直线与曲线的位置关系概要
两条直线的位置关系及曲线和方程

两条直线的位置关系及曲线和方程知识要点:1、两条直线的位置关系: 平行、相交、重合有两种判断方法。
一是几何方法——l 1、l 2的倾斜角ααπ122=≠, 即K 1 = K 2且纵截距b b 12≠时l 1∥l 2; l 1、l 2的倾斜角ααπ122==且横截距a a 12≠时l 1∥l 2。
l 1、l 2的倾斜角αα12≠, 即K K 12≠或K 1,K 2中一个存在一个不存在时, l 1与l 2相交。
l 1、l 2的倾斜角ααπ122=≠, 即K 1 = K 2且纵截距b 1 = b 2时, l 1与l 2重合; l 1、l 2的倾斜角ααπ122==且横截距a 1 = a 2时, l 1与l 2重合。
另一种是代数方法,()()l A x B y C A B l A x B y C A B 11111212222222220000::++=+≠++=+≠、通过方程组A xB yC A x B y C 11122200++=++=⎧⎨⎩解的情况判断两条直线的位置关系, 即: A 2、B 2、C 2均不为零时:A AB BC C 121212=≠有l 1∥l 2;A AB B 1212≠有l 1与l 2相交;A AB BC C 121212==有l 1与l 2重合。
若A 2、B 2、C 2有为零时, 可以更容易判断。
另外, 将上述分式变形一下便可得出更普通的结论。
A 1B 2 = A 2B 1且A C A C 1221≠时l 1∥l 2;A B A B A C A C 12211221==且时l 1与l 2重合;A B A B 1221≠时l 1与l 2相交。
2、两条直线的平行与垂直:①斜率互为负倒数⇒两条直线互相垂直; ②两条直线互相垂直斜率互为负倒数;③两条有斜率的直线互相垂直⇔斜率互为负倒数;④A B A B 12210+=⇔两条直线A 1x + B 1y + C 1 = 0, A 2x + B 2y + C 2 = 0互直垂直。
直线与圆锥曲线的位置关系(总结归纳)

y=±
33x,
∴有- 33≤k≤ 33.
• 答案:C
• 【例1】 已知直线y=(a+1)x-1与曲线y2=ax恰有一 个公共点,求实数a的值.
解• 析分证:联结析立论:方程.先组用yy2==代(aax+数. 1)方x-法1,即联(1)立当 a方=0程时,组此解方程决组恰,有再一组从解几为何xy==上10.,验
两式相减可得yx11--yx22·yx11++yx22=-ba22,即 kAB=-ba22xy00
.
x2 y2 类似的可得圆锥曲线为双曲线a2-b2=1
时,有
kAB=ab22yx00.
2px0
圆锥曲线为抛物线 y2=2px(p>0)时,有 kAB= y0 .
求椭圆
x2 9
y2 4
1 被点
Q(2,1)平分的弦 AB
1.直线y=kx-k+1与椭圆 x2 y2 1 的位置关系为( A )
(A) 相交 (B) 相切 9 (C)4相离
(D) 不确定
2.已知双曲线方程x2-y2=1,过P(0,1)点的直线l与双曲线
只有一个公共点,则l的条数为( A )
(A)4
(B)3
(C)2
(D)1
3.过点(0,1)与抛物线y2=2px(p>0)只有一个公共点的直线
a
为
4 0,-1,-5时,
直线 y=(a+1)x-1 与曲线 y2=ax 恰有一个公共点.
三、弦的中点问题
x2 y2 设 A(x1,y1),B(x2,y2)是椭圆a2+b2=1 上不同的两点,
且 x1≠x2,x1+x2≠0,M(x0,y0)为 AB 的中点,则xaxa212222++ybyb212222==11,.
