食品生物化学复习内容11级
《食品化学》复习资料

江南大学《食品化学》课程复习资料超全总复习一一、名词解释题1.酶促褐变酶促褐变是在有氧的条件下,酚酶催化酚类物质形成醌及其聚合物的反应过程。
2.蛋白质变性蛋白质分子结构在二级、三级和四级的结构上的重大变化(不涉及主链上肽键的裂变)。
3.氢键是以共价键与一个电负性原子(例如N、O和S)相结合的氢原子与另一个电负性原子之间的相互作用。
4.胶凝作用溶胶受改变湿度或加入电解质的影响,失去流动性而成凝胶的作用。
例如将明胶溶表冷却,或在硅酸钠溶液中加入酸,都能起胶凝作用面成凝胶。
5.淀粉老化稀淀粉溶液冷却后,线性分子重新排列并通过氯键形成不溶性沉淀。
浓淀粉溶液冷却时,在有限的区城内,淀粉分子重新排列较快,线性分子缔合溶解度减小。
6.周转率在酶被完全饱和的条件下,单位时间内底物被每个酶分子转变成产物的分子数。
7.水结合水结合表示水与细胞物质在内的亲水物质的一般倾向。
8.美拉德反应食品在油炸、焙烤等加工或贮藏过程中,还原糖(主要是葡萄糖)同游离氨基酸或蛋白质分子中氨基酸残基的游离氨基发生羰氨反应。
9.水分活度说明水与各种非水成分缔合的强度,与微生物生长和许多降解反应的速度具有很好的相关性,因此成为了一个能指示产品质量和微生物安全的参数。
10.同质多晶现象指化学组成相同但具有不同晶型的物质,在熔化时可得到相同的液相。
二、填空题1、水的结构模型有混合、填隙和连续。
主要的结构特征是在短暂和扭曲的四面体中液态水通过氨键而缔合。
2、由2—20 个糖单位通过糖苷键连接的碳水化合物称为低聚糖,超过20个糖单位则称为多糖。
3、α-氨基酸是由非离子纤维素醚、增稠、表面活性、成膜性和形成热凝胶以共价键连接构成。
4、三酰基甘油分子高度有序排列,形成三维晶体结构,他们由晶胞组成,通过3 种不同的堆积方式形成三斜、正交、六方晶系。
5、在细胞中未经酶催化改性的蛋白质被称为简单蛋白,而经酶催化改性或与非蛋白组分结合的蛋白质被称为结合蛋白。
非蛋白成分被称为辅基。
食品生物化学复习背诵

1.糖类:是指多羟基醛或多羟基酮及其缩聚物和某种衍生物的总称2.差向异构体:仅有一个部队称碳原子构型不同的两个非镜像对映异构体单糖叫差向异构体3.对映体:互为实物与镜像而不可重叠的立体异构体,称为对映体4.镜像对映体:两个对映体不能重叠,而是互为镜像,称为镜像对映体。
5.变旋现象:在溶液中,糖的链状结构和环状结构(α、β)之间可以相互转变,最后达到一个动态平衡,称为变旋现象。
6.旋光性:指一种物质使偏振光的震动平面发生向左或向右旋转的特性。
7.麦芽糖水溶液在20℃的旋光度为+138°,在10cm旋光管中观察到旋光度为+23°,求测试样品的麦芽糖浓度为0.167g/ml (填空)8.判断D、L、R、S、吡喃、呋喃结构9.糖类化合物的生物学作用:(1)作为生物体的结构成分;(2)作为生物体内的主要能源物质;(3)在生物体内转变为其他物质;(4)作为细胞识别的信息分子。
1.碘价:100g油脂吸收碘的量(g)——用来表示油脂的不饱和程度2.皂化价:皂化1g脂肪所需KOH的量(mg)——皂化值与脂肪(或脂肪酸)的分子质量成反比,皂化值高表示含低分子质量的脂肪酸较多3.酸价:中和1g脂类所含游离脂肪酸所需的KOH的量(mg)——酸价表示的是腐败程度,酸价越低,油脂的情况越好4.检验油脂的质量通常要测碘价、皂化值、酸价,为何?3种常数的数值表示什么?答:碘价是100g油脂吸收碘的量(g),原理是通过脂肪或脂肪酸中不饱和碳碳双键与卤素发生加成反应,因此碘价用于测定油脂的不饱和程度,碘价越高,不饱和程度越高。
皂化值是皂化1g脂肪所需KOH的量(mg),原理是KOH水解脂肪,皂化值与脂肪(或脂肪酸)的分子质量成反比,皂化值高表示含低分子质量的脂肪酸较多酸价:中和1g脂类所含游离脂肪酸所需的KOH的量(mg),酸价表示的是腐败程度,酸价越低表明油脂精炼和贮存情况越好。
5.血浆脂蛋白有哪几种?各自特性如何?(掌握)答:5种乳靡微粒-主要生理功能是转运外源油脂极低密度脂蛋白-转运内源油脂低密度脂蛋白-转运胆固醇和磷脂到肝脏高密度脂蛋白-转运磷脂和胆固醇极高密度脂蛋白-转运游离脂肪酸6.何谓酯酰甘油?其有哪些物理化学性质?(熟悉)答:脂肪酸的羧基与甘油的醇羟基脱水形成的化合物成为酯酰甘油。
《食品生物化学》考试大纲

《食品生物化学》考试大纲第一章:绪论【本章内容】1、生物化学的定义2、生物化学发展简史3、当代生物化学研究的主要内容4、生物化学与食品【本章重点及难点】生物化学的定义、生物化学研究的主要内容、本课程的主要内容和要求。
【基本要求】1、了解什么是生物化学,生物化学发展历史。
2、理解生物化学研究的主要内容是什么、本课程的主要内容和要求。
知道如何学好生物化学。
第二章:蛋白质【本章内容】1、蛋白质的分子组成2、蛋白质的分子结构3、蛋白质结构与功能的关系4、蛋白质的理化性质与分离纯化5、蛋白质的分类【本章重点及难点】1、本章重点:20种常见氨基酸的通式、分类、物理化学性质和分离方法。
肽的构成,肽键的结构和性质,肽的特殊化学反应。
蛋白质一,二,三,四级结构及其与功能的关系。
蛋白质超二级结构,结构域的基本概念。
蛋白质的重要理化性质。
蛋白质的生物学功能与结构之关系,蛋白质分离纯化的方法。
2、本章难点:等电点及其计算和测定方法。
肽链骨架。
α-螺旋和β-折叠结构,超二级结构,结构域。
蛋白质的生物学功能与结构的关系。
【基本要求】1、掌握蛋白质的元素组成特点,氨基酸的结构通式。
氨基酸的分类、三字英文缩写符号。
蛋白质一级结构的概念及其主要的化学键。
蛋白质二级结构的概念、主要化学键和形式、α-螺旋,β-折叠的结构特点。
蛋白质的三级结构概念和维持其稳定的化学键。
蛋白质的四级结构的概念和维持稳定的化学键。
蛋白质的结构与功能的关系:一级结构决定空间结构,空间结构决定生物学功能。
蛋白质的理化性质:两性电离,胶体性质,蛋白质的沉淀、变性的概念和意义,紫外吸收和呈色反应。
2、理解肽、肽键与肽链的概念,多肽链的写法。
生物活性肽的概念。
肽单元概念。
模体、锌指结构、分子伴侣的概念。
结构域的特点。
蛋白质的分类。
