎪⎝⎭n s n s , 即sin θ=. (7-3-15)从而,直线L 与平面Π平行的充要条件是m B n C p ++=; (7-3-16)直线L 与平面Π垂直的充要条件是A B Cm n p==. (7-3-17) 例11 设平面Π的方程为0Ax B y C z D +++=,()1111,,M x y z 是平面外的一点,试求1M 到平面Π的距离.图7-27解 在平面Π上取一点()0000,,M x y z (见图7-27),则点M 1到平面Π的距离Prj 0101n M M d M M ⋅==n n,而()()()11101000·M M A x x B y y C z z -+-+-n =由于点()000,,x y z 在平面Π上,有0000A x B y C z D +++=,即 000A x B y C z D ++=-,由此可得11101M M A x B y C z D ⋅=+++n,所以d =(7-3-18)公式(7-3-18)称为点到平面的距离公式.第四节 空间曲面与曲线一、 曲面及其方程在上一节中,我们考察了最简单的曲面——平面,以及最简单的空间曲线——直线,建立了它们的一些常见形式的方程.在这一节里,我们将介绍几种类型的常见曲面.1. 球面方程到空间一定点0M 之间的距离恒定的动点的轨迹为球面. 例1 建立球心在点()0000,,M x y z ,半径为R 的球面的方程.解 将球面看作空间中与定点等距离的点的轨迹.设(),,M x y z 是球面上的任一点,则0.M M R =由于0M M =所以R =.两边平方,得2222000x x y y z z R ---=()+()+()(7-4-1) 显然,球面上的点的坐标满足这个方程,而不在球面上的点的坐标不满足这个方程.所以,方程(7-4-1)就是以()0000,,M x y z 为球心,以R 为半径的球面方程.如果0M 为原点,即0000x y z ===,这时球面方程为2222x y z R ++= (7-4-2)若记20A x =-,20B y =-,20C z =-, D 222200x y z R =++-,则式(7-4-1)可化为2220x y z A x B y C z D ++++++=(7-4-3) (7-4-3)式称为球面的一般方程由(7-4-3)式可以看出,球面的方程是关于,,x y z 的二次方程,它的222x y z ,,三项系数相等,并且方程中没有,,x y y z z x 的项.对于形如式(7-4-3)的一般方程,我们有下面几个结论:(1) 当22240A B C D ++->时,上式为一球面方程; (2) 当22240A B C D ++-=时,上式只表示一个点;(3) 当22240A B C D ++-<时,上式表示一个虚球,或者说它不代表任何图形. 例2 方程222240x y z x y ++-+=表示怎样的曲面? 解 通过配方,原方程可以改写为()()22212=5x y z -+++.与式(7-4-1)比较,可知原方程表示球心在点120,,0M -()、半径R =的球面. 2. 柱面设给定一条曲线C 及直线l ,则平行于直线l ,且沿曲线C 移动的直线L 所形成的曲面叫做柱面.定曲线C 叫做柱面的准线,动直线L 叫做柱面的母线(见图7-28).图7-28如果柱面的准线是x O y 面上的曲线C ,其方程为() ,0f x y =, (7-4-4)柱面的母线平行于z 轴,则方程(),0f x y =就是这柱面的方程(见图7-29).因为在此柱面上任取一点(),,M x y z ,过点M 作直线平行于z 轴,此直线与x O y 面相交于点()0,,0M x y ,点0M 就是点M 在x O y 面上的投影.于是点0M 必落在准线上,它在x O y 面上的坐标(),x y 必满足方程(),0f x y =,这个方程不含z 的项,所以点M 的坐标(),,x y z 也满足方程(),0fx y =.。
学高数的顺序

学高数的顺序
学习高等数学(高数)的顺序通常遵循数学学科的自然发展逻辑和学生的学习能力。
以下是一个常见的高数学习顺序:
1. 微积分基础:首先学习函数的极限、连续性、导数和微分等基本概念和方法。
这是高数的基础,为后续内容打下基础。
2. 积分学:接下来学习不定积分、定积分以及积分的应用,如求解面积、体积等。
3. 多元函数微积分:在掌握了一元函数微积分的基础上,进一步学习多元函数的极限、偏导数、全微分、二重积分、三重积分等内容。
4. 微分方程:学习一阶、二阶以及高阶微分方程的解法,了解微分方程在实际问题中的应用。
5. 向量代数与空间解析几何:学习向量的概念、运算以及空间解析几何的基本知识,为后续的高级课程做准备。