解析几何中的曲线与曲线的位置关系的综合考察

解析几何中的曲线与曲线的位置关系的综合考察在解析几何中,曲线与曲线的位置关系是一道综合考察题,要求我们深入理解不同曲线类型及其相互关系,从而准确地描述它们之间的相对位置。
本文将对曲线与曲线的位置关系进行详细解析,并结合具体案例进行说明。
一、直线与直线的位置关系在解析几何中,直线与直线之间可以有三种不同的位置关系:平行、相交和重合。
1. 平行:当两条直线的斜率相等且不相交时,它们被称为平行线。
平行线在坐标平面上永不相交,并且沿着相同的方向延伸。
例如,设直线L₁的斜率为k₁,直线L₂的斜率为k₂,若满足k₁ = k₂,则L₁与L₂平行。
2. 相交:当两条直线在坐标平面上有一个交点时,它们被称为相交线。
相交线可能相交于一点,也可能相交于多个点。
判断两条直线是否相交通常使用代数方法,如联立方程求解。
3. 重合:当两条直线在坐标平面上完全重合时,它们被称为重合线。
两条重合线具有完全相同的方程,即它们表示相同的直线。
二、直线与曲线的位置关系直线与曲线之间的位置关系可以分为两种情况:切线和相交。
1. 切线:当直线与曲线在坐标平面上只有一个交点,并且直线经过该交点的切线与曲线相切时,我们称这条直线是曲线的切线。
切线的斜率等于曲线在该点的导数。
2. 相交:当直线与曲线在坐标平面上有两个或多个交点时,我们称这条直线与曲线相交。
交点的数量取决于直线与曲线的位置关系和性质。
三、曲线与曲线的位置关系曲线与曲线的位置关系可以分为几种常见情况:相离、外切、相交、内切和相切。
1. 相离:当两个曲线在坐标平面上没有任何交点时,我们称它们相离。
相离的曲线可能彼此远离,但也可能存在较远的共同渐近线。
2. 外切:当两个曲线在坐标平面上有且仅有一个交点,并且这个交点是两个曲线的切点时,我们称这两个曲线外切。
外切的曲线在切点的导数相等。
3. 相交:当两个曲线在坐标平面上有两个或多个交点时,我们称它们相交。
交点的数量取决于曲线的类型和方程。
直线与圆锥曲线的位置关系(一)概要

处理圆锥曲线的有关问题要注意设法 减少运算量,本题所求椭圆焦点未定,可 能在x轴上,也可能在y轴上,本题解法运 用待定系数法,避免了两种情况的讨论;
另外,本题解法中对交点采取“设而不求” 的方法,灵活运用韦达定理,从而简化了 运算过程,以上是处理此类问题的常用技 巧,应很好地体会。
例4、直线y-ax-1=0和曲线3x2-y2=1相交,交 点为A、B,当a为何值时,以AB为直径的圆经过 坐标原点。
故 | AB | 2 | x1 x2 | 2
( x1 x2 ) 4 x1 x2
2
90 2 369 192 2 ( ) 4 , 7 7 7 80 2 2 从而 | FC | ( x0 5) y0 2. 7
例3. 已知椭圆中心在原点, 焦点在坐标轴上, 直线y x 1 与该椭圆相交于P, Q, 且OP OQ,| PQ | 10 , 求椭圆方程. 2
当点P落在其它区域时,以点P为中点的弦存在。
检验方法:将求出的直线与曲线联立,看△ >0?
x2 y 2 例2.过双曲线 1的右焦点F作倾角为 的弦AB, 9 16 4 求弦长 | AB | 及弦AB的中点C到F的距离.
解:双曲线焦点为F(5,0),故AB方程为y=x-5,代 入双曲线方程消去y得: 7 x2 90 x 369 0,
90 369 又设A( x1 , y1 ), B( x2 , y2 ), C ( x0 , y0 ), 则x1 x2 , x1 x2 , 7 7
2 2a (a +1) +a +1=0 2 2 3a 3a
2
解得a=±1.
2 2 练习1.设0< < ,曲线x sin y cos 1和 2 2 2 x cos y sin 1, 有4个不同的交点. (1)求的取值范围; (2)证明这4个交点共圆, 并求圆的半径的取值范围.
直线与曲线位置关系

22
m2
n2
2m n
1 2
m2 n2 mn 4 (m n)2 3mn 4
y M
42 3mn 4 mn 4
F1 0 F2
x
S F1PF2
1 mns in60o 2
1 2
4
3 2
3
曲线和直线的位置关系
练:直线L:x-y-1=0交椭圆x2+2y2=4于A,B两 点,F1,F2为焦点,求四边形AF1BF2的周长与面 积.
练1:和直线2x+y-1=0垂直直线L与椭圆 x2+2y2=1相切,求直线L方程.