蛋白质分离和纯化技术:透析及超过滤、盐析、电泳、凝胶过滤、离子交换层析和超速离心的原理。
3、了解几种重要的生物活性肽。
胰岛素一级结构的特点。
食品生物化学复习资料

1.名词解释、选择及填空:食品生物化学:研究食品的组成、结构、性能与加工、贮运过程中的化学变化以及食品成分在人体内代谢的科学。
糖类(carbohydrates)物质:就是含多羟醛或多羟酮类化合物及其缩聚物与某些衍生物的总称。
构象:指一个分子中,不改变共价键结构,仅靠单键的旋转或扭曲而改变分子中基团在空间的排布位置,而产生不同的排列方式。
变旋现象:在溶液中,糖的链状结构与环状结构(α、β)之间可以相互转变,最后达到一个动态平衡,称为变旋现象。
常见二糖及连接键:蔗糖(α-葡萄糖—(1,2)-β果糖苷键);麦芽糖(葡萄糖-α—1,4-葡萄糖苷键);乳糖(葡萄糖-β—1,4半乳糖苷键);纤维二糖(β-葡萄糖-(1,4)-β—葡萄糖苷键)脂类:就是生物细胞与组织中不溶于水,而易溶于乙醚、氯仿、苯等非极性溶剂中,主要由碳氢结构成分构成的一大类生物分子。
脂类主要包括脂肪(甘油三酯,占95%左右)与一些类脂质(如磷脂、甾醇、固醇、糖脂等)顺式脂肪酸与反式脂肪酸:顺式脂肪酸:氢原子都位于同一侧,链的形状曲折,瞧起来象U型反式脂肪酸:氢原子位于两侧,瞧起来象线形皂化作用与皂化值:皂化作用:当将酰基甘油与酸或碱共煮或脂酶作用时,都可发生水解,当用碱水解时称为皂化作用。
皂化值:完全皂化1g甘油三酯所需KOH的mg数为皂化值。
酸败及酸值:油脂在空气中暴露过久即产生难闻的臭味,这种现象称为酸败。
中与1g油脂中游离脂肪酸所消耗KOH的mg数称为酸值,可表示酸败的程度。
卤化作用及碘值:油脂中不饱与键可与卤素发生加成反应,生成卤代脂肪酸,这一作用称为卤化作用。
100g油脂所能吸收的碘的克数称为碘值。
乙酰化与乙酰化值:油脂中含羟基的脂肪酸可与醋酸酐或其它酰化剂作用形成相应的酯,称为乙酰化。
1g乙酰化的油脂分解出的乙酸用KOH中与时所需KOH的mg数即为乙酰化值。
核酸:以核苷酸为基本组成单位的生物大分子,携带与传递遗传信息。
DNA脱氧核糖核酸RNA核糖核酸核酸的组成单位就是核苷酸。
食品生化复习题

食品生化复习题食品生化复习题食品生化是食品科学中的重要分支,它研究食物的成分、结构和性质,以及食物与人体之间的相互作用。
掌握食品生化知识对于我们了解食物的本质、合理选择食物以及保持健康至关重要。
下面是一些食品生化的复习题,希望能够帮助大家巩固知识。
1. 什么是食物的主要营养成分?简要介绍它们的作用。
食物的主要营养成分包括碳水化合物、蛋白质和脂肪。
碳水化合物是人体的主要能量来源,蛋白质是构成人体组织的基本单位,脂肪则是提供能量、维持体温和保护内脏的重要物质。
2. 什么是酶?它在食品生化中的作用是什么?酶是一种生物催化剂,它能够加速化学反应的速率。
在食品生化中,酶起着至关重要的作用。
例如,淀粉酶能够将淀粉分解为葡萄糖,蛋白酶能够将蛋白质分解为氨基酸,脂肪酶能够将脂肪分解为甘油和脂肪酸。
酶在食品加工、消化和吸收过程中起着重要的调节作用。
3. 什么是氧化反应?举例说明氧化反应在食品中的应用。
氧化反应是指物质与氧气发生反应,产生新的物质和释放能量的过程。
在食品中,氧化反应常常用于食品的加工和保存。
例如,面包烘烤时,面团中的淀粉和蛋白质与氧气发生氧化反应,产生香味和色泽。
另外,食品中的脂肪也容易发生氧化反应,导致食品变质。
4. 什么是酸碱平衡?为什么酸碱平衡对于人体健康重要?酸碱平衡是指人体内液体中酸性和碱性物质的平衡状态。
人体内的酸碱平衡对于维持生理功能的正常运作至关重要。
如果酸碱平衡失调,会影响体内酶的活性、细胞的功能以及骨骼的健康。
饮食中适当控制酸碱性食物的摄入,可以帮助维持酸碱平衡,保持身体健康。
5. 什么是抗氧化剂?举例说明抗氧化剂在食品中的应用。
抗氧化剂是一类能够抑制氧化反应的物质,它们可以防止食品发生氧化变质。
例如,维生素C和维生素E都是常见的抗氧化剂,它们可以保护食物中的脂肪和维生素不被氧化。
此外,一些天然植物提取物如茶多酚和花青素也具有抗氧化的作用,常用于食品的防腐和保鲜。
6. 什么是食品添加剂?列举几种常见的食品添加剂及其作用。
食品生物化学复习资料(新整合)

1.名词解释、选择及填空:食品生物化学:研究食品的组成、结构、性能和加工、贮运过程中的化学变化以及食品成分在人体内代谢的科学.糖类<carbohydrates>物质:是含多羟醛或多羟酮类化合物及其缩聚物和某些衍生物的总称.构象:指一个分子中,不改变共价键结构,仅靠单键的旋转或扭曲而改变分子中基团在空间的排布位置,而产生不同的排列方式.变旋现象:在溶液中,糖的链状结构和环状结构〔α、β〕之间可以相互转变,最后达到一个动态平衡,称为变旋现象.常见二糖及连接键:蔗糖〔α-葡萄糖—〔1,2〕-β果糖苷键〕;麦芽糖〔葡萄糖-α—1,4-葡萄糖苷键〕;乳糖〔葡萄糖-β—1,4半乳糖苷键〕;纤维二糖〔β-葡萄糖-〔1,4〕-β—葡萄糖苷键〕脂类:是生物细胞和组织中不溶于水,而易溶于乙醚、氯仿、苯等非极性溶剂中,主要由碳氢结构成分构成的一大类生物分子. 脂类主要包括脂肪〔甘油三酯,占95%左右〕和一些类脂质〔如磷脂、甾醇、固醇、糖脂等〕顺式脂肪酸与反式脂肪酸:顺式脂肪酸:氢原子都位于同一侧,链的形状曲折,看起来象U型反式脂肪酸:氢原子位于两侧,看起来象线形皂化作用与皂化值:皂化作用:当将酰基甘油与酸或碱共煮或脂酶作用时,都可发生水解,当用碱水解时称为皂化作用.皂化值:完全皂化1g甘油三酯所需KOH的mg数为皂化值.酸败及酸值:油脂在空气中暴露过久即产生难闻的臭味,这种现象称为酸败.中和1g油脂中游离脂肪酸所消耗KOH的mg数称为酸值,可表示酸败的程度.卤化作用及碘值:油脂中不饱和键可与卤素发生加成反应,生成卤代脂肪酸,这一作用称为卤化作用.100g油脂所能吸收的碘的克数称为碘值.乙酰化与乙酰化值:油脂中含羟基的脂肪酸可与醋酸酐或其它酰化剂作用形成相应的酯,称为乙酰化.1g乙酰化的油脂分解出的乙酸用KOH中和时所需KOH的mg数即为乙酰化值.核酸:以核苷酸为基本组成单位的生物大分子,携带和传递遗传信息.DNA脱氧核糖核酸RNA核糖核酸核酸的组成单位是核苷酸.