6. 级数理论:学习无穷级数的概念和性质,掌握级数的收敛性判别方法以及级数求和的方法。
7. 线性代数:学习矩阵的基本概念和运算,了解线性方程组、线性变换、特征值与特征向量等内容。
8. 概率论与数理统计:学习随机事件、概率、随机变量、概率分布、参数估计、假设检验等统计学的基本概念和方法。
在实际学习过程中,学生可以根据自己的兴趣、专业需求以及教学安排等因素,适当调整学习顺序。
同时,建议在每个阶段都进行充分的练习和复习,以加深对知识点的理解和记忆。
机器学习数学知识积累之线性代数解析几何,微积分

机器学习数学知识积累之线性代数解析⼏何,微积分解析⼏何解析⼏何的基本思想是⽤代数的⽅法来研究⼏何,把空间的⼏何结构系统地代数化,数量化向量的定义⼀个有长度和⽅向的⽮量,和标量(scalar)相对应向量的⼤⼩(有向线段的长度)称为向量的模 $|\vec{a}|$长度为1的向量称为单位向量向量的平⾏(共线),共⾯和垂直向量共线平⾏的充分必要条件是:存在⼀个标量$ \lambda $ 使得以下成⽴: $$\vec{a} = \lambda \vec{b}$$向量共⾯的充分必要条件是:a,b,c之间存在线性变换关系使得以下成⽴:$$\vec{c} = \lambda \vec{b}+ \eta \vec{a}$$向量垂直的充分必要条件是:$$\vec{a} \cdot \vec{b} = 0$$向量的线性运算加法:三⾓形法则,平⾏四边形法则,多边形法则(多个向量尾⾸相连,最终A的起点到Z的终点连接起来即为所有这些向量的和)减法数乘:只改变向量长度,⽅向⼀致或相反(随这个数据正负⽽定)向量加减法⼏何⽰意图向量的代数表⽰把空间中所有的向量的尾部都拉到坐标原点,这样N维点空间可以与N维向量空间建⽴⼀⼀对应关系:N维点空间中点(0,0,0…0)取作原点,那么每⼀个点都可以让⼀个向量和它对应,这个向量就是从坐标原点出发到这个点为⽌的向量。
向量在轴上的投影$C'和D‘$分别称为点$C,D$在轴u上的投影,向量$\vec{CD}$在轴u上的投影为C,D两点在u轴上的投影点$C',D'$组成的有向线段$\vec{C'D'}$的值,其绝对值等于向量$|\vec{C'D'}|$,其正负的符号由$\vec{C'D'}$的⽅向决定,当$\vec{C'D'}和u$轴同⽅向时值为正,反⽅向时值为负。
记为$Prj_u\vec{CD}$投影定理:向量$\vec{CD}$在轴u上的投影等于向量的模乘以轴与向量的夹⾓的余弦:$$Prj_u\vec{CD}=|\vec{CD}|cos(\varphi )$$性质定理:n个向量的和在轴上的投影等于两个向量在该轴上的投影之和.$$Prj_u(a_1+a_2+..+a_n) = Prj_ua_1+Prj_ua_2+...+Prj_ua_n$$向量的内积(数量积,点乘)和外积内积:两个向量的内积或者叫点乘结果是⼀个标量,其值等于a,b的模乘以其夹⾓的cos值。
微积分A(二)总复习(向量代数和空间解析几何)

(6) a , b , c 共面 [a , b , c ] 0 a x a y az
bx cx by cy
a x bx a y by az bz 0.
bz 0. cz
二、空间解析几何
1、空间曲面方程 (1) 空间曲面一般方程
F ( x , y , z ) 0 或 z f ( x , y ) 等。
向量代数
向量的 线性运算
向量概念
向量的 表示法
向量的积
数量积 混合积 向量积
空间解析几何 空间直角坐标系
一般方程 旋转曲面
曲线
参数方程 一般方程 参数方程
曲面
平 面
柱
面
直 线
二次曲面
一般方程
对称式方程 点法式方程
向 向量的坐标表达式、模、方向余弦、 量 单位向量、在另一向量上的投影; 空间两 代 点间的距离; 向量的垂直与平行、数量积 数 与向量积及其运算规律与性质意义 空 间 解 析 柱面、旋转曲面、二次曲面方程;空 几 何 间直线在坐标面上的投影
它满足交换律、结合律、分配律。
0 向量积 a b a b sin ( a ,^ b ) n , 0 a , b 所在平面的 n : 按“右手法则”垂直于 单位向量。 i j k a b a x a y az S a b . bx b y bz
a x a y az 0 与a 平行的单位向量为 a { , , } |a | |a | |a | 2 2 2 其中| a | a x a y az
的投影。
一、向量代数
ay ax a 的方向余弦为 cos , cos , |a | |a | az cos , 方向余弦满足 |a | cos2 cos2 cos2 1.