练2:直线L:2x-y-1=0交抛物线y2=8x,于A,B两 点,求AB的中点坐标和AB的长.
答案(1): x - 2y 3 0
(2):中点 (3 ,2), AB 2
2
10
曲线和直线的位置关系---弦长与中点弦问题
圆锥曲线
椭圆,双曲线,抛物线统称圆锥曲线
曲线和直线的位置关系
已知直线L和曲线C,联立方程,消去一 个未知数,得一个一元二次方程,计算其判 别式Δ则:
0 ------直线和曲线有两个不同的交点
------直线和曲线相交
0 ------直线和曲线有两个重合的交点
------直线和曲线相切
0 ------直线和曲线没有交点 ------直线和曲线相离
(yxAA113BB--x中由中2yx点2(2点2))21坐:得2xxx标:1((y-x21,2xx-112)2xx02x)22(3yx1代14-2x入y1xx2(代 点2)122)化入 纵简4直坐(42,x得线标1x1-:x方y4=2x程-21)32有2 32中443300
直线与曲线的位置关系

直线与曲线的位置关系直线与曲线在数学中是两个基本概念,它们的位置关系对于理解几何学和解决实际问题都具有重要的作用。
本文将探讨直线和曲线的位置关系,并讨论它们之间可能的相交情况。
一、直线与曲线的定义首先,我们来明确直线和曲线的定义。
直线是最简单的几何图形之一,它由无数个点组成,这些点在同一条直线上。
直线没有开始和结束的点,可以延伸到无限远。
直线可以用数学方程或者两点确定。
曲线则是比直线更为复杂的几何图形,它由一系列点组成,这些点的位置不在同一条直线上。
曲线可以是平滑的弧线,也可以是不规则的路径。
曲线通常可以用函数方程、参数方程或者隐式方程来描述。
二、直线与曲线的相交情况直线和曲线之间的相交情况主要有三种:相离、相切和相交。
1. 相离:直线和曲线没有公共的点,它们永远不会相交。
在平面几何中,如果直线和曲线的图像不重叠,它们就是相离的。
2. 相切:直线和曲线有且只有一个公共的点,它们在这一点处相切。
相切点是直线和曲线的切点,此时切线的斜率与直线相同。
3. 相交:直线和曲线有两个或者更多个公共的点,它们相互穿过或重叠。
相交点是直线和曲线的交点,交点的个数可能有限也可能是无穷多。
三、直线与曲线的位置关系示例接下来,我们通过几个具体的示例来讨论直线与曲线的位置关系。
1. 直线与抛物线考虑一条直线和一个抛物线的情况。
假设直线的方程为y = ax + b,抛物线的方程为y = cx^2 + dx + e。
当直线和抛物线的图像相交时,我们可以通过解方程组得到交点的坐标。
2. 直线与圆考虑一条直线和一个圆的情况。
假设直线的方程为y = mx + n,圆的方程为(x - a)^2 + (y - b)^2 = r^2。
当直线和圆的图像相交时,我们可以通过代入方程得到交点的坐标。
3. 直线与椭圆考虑一条直线和一个椭圆的情况。
假设直线的方程为y = mx + n,椭圆的方程为(x - a)^2 / h^2 + (y - b)^2 / k^2 = 1。
直线与曲线的关系

直线与曲线的关系直线与曲线是几何学中基本的图形,它们之间存在着密切的关系。
本文将从不同的角度来探讨直线和曲线之间的关系,包括它们的定义、性质以及它们在数学和现实生活中的应用。
一、直线的定义和性质直线是几何学中最基本的图形之一,它由无限多个点组成,这些点在同一条直线上排列。
直线没有弯曲或者拐点,可以延伸到无穷远处。
直线可以通过两个点唯一确定,而且任意两点之间都可以画出一条直线。
直线具有以下性质:1. 直线上任意两点可以通过直线段相连。
2. 直线上的所有点到两个端点的距离相等。
3. 直线没有起点和终点,可以一直延伸下去。