核苷酸有碱基,戊糖,磷酸组成.核苷:是一种糖苷,由戊糖和碱基缩合而成.糖与碱基之间以"C—N"糖苷键相连接.X-射线分析证明,核苷中碱基近似地垂直于糖的平面.DNA与RNA组成异同:DNA——主要存在于细胞核中.真核细胞中,DNA主要集中在细胞核内,少量在线粒体和叶绿体.原核细胞没有明显的细胞核结构,DNA存在于称为类核的结构区.每个原核细胞只有一个染色体,每个染色体含一个双链环状DNA.RNA——主要分布在细胞质中,少量存在于细胞核中.病毒中RNA本身就是遗传信息的储存者.核酸的紫外吸收、等电点、变性、复性与杂交:核酸的紫外吸收:核酸的紫外最大吸收峰在波长260nm处蛋白质紫外最大吸收峰在波长280nm处纯DNA样品A260/A280比值为1.8纯RNA样品A260/A280比值2.0以上紫外吸收特性可以鉴定核酸样品的纯度嘌呤碱和嘧啶碱分子中都含有共轭双键体系,在紫外区有吸收〔260nm左右〕.等电点:当核酸分子内酸碱解离程度相等,所带正负离子相等,即成为两性离子,此时核酸溶液的pH值就是核酸的等电点.变性:指核酸的双螺旋结构解开,氢键断裂,并不涉及核苷酸间共价键的断裂.复性:使两条彼此分开的链重新缔合成双螺旋结构,这一过程叫复性.杂交:在变性的DNA的复性过程中会发生不同变性DNA片段之间的杂交.分子杂交:不同来源的单链DNA与单链DNA或RNA与单链DNA分子间, 在长于20bp的同源区域内,以氢键连接方式互补配对, 形成稳定的双链结构的过程.增〔减〕色效应:核酸变性后,在260nm处的吸收值上升,这种现象叫增色效应.若变性DNA复性重新形成双螺旋结构时,其溶液的A260值则减小,这种现象称为减色效应. 蛋白质:以氨基酸为基本单位的生物大分子,是动物、植物和微生物细胞中最重要的有机物质之一,是生命存在的形式.许多氨基酸按照一定顺序通过肽键连接形成多肽链,再由一条或一条以上的多肽链按照其特定方式结合而成的高分子含氮化合物.蛋白质存在于所有的生物细胞中,是构成生物体最基本的结构物质和功能物质.蛋白质是生命活动的物质基础,它参与了几乎所有的生命活动过程.凯氏定氮法:蛋白质的含量可由氮的含量乘以6.25〔100/16〕计算出来.模体:二个或三个具有二级结构的肽段,在空间上相互接近,形成一个特殊的空间构象,是具有特殊功能的超二级结构.盐析作用:在蛋白质溶液中加入定量的中性盐,使蛋白质脱水并中和其电荷而从溶液中沉淀出来,中性盐的这种沉淀作用称为盐析作用.常见的几种蛋白质盐析剂:硫酸铵、硫酸钠和氯化钠. 利用盐析法可以分离和制取各种蛋白质和酶制品蛋白质电泳:蛋白质在电场中能够泳动的现象,称为电泳.蛋白质电泳现象:在pH大于等电点的溶液中,蛋白质粒子带负电荷,在电场中向正极移动;在pH小于等电点的溶液中,蛋白质粒子带正电荷,在电场中向负极移动.这种现象称为蛋白质电泳.蛋白质在等电点pH条件下,不发生电泳现象.利用蛋白质的电泳现象,可以将蛋白质进行分离纯化.某些物理或化学因素,能够破坏蛋白质的结构状态,引起蛋白质理化性质改变并导致其生理活性丧失.这种现象称为蛋白质的变性酶:是由活细胞产生的,能在体内或体外起同样生物催化作用的一类具有活性中心和特殊构象的生物大分子,包括蛋白质和核酸.1、产生部位:活细胞2、作用:生物催化作用3、化学本质:绝大多数的酶是蛋白质,少数的酶是RNA.酶原:没有活性的酶的前体.酶原的激活:酶原在一定条件下经适当的物质作用可转变成有活性的酶.辅基/酶:复合蛋白酶的非蛋白成分称为辅因子或辅基,一些金属酶需要Mg2+、Fe2+、Zn2+等金属作辅基;另一些酶则需要有机化合物如B族维生素作为辅因子,称为辅酶.酶的活性中心:指酶蛋白分子中对催化底物发生反应具有关键作用的区域.酶活性中心通常是酶分子表面很小的缝隙或凹穴.即活性部位是酶分子中的微小区域.酶活性部位包括结合部位〔决定酶的专一性〕和催化部位〔决定酶所催化反应的性质〕. 同功酶:能催化同一化学反应,但其酶蛋白本身的分子结构组成却有所不同.活性中心相似或相同:催化同一化学反应.分子结构不同:理化性质和免疫学性质不同.同工酶在体内的生理意义主要在于适应不同组织或不同细胞器在代谢上的不同需要.别构酶:酶分子的非催化部位与某些化合物可逆地非共价结合,导致酶分子构象改变,进而改变酶的活性状态,称为酶的别构调节,具有这种调节作用的酶称别构酶,又称为变构酶.诱导酶:指当细胞中加入特定诱导物后诱导产生的酶,它的含量在诱导物存在下显著增高,这种诱导物往往是该酶底物的类似物或底物本身.酶活力:是指酶催化一定化学反应的能力,可以用它催化某一化学反应的速度来表示.维生素:是维持机体正常代谢功能所必需的微量小分子的有机物质.特点:有机化合物〔与微量元素Fe、Zn、Ca等不同〕;不供给能量〔与蛋白质、脂肪、糖不同〕;需求量少;机体不能合成或合成量很少,必须从食物中摄取.主要功能:作为辅酶参与机体代谢.分类:水溶性维生素〔C和B族〕、脂溶性维生素〔A,D,E,k〕. 维生素原:可在人及动物体内转化为维生素的物质.同效维生素:化学结构与维生素相似,并具有维生素生物活性的物质.生物氧化:糖类、脂肪、蛋白质等有机物质在细胞中进行氧化分解生成CO2和H2O并释放出能量的过程,其实质是需氧细胞在呼吸代谢过程中所进行的一系列氧化还原反应过程.呼吸链或电子传递链:指排列在线粒体内膜上的一个有多种脱氢酶以及氢和电子传递体组成的氧化还原系统.在生物氧化过程中,底物脱下的氢〔可以表示为H++e〕通过一系列递氢体和递电子体的顺次传递,最终与氧结合生成水,并释放能量.在这个过程消耗了氧,所以称之为呼吸链或电子传递链.四种酶复合体:复合体Ⅰ:NADH- CoQ还原酶复合体Ⅱ:琥珀酸- CoQ还原酶复合体Ⅲ:CoQ -细胞色素还原酶复合体Ⅳ:细胞色素氧化酶两个独立成分:辅酶Q<CoQ>和细胞色素C<Cytc>呼吸链的分类:NADH呼吸链或长呼吸链:由复合物Ⅰ、Ⅲ、Ⅳ以及两种独立成份组合组成以NADH 为首的传递链.琥珀酸脱氢酶〔也称FAD呼吸链〕或短呼吸链:由复合物Ⅱ、Ⅲ、Ⅳ以及两种独立成份组合组成以琥珀酸脱氢酶为首的传递链.氧化磷酸化:代谢物在生物氧化过程中释放出的自由能用于合成ATP〔即ADP+Pi→ATP〕,这种氧化放能和ATP生成〔磷酸化〕相偶联的过程称氧化磷酸化,又称为偶联磷酸化.