第五讲 空间解析几何、级数及微分方程

第五讲 空间解析几何、级数及微分方程 2. 空间向量的概念
向量: 既有大小, 又有方向的量称为向量 (又称矢量). 表示法: 向量的模 : 有向线段 M1 M2 , 或 a; 向量的长度,
向径 (矢径): 起点为原点的向量; 自由向量: 与起点无关的向量; 单位向量: 模为 1 的向量, 零向量: 模为 0 的向量,
ax a y az a b 即 = = bx by bz
第五讲 空间解析几何、级数及微分方程
向量积的行列式计算法
(a y bz a z by ) i (a z bx a x bz ) j (a x by a y bx ) k
i j = ax a y k az
a = ax i a y j az k b = bx i by j bz k
平面椭圆柱面双曲柱面抛物柱面第五讲空间解析几何级数及微分方程一般地在三维空间柱面柱面平行于准线xoz面上的曲线母线柱面准线xoy面上的曲线母线准线yoz面上的曲线母线表示方程表示方程表示方程第五讲空间解析几何级数及微分方程斜率为1的直线平面解析几何中空间解析几何中轴的直线平行于yoz面的平面圆心在00半径为轴为中心轴的圆柱面平行于轴的平面平面解析几何和空间解析几何的一些比较第五讲空间解析几何级数及微分方程级数一常数项级数1
注:以后我们判定空间中 的直线与直线、平面与平 面,以及直线与平面的位 置关系,归根到底都是判 定两个向量的位置关系, 因此要牢记这些结论!
②两个向量平行的判定
a b
a b = 0 ax a y az = = bx by bz
第五讲 空间解析几何、级数及微分方程 例1. 解:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章:空间解析几何与向量微分本章内容简介在平面解析几何中,通过坐标把平面上的点与一对有序实数对应起来,把平面上的图形和方程对应起来,从而可以用代数方法来研究几何问题,空间解析几何也是按照类似的方法建立起来的。
7.1空间直角坐标系一、空间点的直角坐标为了沟通空间图形与数的研究,我们需要建立空间的点与有序数组之间的联系,为此我们通过引进空间直角坐标系来实现。
过定点O,作三条互相垂直的数轴,它们都以O为原点且一般具有相同的长度单位.这三条轴分别叫做x轴(横轴)、y轴(纵轴)、z轴(竖轴);统称坐标轴.通常把x轴和y轴配置在水平面上,而z轴则是铅垂线;它们的正方向要符合右手规则,即以右手握住z轴,当右手的四指从正向x轴以π/2角度转向正向y轴时,大拇指的指向就是z轴的正向,这样的三条坐标轴就组成了一个空间直角坐标系,点O叫做坐标原点。
(如下图所示)三条坐标轴中的任意两条可以确定一个平面,这样定出的三个平面统称坐标面。
取定了空间直角坐标系后,就可以建立起空间的点与有序数组之间的对应关系。
例:设点M为空间一已知点.我们过点M作三个平面分别垂直于x轴、y轴、z轴,它们与x轴、y轴、z轴的交点依次为P、Q、R,这三点在x轴、y轴、z轴的坐标依次为x、y、z.于是空间的一点M就唯一的确定了一个有序数组x,y,z.这组数x,y,z就叫做点M的坐标,并依次称x,y和z为点M的横坐标,纵坐标和竖坐标。
(如下图所示)坐标为x,y,z的点M通常记为M(x,y,z).这样,通过空间直角坐标系,我们就建立了空间的点M和有序数组x,y,z之间的一一对应关系。
注意:坐标面上和坐标轴上的点,其坐标各有一定的特征.例:如果点M在yOz平面上,则x=0;同样,zOx面上的点,y=0;如果点M在x轴上,则y=z=0;如果M是原点,则x=y=z=0,等。
二、空间两点间的距离设M1(x1,y1,z1)、M2(x2,y2,z2)为空间两点,为了用两点的坐标来表达它们间的距离d我们有公式:例题:证明以A(4,3,1),B(7,1,2),C(5,2,3)为顶点的三角形△ABC是一等腰三角形.解答:由两点间距离公式得:由于,所以△ABC是一等腰三角形7.2 方向余弦与方向数解析几何中除了两点间的距离外,还有一个最基本的问题就是如何确定有向线段的或有向直线的方向。