二、曲线的定义和性质曲线是由一系列连续的点组成的,它们不在同一直线上。
曲线可以是弯曲的,也可以是闭合的。
曲线可以是平滑的,也可以是不连续的。
曲线有很多种类,包括圆、椭圆、双曲线、抛物线等。
曲线具有以下性质:1. 曲线上的点之间没有特定的距离关系,因为曲线可以弯曲。
2. 曲线可以有起点和终点,也可以是无限延伸的。
3. 曲线上的点可以通过曲线段相连,但曲线段不能完全在同一直线上。
三、直线与曲线之间的关系直线和曲线是密切相关的,在几何学、物理学等领域中都有广泛的应用。
下面将介绍几种直线与曲线之间的关系:1. 切线:在曲线上的任意一点,都存在着唯一的切线。
切线是与曲线仅有一个公共点的直线,它与曲线相切于该点,并且在该点处与曲线的切线方向相同。
2. 弦:弦是连接曲线上的两个点的线段。
对于圆来说,弦可以是直径;对于其他曲线来说,弦只是曲线上的一段线段。
3. 渐近线:在曲线两边逐渐靠近并且无限接近曲线的直线称为渐近线。
渐近线与曲线之间的距离越来越小,但它们永远不会相交。
四、直线与曲线的应用直线和曲线的关系在数学和现实生活中有着广泛的应用。
以下是一些常见的应用:1. 几何学:直线和曲线是几何学中最基本的概念,它们被广泛应用于解决几何问题、构建图形等。
2. 物理学:在物理学中,直线和曲线常用于描述物体的运动轨迹、力的作用线等。
平面的方程直线和曲线的位置关系

平面的方程直线和曲线的位置关系在数学中,平面上的方程可以描述直线和曲线的位置关系。
直线和曲线是几何中常见的图形,它们在平面上可以相互交叉、平行或相切。
在本文中,我们将探讨平面的方程如何描述直线和曲线的位置关系。
1. 直线的方程直线是一种最简单的图形,其方程通常是一次方程。
一条直线可以由两个参数确定:斜率和截距。
一般形式的直线方程为y = mx + c,其中m是斜率,c是截距。
斜率表示直线在平面上的倾斜程度。
当斜率为正数时,直线向上倾斜,斜率为负数时,直线向下倾斜。
斜率为零意味着直线是水平的,斜率不存在则表示直线是竖直的。
截距是指直线与y轴的交点的y坐标。
如果直线不与y轴相交,则截距为无穷大。
2. 曲线的方程曲线的方程要复杂一些,可以是高次方程或者参数方程。
常见的曲线方程包括圆、椭圆、抛物线和双曲线等。
以圆为例,它可以由中心和半径确定。
圆的方程为(x-a)² + (y-b)² = r²,其中(a, b)是圆心的坐标,r是半径的长度。
对于其他曲线,其方程形式通常会有所不同,但同样可以用来描述曲线在平面上的位置关系。
3. 直线和曲线的位置关系直线和曲线在平面上的位置关系有三种可能:相交、平行或相切。
如果一条直线与曲线相交,那么它们在某一点有相同的坐标。
在方程中,我们可以将直线方程代入曲线方程来求解交点的坐标。
如果求解得到的结果存在,那么直线和曲线相交。
如果一条直线与曲线平行,那么它们之间不存在交点。
在方程中,我们可以比较直线和曲线的斜率来判断它们是否平行。
如果斜率相等且截距不同,那么直线和曲线平行。
如果一条直线与曲线相切,那么它们在某一点有相同的切线。
在方程中,我们可以比较直线和曲线的斜率来判断它们是否相切。
如果斜率相等且截距相等,那么直线和曲线相切。
在解决实际问题时,我们可以利用平面的方程来分析直线和曲线的位置关系。
通过确定直线和曲线的参数,我们可以得到它们的方程,并进行相关计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小结:直线与曲线的交点、相交弦问 题的解题思路: 相交 方程组有解 关于或的 一元二次方程有实数根 韦达定 理( △ ≥0 ) 中点坐标、弦长等
谢谢!