酮体:脂肪酸β-氧化产物乙酰CoA,在肌肉中进入三羧酸循环,然后在肝细胞中可形成乙酰乙酸、β-羟丁酸、丙酮这三种物质统称为酮体转氨基作用:是α—氨基酸的氨基通过酶促反应,转移到α—酮酸的酮基位置上,生成与原来的α—酮酸相应的α—氨基酸,原来的α—氨基酸转变成相应的α—酮酸.EMP途径:糖酵解是葡萄糖在细胞质中<无氧条件>降解为丙酮酸并伴随A TP生成的过程,是一切有机体中普遍存在的葡萄糖降解途径.糖酵解过程一也叫Embdem-Meyerhof-Parnas途径,简称EMP途径.<1>反应部位:胞浆.参与糖酵解各反应的酶都存在于细胞浆中;<2>糖酵解是一个不需氧的产能过程;<3>反应全过程不可逆.其中有三步不可逆的反应;<4>净生成ATP数量:2×2-2= 2ATP糖酵解的生理意义:1、产生能量,是机体在缺氧情况下获取能量的有效方式.但能量的利用率较低.同时也是某些细胞在氧供应正常情况下的重要供能途径.2、凡是可转变为酵解中间产物的物质,均可沿酵解途径逆转合成葡萄糖.3、糖酵解反映了生物获取能量方式的演变过程氨基酸合成原料来源:1、碳架来源:三羧酸循环、糖酵解、磷酸戊糖途径、氨基酸分解途径2、氨基来源:起始于无机碳,即无机碳先转变为氨气,在转变为含氮有机化合物.起始和终止密码子:1、起始:蛋白质合成首先必须辩认出mRNA上的起始点.mRNA链上的起始密码子是AUG.2、终止:当核糖体移动至终止密码子UAA、UGA、UAG时,肽链延长便终止.信号肽:在新生肽的N-端<有时位于肽链中部,如卵清蛋白>,常有一小段与蛋白质定向输送有关并在输送途中被切除的肽段,称为信号肽.在C-端有一个可被信号肽酶识别的位点.核苷酸之间的连接键:单核苷酸之间的连接键:3, 5-磷酸二酯键.DNA分子中通过3ˊ, 5ˊ-磷酸二酯键连接的脱氧核苷酸的排列顺序碱基互补:A=T,G ≡C核酸链的游离末端及书写方向:核酸链的二个游离末端:5’ -磷酸基末端〔5’-P 〕, 3’-羟基末端〔3’-OH 〕书写方向:核酸链具有方向性,书写方向5′→3′糖类及氨基酸的构型:糖类:一种异构体使平面偏振光的偏振面沿顺时针方向偏转,称为右旋光性物质,用+表示.另一种异构体则使平面偏振光的编振面沿逆时针编转,称左旋光性物质,用-表示.具有旋光性差异的立体异构体又成为光学异构体,用D、L表示.规定:D型:单糖分子中离羰基最远的不对称碳原子上-OH在右边的成为D型.L型:单糖分子中离羰基最远的不对称碳原子上-OH在左边的成为L型.天然存在的单糖多为D-型.氨基酸:具有旋光性[左旋<->或右旋<+>].具有两种立体异构体〔D-型和L-型〕.目前已知的天然蛋白质中氨基酸都为L-型.D-型L-型根据代谢中间体的不同,可将氨基酸生物合成分为5类:α-酮戊二酸衍生型氨基酸:Glu〔谷氨酸〕, Gln<谷氨酰胺>, Pro<脯氨酸>, Arg〔精氨酸〕草酰乙酸衍生型氨基酸:Asp〔天冬氨酸〕, Asn〔天冬酰胺〕, Thr〔苏氨酸〕, Ile〔异亮氨酸〕, Met〔甲硫氨酸〕, Lys〔赖氨酸〕丙酮酸衍生型氨基酸:Ala〔丙氨酸〕, Val〔缬氨酸〕, Leu〔亮氨酸〕磷酸甘油酸衍生型氨基酸:Gly〔甘氨酸〕, Ser〔丝氨酸〕, Cys〔半胱氨酸〕芳香族氨基酸及组氨酸:Tyr〔酪氨酸〕, Trp〔色氨酸〕, Phe〔苯丙氨酸〕, His〔组氨酸〕酸〔碱〕性aa及芳香族aa:酸性氨基酸:Asp〔天冬氨酸〕,Glu〔谷氨酸〕碱性氨基酸:Arg〔精氨酸〕,His〔组氨酸〕,Lys〔赖氨酸〕芳香族氨基酸:Tyr〔酪氨酸〕,Trp〔色氨酸〕,Phe〔苯丙氨酸〕必需氨基酸:机体需要而自身又不能合成,必须由食物提供的氨基酸.<Ile>、<Met>、<Val>、<Leu>、<Trp>、<Phe>、<Thr>、<Lys>〔人体能合成部分组氨酸和精氨酸〕.米氏常数K m的意义:当ν=1/2Vmax时,Km=[S]Km的单位为浓度单位Km可以反映酶与底物亲和力的大小:K m越小,酶与底物的亲和力越大,酶的催化活性越高.Km可用于判断反应级数:当[S]<0.01Km时,反应为一级反应;当[S]>100Km时,ν=Vmax,为零级反应;当0.01Km<[S]<100Km时,为混合级反应.常见的含高能磷酸键化合物:1、磷氧键型:〔1〕酰基磷酸化合物〔2〕焦磷酸化合物〔3〕烯醇式磷酸化合物2、氮磷键型:胍基磷酸化合物3、硫酯键型4、甲硫键型呼吸链抑制剂抑制部位:线粒体内膜胞浆中NADH转运机制:1〕α-磷酸甘油穿梭通过该穿梭一对氢原子只能产生2分子ATP2〕苹果酸-天冬氨酸穿梭通过该穿梭,一对氢原子能产生3分子A TP氧化还原系统中氧化还原电位:呼吸链中各个递氢体与电子传递体的位置是根据各个氧化还原对的标准氧化还原电位从低到高排列的.氧化还原对E°′〔V〕NAD+/NADH+H+-0.32FMN/FMNH2-0.30FAD/FADH2-0.06Cyt b Fe3+/Fe2+0.04〔或0.10〕Q10/Q10H20.07Cyt c1 Fe3+/Fe2+0.22Cyt c Fe3+/Fe2+0.25Cyt a Fe3+/Fe2+0.29Cyt a3 Fe3+/Fe2+0.551/2 O2/H2O 0.82三脂酰甘油的熔点:是由其脂肪酸成分决定的,一般随饱和脂肪酸的数目和链长的增加而升高.不同脂肪酸之间的区别:主要在于碳氢链的长度及不饱和双键的数目和位置.不饱和脂肪酸的命名:△-编码命名:从羧基端开始计算双键位置ω-编码命名:从甲基端开始计算双键位置脂肪酸常用简写法表示,其原则是:先写出碳原子的数目,再写出双键的数目,最后表明双键的位置.必需脂肪酸:生物体不能自身合成,必须由食物供给的脂肪酸;包含两个或多个双键;严格意义上讲,必须脂肪酸为亚油酸和亚麻酸.竞争、非竞争及反竞争抑制剂的特点:竞争性抑制剂:〔1〕竞争性抑制剂往往是酶的底物类似物或反应产物;〔2〕抑制剂与酶的结合部位与底物与酶的结合部位相同;〔3〕抑制剂浓度越大,则抑制作用越大;但增加底物浓度可使抑制程度减小;〔4〕动力学参数Km增大,Vmax不变.即竞争性抑制通常可以通过增大底物浓度来消除.