方向角与方向余弦设有空间两点,若以P1为始点,另一点P2为终点的线段称为有向线段.记作.通过原点作一与其平行且同向的有向线段.将与Ox,Oy,Oz三个坐标轴正向夹角分别记作α,β,γ.这三个角α,β,γ称为有向线段的方向角.其中0≤α≤π,0≤β≤π,0≤γ≤π.关于方向角的问题若有向线段的方向确定了,则其方向角也是唯一确定的。
方向角的余弦称为有向线段或相应的有向线段的方向余弦。
设有空间两点,则其方向余弦可表示为:从上面的公式我们可以得到方向余弦之间的一个基本关系式:注意:从原点出发的任一单位的有向线段的方向余弦就是其端点坐标。
方向数方向余弦可以用来确定空间有向直线的方向,但是,如果只需要确定一条空间直线的方位(一条直线的两个方向均确定着同一方位),那末就不一定需要知道方向余弦,而只要知道与方向余弦成比例的三个数就可以了。
这三个与方向余弦成比例且不全为零的数A,B,C称为空间直线的方向数,记作:{A,B,C}.即:据此我们可得到方向余弦与方向数的转换公式:,,其中:根式取正负号分别得到两组方向余弦,它们代表两个相反的方向。
关于方向数的问题空间任意两点坐标之差就是联结此两点直线的一组方向数。
两直线的夹角:设L1与L2是空间的任意两条直线,它们可能相交,也可能不相交.通过原点O作平行与两条直线的线段.则线段的夹角称为此两直线L1与L2的夹角. 若知道L1与L2的方向余弦则有公式为:其中:θ为两直线的夹角。
若知道L1与L2的方向数则有公式为:两直线平行、垂直的条件两直线平行的充分必要条件为:两直线垂直的充分必要条件为:7.3 曲面及其方程7.3.1 曲面方程的概念及一般方程如果曲面S与三元方程F(x, y, z)=0 (1)有下述关系:1.曲面S上任一点的坐标都满足方程(1);2.不在曲面S上的点的坐标都不满足方程(1),那末,方程(1)就叫做曲面S的方程,而曲面S就叫做方程(1)的图形。
两类常见的曲面1、柱面设有动直线L沿一给定的曲线C移动,移动时始终与给定的直线M平行,这样由动直线L所形成的曲面称为柱面,动直线L称为柱面的母线,定曲线C称为柱面的准线。
2、旋转面设有一条平面曲线C,绕着同一平面内的一条直线L旋转一周,这样由C旋转所形成的曲面称为旋转面,曲线C称为旋转面的母线,直线L称为旋转面的轴。
下面我们再列举出几种常见的二次曲面7.3.2几种特殊的曲面方程1.旋转曲面方程设平面曲线 l : 绕z轴旋转,则旋转曲线方程为2.柱面方程母线平行与坐标轴的柱面方程为不完全的三元方程,如F(y, z)=0就表示母线平行与x轴,准线为的柱面.3.二次曲面方程7.4 空间曲线及其方程7.4.1 空间曲线一般方程空间曲线可以看作两个曲面的交线。
设F(x, y, z)=0 和 G(x, y, z)=0是两个曲面的方程,它们的交线为C[如图]。
因为曲线C上的任何点的坐标应同时满足这两个曲面的方程,所以应满足方程组(1)反过来,如果点M不在曲线C上,那末它不可能同时在两个曲面上,所以它的坐标不满足方程组(1)。
因此,曲线C可以用方程组(1)来表示。
方程组(1)叫做空间曲线C的一般方程。
1.为空间曲线的一般方程,空间曲线的参数方程为t为参数.1.方程组表示怎样的曲线?方程组中第一个方程表示母线平行于z轴的圆柱面,其准线是xOy面上的圆,圆心在原点O,半径为1。
方程组中第二个方程表示一个母线平行于y轴的柱面,由于它的准线是zOx面上的直线,因此它是一个平面。
方程组就表示上述平面与圆柱面的交线,[如图]。
2.方程组表示怎样的曲线?方程组中第一个方程表示球心在坐标原点O ,半径为a的上半球面。
第二个方程表示母线平行于z 轴的圆柱面,它的准线是xOy面上的圆,这圆的圆心在点(a/2,0),半径为a/2。