Байду номын сангаас
直线与曲线的位置关系
康大学校:刘伙南
教学目标: 1、让学生掌握直线与曲线的位置关系: 相交,相切,相离。 2、让学生掌握处理:直线与曲线的交点 个数问题、中点弦问题、弦长问题、对称 问题等。 3、培养学生的解题能力,分析问题的能 力。
2 例1、 问是否存在过点 P ( 1 , 1 )直线 L ,它 y 2 1 相交于A、B两点,且 与双曲线 x 2 P恰好为线段AB的中点。
例4、 过椭圆X2/a2+Y2/b2=1右焦点F的动直线交 椭圆于A、B两点,A、B、F在右准线上的投影分 别为C、D、E,线段AD、BC、EF必相交于线段 EF的中点。
点评:先证明AD与EF的交点是EF的中点, 再证BC与EF的交点恰好也是EF的中点。
例5、已知L1、L2是过点P(- 2 ,0)的两条 互相垂直的直线,且L1、L2与双曲线Y2-X2=1 各有两个交点,分别为A1、B1和A2、B2。(1) 求L1的斜率K1的取值范围; (2)若 求A L 、 B 2的方程。 5 A2 B2 11 1 L
y 1上的两点,点 例2、 设A、B是双曲线 x 2 N(1,2)是线段AB的中点。(1)求直线AB的
2
2
方程;(2)如果线段AB的垂直平分线与双曲线相 交于C、D两点,那么A、B、C、D四点是否共圆?
分析:问题1,与上面解法一样。但此题有解K=1,AB方程 为Y=X+1,且解得A(-1,0),B(3,4)。问题 2:若四 点共圆,则CD为直径,A、B两点到CD的中点的长分析:问 题1,与上面解法一样。但此题有解K=1,AB方程为Y=X+1, 且解得A(-1,0),B(3,4)。问题为CD的一半,由AB 垂直CD得CD方程为Y=-(X-1)+2;利用弦长公式和中点坐 标公式得CD=4√10,CD的中点坐标N为(-3,6), AN=BN=2√10,故共圆。
例3、 过抛物线Y2=2PX(P>0)的焦点F的直线 交抛物线于A、B两点,点C在抛物线的准线上, 且BC//X轴,求证:直线AC经过原点O。
点评:1、为了减少参数、简化运算,设抛物线上的点A 为( yA2 /2p ,yA )2、问题的本质结构为:过y2=2px(p > 0) 的焦点F的动直线交抛物线于A、B两点,E、D分别是A、 B在准线上的投影,线段AD、BE必相交于原点。
例1、 分析一:先假设L存在,从而将问题转化为求L的方程 ←—求直线的斜率K← 找关于K的方程← P为AB的中点← 韦达定 理←直线与二次曲线的位置关系 解:先假设L存在,并设L的方程为y=k(x-1)+1 由{ y=k(x-1)+1 x2-y2/2=1 ===>(2-k2)x2+2k(k-1)x-﹙k2-2k+3)=0,方 程两根为 X1、X2是 A 、 B 两点的横坐标,于是X1+X2=2,由韦达定理 得:K=2,代入上面方程得2X2-4X+3=0,此方程无解,故L不存在。 分析二:相关点法,设A(X1,Y1)、B(X2,Y2)代入双曲线方程 后相减,利用平方差和中点坐标得斜率K=2,再代入检验,同样不 存在。解法略。
点评:1、处理二次曲线的中点弦问题的方法: A、将直线(参数)方程代入二次曲线方程并整理,利用 韦达定理得到弦的中点坐标的关系,建立方程求解;B、 设出弦的两个端点坐标,利用点在二次曲线上建立方程组, 两式求差得到弦的中点与弦所在直线斜率的关系,建立方 程求解。注意:采用这两种方法的前提条件是直线与方程 必须有两个交点。 2 、处理“存在性问题”和一般方法是:假设存在,求解 并判断(有解且满足题意则有解,无解则不存在)。
点评:本题目是一道常规解析几何题,但有运动 的观点、联系转化的思想,其基本方法是通过讨 论方程来研究曲线的性质,用到二次方程的判别 式、韦达定理等,既能考查综合运算能力,又能 考查思维素质的深刻度。学生在解题时常见的错 误有如下几种:
1、对于第一问,只考虑L1的斜率K1不考虑L2的斜 率这是不合理的,因为L1与双曲线相交不能保证L2 与双曲线相交。 2、对方程(k12-1)x2+2√2k12x+2k12-1=0不考虑二 次项的系数非0,只求判别式大于0,不正确的。 3、还有看不出方程(k12-1)x2+2√2k12x+2k12-1=0 应有两个不相同的实根,只知判别式△ ≥0或k121≠ 0且△ ≥0,这是一个很容易疏忽的细节。