非竞争性抑制剂:〔1〕非竞争性抑制剂的化学结构不一定与底物的分子结构类似;〔2〕底物和抑制剂分别独立地与酶的不同部位相结合;〔3〕抑制剂对酶与底物的结合无影响,故底物浓度的改变对抑制程度无影响;抑制程度取决于抑制剂的浓度;〔4〕动力学参数:K m值不变,V max值降低.反竞争性抑制剂:〔1〕抑制剂只与酶-底物复合物结合;〔2〕抑制程度取决于抑制剂的浓度及底物浓度;〔3〕动力学特点:V max降低,表观K m降低.DNA的碱基组成规律:不同物种的DNA碱基组成不同.同一生物体的不同组织的DNA的碱基组成相同.年龄、营养状况和环境的改变不影响碱基的组成.碱基互补:[A]=[T],[G]=[C],[A]+[G]=[T]+[C]2.简答及论述:食品生物化学的研究内容:〔1〕研究食品的化学组成;〔2〕揭示食品在加工贮藏中发生的化学变化;〔3〕研究食物营养在人体内的降解及合成和能量的产生与调控;〔4〕研究食品风味.脂类的生理功能:〔1〕储存能量、提供能量;〔2〕生物体膜的重要组成成分;〔3〕脂溶性维生素的载体;〔4〕提供必需脂肪酸;〔5〕防止机械损伤与热量散发等保护作用;〔6〕作为细胞表面物质,与细胞识别、种特异性和组织免疫等密切关系.〔重点〕天然脂肪酸的共性:1〕脂肪酸的碳链:直链一元羧酸占绝大多数,并且几乎都是偶数碳.2〕双键的位置和构型:绝大多数不饱和脂肪酸的双键是顺式构型,大多数多烯脂肪酸为非共轭体系,两个双键之间由一个亚甲基隔开.3〕熔点:不饱和脂肪酸的熔点比同碳数的饱和脂肪酸的熔点低,双键越多熔点越低.4〕分布:16碳和18碳的脂肪酸在油脂中分布最广,含量最多;人体中饱和脂肪酸最普遍的是软脂酸和硬脂酸,不饱和脂肪酸是油酸.高等植物和低等动物中,不饱和脂肪酸含量高于饱和脂肪酸.〔重点〕RNA的种类、功能及结构:种类:rRNA、tRNA、mRNA功能:rRNA是构成核糖体的骨架,蛋白质合成的场所.tRNA在蛋白质生物合成中起到转运氨基酸的作用.每一种氨基酸都有与之相对应的一种或几种tRNA.mRNA 是合成蛋白质的模板,mRNA在代谢上很不稳定,每种多肽链都由一种特定的mRNA负责编码.所以细胞内mRNA的种类是很多的,但每一种mRNA的数量却极少.结构:⑴大多数天然RNA是一条单链,通过自身回折形成部分螺旋区,同一链上的碱基配对,产生部分双螺旋结构,不能配对的碱基所在区域则呈环状突起.⑵在RNA双螺旋区域,碱基配对原则是:A-U,G-C之间形成氢键.⑶RNA分子中,并不遵守碱基种类的数量比例关系,即分子中的嘌呤碱基总数不一定等于嘧啶碱基的总数.〔重点〕肽键及其的特点:一个氨基酸的羧基与另一氨基酸的氨基形成一个取代的酰胺键,称为肽键.特点:〔1〕氮原子上的孤对电子与羰基具有明显的共轭作用.肽键中的C-N键具有部分双键性质,不能自由旋转.〔2〕组成肽键的原子处于同一平面.〔3〕在大多数情况下,肽键以反式结构存在.〔4〕在多肽链内,侧链R基交替出现在肽键两侧〔重点〕蛋白质的功能:⑴--催化⑵结构蛋白--构成机体组织和细胞⑶肌动蛋白和肌球蛋白--肌肉收缩⑷血红蛋白、β-脂蛋白--运输、血清蛋白⑸谷蛋白、醇溶蛋白、卵清蛋白、酪蛋白--贮藏⑹抗体酶原的激活及生理意义:避免细胞产生的酶对细胞进行自身消化,并使酶在特定的部位和环境中发挥作用,保证体内代谢正常进行.有的酶原可以视为酶的储存形式.在需要时,酶原适时地转变成有活性的酶,发挥其催化作用.〔重点〕生物氧化的特点:〔1〕生物氧化包括线粒体氧化体系和非线粒体氧化体系.真核细胞生物氧化主要是线粒体氧化体系,原核细胞生物氧化主要在细胞膜上进行;〔2〕生物氧化是在活细胞的温和条件下进行;〔3〕是一系列酶、辅酶和中间传递体参与的多步骤反应;〔4〕能量逐步释放,ATP是能量转换的载体;〔5〕真核细胞在有氧条件下,CO2由酶催化脱羧产生,H2O是由代谢物脱下的氢经呼吸链传给氧形成.〔重点〕电子传递链的组成及分类:组成:<1>四种酶复合体:复合体Ⅰ:NADH- CoQ还原酶复合体Ⅱ:琥珀酸- CoQ还原酶复合体Ⅲ:CoQ -细胞色素还原酶复合体Ⅳ:细胞色素氧化酶<2>两个独立成分:辅酶Q<CoQ>和细胞色素C<Cytc>分类:<1>NADH呼吸链或长呼吸链:由复合物Ⅰ、Ⅲ、Ⅳ以及两种独立成份组合组成以NADH为首的传递链.<2>琥珀酸脱氢酶〔也称FAD呼吸链〕或短呼吸链:由复合物Ⅱ、Ⅲ、Ⅳ以及两种独立成份组合组成以琥珀酸脱氢酶为首的传递链.化学渗透学说的原理:〔1〕NADH呼吸链中的三个复合物Ⅰ、Ⅲ、Ⅳ起着质子泵的作用,将H+从线粒体基质跨过内膜进入膜间隙.〔2〕H+不断从内膜内侧泵至内膜外侧,而又不能自由返回内膜内侧,从而在内膜两侧建立起质子浓度梯度和电位梯度即电化学梯度.〔3〕当存在足够的跨膜电化学梯度时,强大的质子流通过嵌在线粒体内膜的线粒体ATP 合酶返回基质,质子电化学梯度蕴藏的自由能释放,推动A TP的合成.〔重点〕磷酸己糖途径的部位、限速酶及生理意义:部位:胞液中限速酶:葡萄糖-6-磷酸脱氢酶生理意义:〔1〕提供核酸生物合成所需的原料核糖.〔2〕提供细胞生物合成所需的还原力.〔3〕使活细胞处于还原态,防止生物膜氧化.葡萄糖有氧氧化的三个阶段:I 阶段的反应:葡萄糖转变成2分子丙酮酸的过程.II 阶段的反应〔丙酮酸进一步代谢〕:2分子丙酮酸氧化脱羧生成2分子乙酰CoA III 阶段的反应:2分子乙酰CoA进入三羧酸循环.糖异生及其生理意义:糖异生作用:指从非糖物质生成葡萄糖或糖原生理意义:1、维持血糖浓度的恒定是糖异生作用的最重要生理作用.2、糖异生作用有利于乳酸的回收利用3、糖异生是补充或恢复肝糖原储备的重要途径.4、协助氨基酸的分解代谢.5、肾糖异生增强有助于维持酸碱平衡〔重点〕膳食蛋白质中氨基酸的有效性的因素:<1>蛋白质构象:蛋白酶较难作用于不溶性的纤维状蛋白,因而其有效性低于可溶性球蛋白.<2>结合蛋白质含量:结合蛋白的消化吸收率低于简单蛋白.<3>蛋白酶抑制剂:膳食中存在蛋白酶抑制剂时,降低蛋白消化吸收率.<4>蛋白颗粒大小与表面积:体积大、表面积小的蛋白质消化吸收率低.<5>加工条件:在高温、碱性或存在还原糖类的条件下加工常降低膳食蛋白的有效性.<6>人体生理差别:膳食蛋白的消化吸收率与人体生理状况关系密切.〔重点〕鸟氨酸循环及其过程:鸟氨酸循环合成尿素——主要在肝细胞的线粒体及胞液中进行尿素生成的过程由Hans Krebs 和Kurt Henseleit 提出,称为鸟氨酸循环<orinithine cycle>,又称尿素循环<urea cycle>或Krebs- Henseleit循环.