方程组就表示上述半球面与圆柱面的交线,[如图]。
7.4.2 空间曲线在坐标上的投影设空间曲线C的一般方程为由上述方程组消去变量z,x,y后所得的方程分别为:H( x , y )=0 R( y , z )=0 T( x , z )=0表示曲线C在xOy面上的投影,表示曲线C在yOz面上的投影,表示曲线C在xOz面上的投影。
例已知两球面的方程为(a)和(b)求它们的交线C在xOy面上的投影方程。
解先求包含交线C而母线平行于z轴的柱面方程。
因此要由方程(a) , (b)消去z,为此可先从(a)式减去(b) 式并化简,得到y + z = 1再以z = 1 –y 代入方程(a)或(b)即得所求的柱面方程为容易看出,这就是交线C关于xOy面的投影柱面方程,于是两球面的交线在xOy面上的投影方程是注:在重积分和曲线积分的计算中,往往需要确定一个立体或曲面在坐标面上的投影,这时要利用投影柱面和投影曲线。
7.5 平面及其方程7.5.1 平面方程的几种形式1.一般形式:Ax+By+Cy+D=0,称为平面方程的一般式。
其中x,y,z的系数A,B,C是平面的法向量 {A,B,C},。
2.点法式方程:我们把与一平面垂直的任一直线称为此平面的法线。
设给定点为Po(x0,y0,z0),给定法线n的一组方向数为{A,B,C}A2+B2+C2≠0,则过此定点且以n为法线的平面方程可表示为:注意:此种形式的方程称为平面方程的点法式。
例题:设直线L的方向数为{3,-4,8},求通过点(2,1,-4)且垂直于直线L的平面方程.解答:应用上面的公式得所求的平面方程为:即。
3.截距式方程:。
4.三点式方程:已知平面过空间三点,,,则平面方程为7.5.2 几种特殊位置平面的方程1、通过原点其平面方程的一般形式为:Ax+By+Cz=0.2、平行于坐标轴平行于x轴的平面方程的一般形式为:By+Cz+D=0.平行于y轴的平面方程的一般形式为:Ax+Cz+D=0.平行于z轴的平面方程的一般形式为:Ax+By+D=0.3、通过坐标轴通过x轴的平面方程的一般形式为:By+Cz=0.通过y轴和z轴的平面方程的一般形式为:Ax+Cz=0,Ax+By=0.4、垂直于坐标轴垂直于x、y、z轴的平面方程的一般形式为:Ax+D=0,By+D=0,Cz+D=0.7.6 空间直线及其方程任一给定的直线都有着确定的方位.但是,具有某一确定方位的直线可以有无穷多条,它们相互平行.如果要求直线再通过某一定点,则直线便被唯一确定,因而此直线的方程就可由通过它的方向数和定点的坐标表示出来。
设已知直线L的方向数为{l,m,n},又知L上一点Po(x0,y0,z0),则直线L的方程可表示为:上式就是直线L的方程,这种方程的形式被称为直线方程的对称式。
直线方程也有一般式,它是有两个平面方程联立得到的,如下:这就是直线方程的一般式。
平面、直线间的平行垂直关系对于一个给定的平面,它的法线也就可以知道了。
因此平面间的平行与垂直关系,也就转化为直线间的平行与垂直关系。
平面与直线间的平行与垂直关系,也就是平面的法线与直线的平行与垂直关系。
总的来说,平面、直线间的垂直与平行关系,最终都转化为直线与直线的平行与垂直关系。
在此我们就不列举例题了。
7.7 二次曲面我们把三元二次方程所表示的曲面叫做二次曲面。
为了了解三元方程F (x , y ,z )=0所表示得的曲面的形状,我们通常采用截痕法。
即用坐标面和平行于坐标面的平面与曲线相截,考察其交线(即截痕)的形状,然后加以综合,从而了解曲面的全貌。
同学们可试用截痕法考察下面的二次曲面。
7.7.1 椭球面方程所表示的曲面叫做椭球面,7.7.2 抛物面方程(p 和q 同号)所表示的曲面叫做抛物面,。
7.7.3 双曲抛物面方程(p 和q 同号)所表示的曲面叫做双曲抛物面,7.7.4 双曲面方程所表示的曲面叫做单叶双曲面,方程所表示的曲面叫做双叶双曲面。