过程:1〕CO2、氨和A TP缩合形成氨基甲酰磷酸2〕氨基甲酰磷酸与鸟氨酸反应生成瓜氨酸3〕瓜氨酸与天冬氨酸反应生成精氨酸代琥珀酸〔反应在胞液中进行〕4〕精氨酸代琥珀酸裂解成精氨酸和延胡索酸5〕精氨酸裂解释放出尿素并再形成鸟氨酸〔反应在胞液中进行〕〔重点〕酶作为生物催化剂与一般催化剂相比的异同点:1.用量少而催化效率高;2.提高反应速度,不改变平衡点;3.只起催化作用,本身不消耗;4.降低反应的活化能.影响酶反应速度的因素:1.底物浓度、2.酶浓度、3.pH、4.温度5.激活剂、6.抑制剂、7.别构剂等.温度对酶反应的影响是双重的:〔1〕随着温度的增加,反应速度也增加,直至最大速度为止.〔2〕随温度升高而使酶逐步变性.酶专一性及高效性的机制:专一性:锁钥假说、诱导契合高效性:邻近效应与定向作用、张力和形变、酸碱催化、共价催化、活性中心的微环境〔重点〕饱和脂肪酸的从头合成及β氧化过程及饱和脂肪酸合成与分解的区别:1.饱和脂肪酸的从头合成及β氧化过程:〔1〕发生部位:β-氧化主要在线粒体中进行,饱和脂肪酸从头合成在胞液中进行.〔2〕酰基载体:β-氧化中脂酰基的载体为CoASH,饱和脂肪酸从头合成的酰基载体是ACP.〔3〕β-氧化使用氧化剂NAD+和FAD.饱和脂肪酸从头合成使用NADPH作为还原剂.〔4〕β-氧化降解是从羧基端向甲基端进行,每次降解一个二碳单位,饱和脂肪酸合成是从甲基端向羧基端进行,每次合成一个二碳单位.〔5〕β-氧化主要由5种酶催化反应,饱和脂肪酸从头合成由2种酶系催化.。
食品生物化学重点
一、绪论1.生物化学的概念;2.生物化学研究的内容、酶在生物化学中的地位;3.静态生物化学、动态生物化学的区别;二、静态生物化学部分1.糖类化学:1)糖的定义;2)有代表性的单糖、寡糖的名称;3)单糖的两种对映异构体的名称、单糖的环状结构中,含呋喃型吡喃型区别;4)糖的结构异构现象和糖的立体异构现象的区别;5)区别直链淀粉、支链淀粉、纤维素的连接键;6)同聚多糖和杂聚多糖的区别;7)概念:旋光、变旋性、构型、构象;2.脂类化学:1)油脂的皂化值、油脂的酸值;2)生物膜的概念、结构、模型理论;3.蛋白质化学:1)凯氏定氮的原理;2)8种必需氨基酸;3)蛋白质的一级结构、二级结构、超二级结构的概念、二级结构最主要的两种结构方式、四级结构的特点;4)蛋白质具有两性电离性质、等电点地概念;5)蛋白质的变性和稳定性;4.核酸化学:1)核酸的水解产物及各级水解产物;2)嘌呤、嘧啶的种类及在DNA和RNA中的区别;3)核苷酸的连接键;4)核酸的变性与复性;5)有关RNA的概念、RNA的二级结构;6)环核苷酸的代表物;5.酶化学、维生素:1)酶的概念、特点;2)酶的影响因素中底物浓度和PH的影响;3)酶的抑制(竞争性与非竞争性);4)水溶性和脂溶性维生素区别及代表种类;三、动态生物化学部分1.糖代谢:1)糖酵解、厌氧发酵的概念;2)糖酵解产能;3)三羧酸途径中关键的酶的名称和产生位置;4)三羧酸途径中产ATP的步骤、三羧酸途径中几次脱羧、脱氢反应;5)糖异生作用;6)糖代谢各途径之间联系(包括糖酵解、糖异生、磷酸戊糖途径、糖原合成和分解这几条途径的联系);2.脂类代谢:1)脂肪肝产生;2)酮体的概念、脂肪酸的合成过程;3)脂肪酸彻底氧化产物;3.氨基酸和蛋白质代谢、核酸代谢:1)一碳单位的概念、代谢的生理学意义;2)生物体内氨基酸脱氨基的主要方式;3)嘌呤核苷酸从头合成时的关键物质;4.生物氧化:呼吸链的顺序、生物氧化的概念。
食品生物化学复习资料
食品生物化学复习资料食品生物化学是一门关于食品成分和组成的科学,由于近年来人们对健康饮食的要求越来越高,因此这门学科受到了更多的关注。
在此,我们为大家提供一些食品生物化学的复习资料,以便大家能够更好地了解这门学科。
一、碳水化合物碳水化合物是人体必需的营养物质,它们是身体的主要能量来源。
碳水化合物的主要来源是谷物、薯类、糖果和甜食等。
碳水化合物的分类是单糖、双糖和多糖。
二、蛋白质蛋白质是人体组织和细胞的构建单位,也是许多生物化学反应的催化剂。
它们由氨基酸组成,主要存在于肉类、奶制品、豆类、坚果等。
蛋白质分为20种不同的氨基酸,其中有9种人体无法自行合成,必须摄入。
三、脂肪脂肪是身体所需要的重要营养物质,它们是身体储存能量的主要来源。
脂肪的主要来源是植物油、动物油、坚果和种子等。
脂肪的分类为饱和脂肪、不饱和脂肪和转化脂肪。
四、维生素维生素是人体必需的微量营养物质,它们为正常生理功能的维持提供必要的物质基础。
维生素的主要来源包括蔬菜、水果、奶制品、动物肝脏、鱼类等。
维生素分类为脂溶性和水溶性维生素。
五、矿物质矿物质是身体必需的微量元素,它们参与了很多生理功能。
矿物质的主要来源是蔬菜、水果、坚果、动物肝脏和海鲜等。
矿物质的分类为微量元素和宏量元素。
六、水水是人体不可或缺的物质,因为人体成分有七成是水分。
水参与了许多生理活动,如细胞功能、体温调节、水泡等等。
建议每天饮用8杯水。
以上是一些食品生物化学的复习资料,学生们可以根据这些知识点进行系统学习和复习。
随着社会的发展,人们对食品的要求越来越高,因此了解食品生物化学是非常重要的。
未来,我们应继续深入研究这一领域的知识,为人类的健康生活作出贡献。
食品生物化学部分重点内容笔记(插本
一、单糖的物理性质单糖通常是易溶于水的无色晶体,大多有吸湿性。
难溶于乙醇,不溶于乙醚。
单糖有旋光性,多于四个碳的单糖的溶液有变旋现象。
二、单糖的化学性质1.与酸作用(脱水作用)莫里西试验:与α-萘酚作用呈紫色,用来鉴定糖。
西利万诺夫试验:间苯二酚和盐酸遇酮糖呈红色,而遇醛糖呈很浅的颜色,用于鉴别酮糖和醛糖。
2.遇碱生成不同的物质(差向异构)葡萄糖用稀碱液处理时,会部分转变为甘露糖和果糖,成为复杂的混合物。
在含有多个手性碳原子的具有旋光性的异构体之间,凡只有一个手性碳原子的构型不同时,互称为差向异构体。
D-葡萄糖和D-甘露糖就是C-2差向异构体。
因此,用稀碱处理D-葡萄糖得到D-甘露糖、D-葡萄糖、D-果糖三种物质的平衡混合物的反应叫做差向异构化。
3.氧化作用糖酸、糖醛酸、糖二酸溴水氧化能力较弱,它把醛糖的醛基氧化为羧基。
当醛糖中加入溴水,稍加热后,溴水的棕色即可褪去,而酮糖则不被氧化,因此可用溴水来区别醛糖和酮糖。
4. 成糖苷反应单糖的半缩醛羟基与醇或酚的羟基发生反应,失水形成缩醛式衍生物。
5.还原作用单糖类的羰基在一定条件下可还原为羟基,糖被还原成糖醇。
常用的还原剂为钠汞齐和氢化硼钠。
机体内,在特异的脱氢酶的作用下该反应也能发生。
6.成脎反应单糖分子与三分子苯肼作用,生成的产物叫做糖脎。
例如葡萄糖与过量苯肼作用,生成葡萄糖脎。
7 羟胺反应美拉德反应(Maillard reaction) :还原糖(主要是葡萄糖)分子中的羰基与游离氨基酸或氨基酸残基的游离氨基经缩合、聚合生成类黑色素的反应。
单糖分子中的-OH(主要是C-2、C-3上的-OH)被-NH2取代后产生氨基糖,也叫糖胺。
例如葡萄糖胺,半乳糖胺,甘露糖胺,N-乙酰葡萄糖胺等。
三、重要的单糖甘油醛属于属丙糖;核糖、阿拉伯糖、木糖、核酮糖属于戊糖;葡萄糖、果糖、半乳糖属于己糖;四、糖的分类寡糖:2~10个单糖分子缩合而成多糖:10个以上单糖分子缩合而成同多糖:即10个以上同一种单糖分子缩合而成的多糖杂多糖:10个以上不同单糖分子缩合而成五、淀粉分子的结构1.直链淀粉:由a–1.4糖苷键缩合而成2.支链淀粉:由a–1.4糖苷键构成的直链以及a–1,6糖苷键构成的支链结构六、脂类的分类1简单脂质(脂肪酸与醇类形成的脂)2复合脂质:磷脂,糖脂,硫脂3衍生脂质:类胡萝卜素,类固醇,脂溶性维生素等七、甘油三酰脂的化学性质1水解和皂化2氢化和碘化3氧化和酸败八、生物膜的功能1、物质运输生物膜因其半通透性而成为具有高度选择性的通透屏障。
食品生物化学王淼重点知识归纳
食品生物化学王淼重点知识归纳食品生物化学王淼重点知识归纳食品生物化学是研究食品中生物分子特性和作用的学科。
其内容主要包括食品中各种生物分子的化学、生物活性、生理功能等方面的研究。
以下是食品生物化学中的重点知识。
1.碳水化合物的结构和代谢碳水化合物是人体的主要能量来源,也是食物中的主要营养成分之一。
碳水化合物以单糖、双糖和多糖的形式存在于食物中。
人体消化后将多糖分解为单糖,再经过代谢产生能量,其中葡萄糖是最重要的单糖之一。
2.脂质的结构和代谢脂质是食品中的重要营养成分之一,主要包括脂肪酸、甘油三酯、胆固醇等。
它们为人体提供能量、维持机体温度、保护脏器、维持细胞膜结构等功能。
脂类的代谢过程较为复杂,包括脂肪酸酯化、脂蛋白代谢、胆汁酸合成等步骤。
3.氨基酸的结构和代谢氨基酸是蛋白质的基本组成成分,是人体构建和维护组织的重要营养物质。
人体需要摄入9种必需氨基酸,其余11种氨基酸可以通过身体代谢合成。
氨基酸的代谢包括氨基酸脱羧反应、转移反应等步骤。
4.维生素的种类和作用维生素是人体必需的有机化合物,对人体健康十分重要。
维生素主要包括水溶性维生素和脂溶性维生素,分别包括维生素A、D、E、K、维生素B1~B12、维生素C等各种类型。
这些维生素对于人体正常生长发育、免疫防病、代谢调节等方面起着重要的作用。
5.食品添加剂的种类和作用食品添加剂是指为了提高食品品质、稳定性和营养价值等而添加到食品中的物质。
常见的食品添加剂包括色素、香料、甜味剂、防腐剂、乳化剂等。
添加剂的使用可以促进食品工业的发展,但也需要合理地使用以保证对人体的安全性。
以上是食品生物化学的主要知识点,了解这些知识对于从事相关科研、生产和营养学等方面的工作都有帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绪论
食品生物化学:以食品成分(绝大多数为生物体)的组成、结构、性能和加工、贮运过程中的化学变化以及食品成分在人体内的代谢为主要研究内容的科学。
第一章酶与食品加工
1.酶与蛋白质的关系。
2.结合蛋白质类的酶也称为全酶,包括蛋白质部分和非蛋白质部分,前者称为脱辅基酶蛋白,后者称为辅助因子,辅助因子根据其与酶蛋白结合的紧密程度分为辅酶或辅基。
要求能搞清楚:辅基与辅酶的区别;决定酶的专一性是酶蛋白部分。
3.酶作为生物催化剂的特点
4.酶活力的定义、酶的比活力的定义(要求能计算非常简单的题目)
4.1国际单位(IU):在最适反应条件下(温度25℃)下,每分钟内催化1umol底物转化为产物所需的酶量定为一个酶活力单位。
4.2酶的比活力代表酶的纯度,根据国际酶学委员会的规定比活力用每mg蛋白质所含的酶活力单位数表示。
5.熟悉酶的分类;根据酶促反应的类型分类:氧化还原酶类、转移酶类、水解酶类、裂合酶类、异构酶、连接酶
6.酶的系统命名方式
7.酶的活性部位与酶分子之间的关系。
8.有关于酶的作用机理的假说主要有锁钥学说和诱导契合学说。
9.影响酶促反应速度的因素
10.Km的物理意义是使反应速度达到最大反应速度一半时的底物浓度。
11.Km反映了酶和底物的亲和力,Km越少底物的亲和力越大?
12.α-淀粉酶、 β-淀粉酶、葡萄糖淀粉酶、脱支酶的作用区别?(降解的键?内切还是外切?降解产物?)
13.固定化酶的概念
第二章蛋白质与食品加工
1.氨基酸的结构通式
2.记住八种必须氨基酸(包括它们的英文缩写)
3.掌握蛋白质的四级结构
3.1 蛋白质的一级结构,是指氨基酸在肽链中的排列顺序及二硫键的位置,是多肽链具有共价键的主链结构。
3.2 蛋白质的二级结构,指多肽链中彼此靠近的氨基酸残基之间由于氢键相互作用而形成的空间关系;是指蛋白质分子中多肽链本身的折叠方式。
主要有以下类型:α-螺旋、β-折叠、β-转角、无规则卷曲。
3.3 蛋白质的三级结构,是指多肽链的距离较远的氨基酸之间的相互作用而使多肽链弯曲或折叠形成的紧密而具有一定刚性的结构。
是二级结构的多肽链进一步折叠、卷曲形成复杂的球状分子结构。
3.4 蛋白质的四级结构就是指寡聚蛋白质分子中亚基与亚基间的立体排布及相互作用关系。
4.肽键:氨基酸彼此以酰胺键互相连接在一起形成的化合物为肽。
这个键称肽键。
要求会写出肽键的化学结构通式
5.氨基酸的两种电离及等电点
要点:酸性、碱性溶液中的电离结果、等电点概念
6.了解蛋白质的水化作用。
7.蛋白质溶胶和蛋白质凝胶,蛋白质溶胶稳定的原因?
蛋白质溶胶:蛋白质的相对分子质量很大,一般在10000至1000000之间,因此它的水溶液必然具有胶体的性质。
变性的蛋白质分子聚集并形成有序的蛋白质网络结构的过程称为胶凝作用。
蛋白质溶胶稳定的原因?①分子量大;②蛋白质胶体颗粒表面上有一层、很厚的水膜;③蛋白质胶体颗粒带有相同的电荷使胶体颗粒互相排斥,故能在水溶液中使颗粒相互隔开而不致聚合下沉,保持其稳定性。
9.盐析作用:在蛋白质溶液中加入定量的中性盐时,则能使蛋白质脱水并中和其电荷而从溶液中沉淀出来,中性盐的这种沉淀作用称为盐析作用。
硫酸铵、硫酸钠和氯化钠是常见的几种蛋白质盐析剂。
10.蛋白质沉淀中,哪些是可逆沉淀?哪些是不可逆沉淀?
11.蛋白质变性:当天然蛋白质受到某些物理因素和化学因素的影响,使其分子内部原有的高级构象发生变化时,蛋白质的理化性质和生物学功能都随之改变或丧失,但并未导致其一级结构的变化,这种现象称为变性作用。
13.氨基酸代谢库包括哪些来源的氨基酸?熟悉图2-4。
第三章糖类与食品加工
1.定义:糖类物质是含多羟基的醛类或酮类化合物及缩聚物和某些衍生物的总称。
2.熟悉葡萄糖的链状结构、环状结构,要求能写出葡萄糖的链状结构。
3.要知道蔗糖和麦芽糖的糖苷键名字。
4.淀粉是葡萄糖通过α-1.4糖苷键、α-1.6糖苷键连接而成的高分子多聚糖。
5.直链淀粉和支链淀粉的糖苷键??,两者水解后的最终产物均为D-葡萄糖。
6.纤维素是由D-葡萄糖以β(1-4)糖苷键连接起来的线形聚合物,是植物中最广泛的骨架多糖。
7.美拉德反应是广泛存在于食品工业的一种非酶褐变,是羰基化合物(还原糖类)和氨基化合物(氨基酸和蛋白质)间的反应,经过复杂的历程最终生成棕色甚至是黑色的大分子物质类黑精或称拟黑素,所以又称羰胺反应。
8.淀粉的糊化、老化及其本质
8.1 淀粉的糊化过程:溶胀:淀粉颗粒从吸水到体积增大以致破裂的过程成为淀粉的溶胀。
糊化:淀粉粒在适当温度下,在水中溶胀,分裂,形成均匀的糊状溶液的过程被称为糊化。
糊化其本质是微观结构从有序转变成无序。
8.2 经过糊化的α-淀粉在室温或低于室温下放置后,会变得不透明甚至凝结而沉淀,这种现象称为老化。
实质是糊化后的淀粉分子在低温下又自动排列成序,形成高度致密的结晶化的淀粉分子微束。
9.糊化温度不是一个点,而是一段温度范围。
10.淀粉与碘的显色反应:直链淀粉显深蓝色,支链淀粉显紫色或紫红色。
糊精依聚合度不同,与碘溶液反应呈现不同的颜色。
12.单糖分解的途径有?
13.糖酵解:在无氧或相对缺氧的状态下,葡萄糖经一系列化学反应降解为丙酮酸并伴随ATP生成的过程,称为糖的无氧分解。
结果:1分子葡萄糖氧化分解生成2分子丙酮酸和净2个A TP
14.糖的有氧氧化阶段(重点关注能量的生成及最终的产物,能量生成可以参考表3-5)。
15.糖、脂肪、蛋白质和核酸等物质在代谢过程中彼此都有相互密切的联系,其中糖酵解途径和三羧酸循环更是沟通各代谢之间的重要环节。
第四章脂与食品加工
1.定义:脂类是生物体中所有能溶于有机溶剂而通常不溶于水的多种化合物的总称。
脂类
物质并不属于一类物质。
2.熟悉脂类的分类:单纯脂、复合脂、衍生脂。
要能理解这三类脂的概念。
3.油、脂、饱和脂肪酸、不饱和脂肪酸、必需脂肪酸、非必需脂肪酸的概念
5.蜡是高级脂肪酸与高级一元醇所生成的酯。
6.油脂一般都没有固定的熔点和沸点。
7.发烟点:在避免通风并备用特殊照明的实验装置中觉察到冒烟时的最低加热温度。
闪点:油的挥发物与明火瞬时发生火花,但又熄灭时的最低温度。
着火点:指油脂的挥发物可以维持连续燃烧5S以上的温度。
在食品加工中,油脂的加热温度是有限制的,一般在使用中最多加热到其发烟点。
(要求能理解即可)
8.油脂的提取:压榨法、熬炼法、浸出法(萃取法)、机械分离法(了解)
9.油脂的精炼:沉降(除杂)、脱胶、脱酸、脱色、脱臭、脱蜡(了解)
10.油脂评定相关术语:皂化值、酯值、碘值、酸价、过氧化值(要求能理解)
第五章维生素与食品加工
1.维生素B1(硫胺素):抗脚气病维生素、抗神经炎维生素;维生素B2(核黄素)、维生素B3(泛酸)、维生素B11(叶酸)
2.维生素B、C是水溶性维生素
3.维生素A:抗干眼病维生素,缺乏会有夜盲症;维生素D:抗佝偻病维生素,可通过日光浴的方法激活维生素D;维生素E:生育酚
4.维生素中最稳定的一种维生素是维生素PP,经常作为抗氧化剂的一种维生素是维生素E 和维生素C。
第六章水、矿物质与食品加工
1.生物组织与食品中的水分状态:自由水和结合水。
2.食品中的水结冰温度一般在0℃以下,完全结晶的温度叫低共熔点(共晶点)。
3.自由水和结合水在性质上的差别(掌握)
4.水分活度:水分活度是指食品中水分存在的状态,即水分与食品结合程度(游离程度)。
或书本的定义也行!
5.水分活度对食品品质的影响(几个要点)
5.1 不同的微生物生长都有其适宜的水分活度范围,其中细菌对低水分活度最敏感,酵母菌次之、霉菌的敏感性最差。
5.2 总体评价:
①含水量相同的物质,水分活度不一定相同。
②衡量食品稳定性的因素是水分活度,而不是含水量。
6.矿物质定义:除去C、H、O、N四种构成水分和有机物质的元素以外,其他元素统称为矿物质成分。
第十章
常见色素的颜色:肌红蛋白、氧合肌红蛋白、氧化肌红蛋白、叶绿素、类胡萝卜素、花青素
生化实验基础知识
1.酶的特性实验、蛋白质的性质实验、糖的性质实验:关键实验内容需要记住其答案2.纸层析
2.1从层析原理来讲属于分配层析,它是以纸作固定相的载体,纸纤维上的羟基具有亲水性,因此滤纸吸附的水作为固定相,而通常把有机溶剂作为流动相。
2.2 溶质在滤纸上的移动速率用Rf值表示:Rf=原点到层析点中心的距离/原点到溶剂前沿的距离;只要条件(如温度、展开溶剂的组成、滤纸的质量等)不变,Rf值是常数。
故可根据Rf值作定性分析。
2.3 无色物质的纸层析图谱可用显色法鉴定,氨基酸纸层析图谱常用茚三酮作为显色剂。