嵌入式系统及其在机器人中的应用

合集下载

嵌入式人工智能技术开发及应用

嵌入式人工智能技术开发及应用

嵌入式人工智能技术开发及应用嵌入式人工智能技术是近年来备受瞩目的一个领域,它将人工智能应用于更加广泛的场景中,为各行各业带来了巨大的改变。

在嵌入式人工智能技术的发展和应用方面,不断涌现出各种新的技术和产品,这些新技术和产品都将改变我们的生活方式和工作方式。

本文将从嵌入式人工智能技术的发展历程、当前的技术应用和未来的发展趋势等方面展开探讨。

一、嵌入式人工智能技术的发展历程嵌入式人工智能技术是人工智能和嵌入式技术的结合,嵌入式人工智能技术的起源可以追溯到嵌入式系统的发展。

嵌入式系统是指在计算机系统中嵌入了某些专用的任务或应用程序的计算机系统,它通常被集成在其他系统或设备中。

而人工智能技术则是指计算机系统通过模拟人类智能实现某些特定的智能任务,比如语音识别、图像识别等。

嵌入式人工智能技术的发展历程可以概括为以下几个阶段:1. 早期阶段:在早期阶段,嵌入式人工智能技术主要应用于一些行业内的特定场景,比如工业自动化、机器人等领域。

这些应用主要是一些基于规则的简单智能,比如机器人的路径规划、工业控制系统等。

2. 中期阶段:随着计算机技术和人工智能技术的快速发展,嵌入式人工智能技术开始向更广泛的领域渗透,比如智能家居、智能交通等。

在这个阶段,人们开始尝试将人工智能技术应用于各种传感器和嵌入式设备中,比如智能手机、智能家电等。

3. 现阶段:当前,嵌入式人工智能技术已经成为了科技行业的一个热点领域,各种新的技术和产品不断涌现,比如智能穿戴设备、智能车载系统等。

嵌入式人工智能技术已经渗透到生活的方方面面,为人们的日常生活和工作带来了诸多便利。

嵌入式人工智能技术的发展历程可以概括为从单一应用到多领域渗透,再到如今成为热点领域的过程。

目前,嵌入式人工智能技术已经应用于各种领域,下面将介绍一些典型的应用场景。

1. 智能家居:智能家居是一个典型的嵌入式人工智能技术应用场景,它将人工智能技术应用于家庭设备中,实现了家庭设备的智能化和互联互通。

基于嵌入式系统的室内移动机器人定位与导航

基于嵌入式系统的室内移动机器人定位与导航

基于嵌入式系统的室内移动机器人定位与导航一、概述随着科技的快速发展,室内移动机器人已成为智能家居、物流运输、医疗护理等领域的重要组成部分。

要实现机器人的高效、准确运作,其定位与导航技术至关重要。

基于嵌入式系统的室内移动机器人定位与导航技术,通过集成传感器、控制算法和路径规划算法,使机器人能够在复杂的室内环境中实现自主定位与导航。

嵌入式系统作为机器人的核心部分,具备体积小、功耗低、实时性强等特点,能够满足机器人对于硬件资源的需求。

通过集成多种传感器,如激光雷达、超声波传感器、摄像头等,机器人可以获取环境中的距离、障碍物、图像等信息,为定位与导航提供丰富的数据支持。

在定位方面,基于嵌入式系统的室内移动机器人可以采用多种技术,如SLAM(同时定位与地图构建)、惯性导航、WiFi指纹定位等。

这些技术各有优缺点,可以根据具体应用场景进行选择和优化。

通过实时获取机器人的位置信息,可以实现对机器人的精确控制。

在导航方面,嵌入式系统可以根据定位信息以及预设的目标位置,结合路径规划算法,为机器人规划出最优的行驶路径。

同时,机器人还需要具备避障功能,能够在遇到障碍物时及时调整行驶方向,确保安全到达目的地。

基于嵌入式系统的室内移动机器人定位与导航技术是实现机器人自主化、智能化的关键。

通过不断优化算法和硬件设计,可以提高机器人的定位精度和导航效率,为各领域的应用提供更加便捷、高效的解决方案。

1. 嵌入式系统概述及其在机器人技术中的应用嵌入式系统,作为一种专用的计算机系统,被设计用于执行特定的控制、监视或辅助功能。

它通常嵌入在设备或系统内部,是设备智能化、自动化的核心所在。

嵌入式系统结合了硬件和软件,具有体积小、功耗低、实时性强、可靠性高等特点,因此广泛应用于各种领域,如智能家居、医疗设备、航空航天以及机器人技术等。

在机器人技术中,嵌入式系统发挥着举足轻重的作用。

嵌入式系统为机器人提供了强大的计算和控制能力。

通过嵌入式处理器和相应的算法,机器人能够实时地处理传感器数据、执行复杂的运动控制任务,并实现自主导航和定位。

嵌入式在机器人中的应用

嵌入式在机器人中的应用

近年来,基于机器视觉的智能机器人在工业等各个领域中得到了广泛的应用.本文针对应用中遇到的一些问题,提出了将机器视觉与嵌入式系统相结合的思想.开发了一种通用的嵌入式系统平台,进行操作系统的移植和图像匹配等算法的研究,并将其应用于移动机器人的视觉导航,取得了较好的效果。

随着Internet技术与信息家电、工业控制技术等的结合日益紧密,嵌入式设备与Internet的结合已成为大势所趋。

此时期新的微处理器层出不穷,要求嵌入式操作系统的设计更加便于移植,支持更多的微处理器。

嵌入式系统的开发需要强大的硬件开发工具和软件支持包。

通用计算机上使用的新技术、新观念开始逐步移植到嵌入式系统中,如嵌入式数据库、移动代理、实时CORBA等。

各类嵌入式Linux操作系统在全球数以百万计爱好者的合力开发下迅速发展,由于具有源代码开放、系统内核小、执行效率高、网络功能强,多媒体人机交互界面友好等特点,很适合信息家电等嵌入式系统的需要。

一、嵌入式系统的技术特点早期的嵌入式系统设计方法,通常采用“硬件优先”原则,即在只粗略估计软件任务需求的情况下,首先进行硬件设计与实现。

然后,在此硬件平台上再进行软件设计。

因而很难达到充分利用软硬件资源,取得最佳性能的效果。

同时,一旦需要对设计进行修改时,整个设计流程将重新进行,这对成本和设计周期的影响很大。

这种传统的设计方法只能改善软件/硬件各自的性能,在有限的设计空间不可能对系统做出较好的性能综合优化,在很大程度上依赖于设计者的经验和反复实验。

上世纪90年代以来,随着电子系统功能的日益强大和微型化,硬件和软件也不再是截然分开的两个概念,而是紧密结合、相互影响的。

因而出现了软硬件协同(codesign)设计方法,即使用统一的方法和工具对软件和硬件进行描述、综合和验证。

在系统目标要求的指导下,通过综合分析系统软硬件功能及现有资源,协同设计软硬件体系结构,以最大限度地挖掘系统软硬件能力,避免由于独立设计软硬件体系结构而带来的种种弊病,得到高性能低代价的优化设计方案。

C语言在机器人技术中的应用

C语言在机器人技术中的应用

C语言在机器人技术中的应用机器人技术是当今科技领域的一个热门话题,而C语言作为一种高效的编程语言,在机器人技术领域也起到了重要的作用。

本文将探讨C语言在机器人技术中的应用,并分析其优势以及所带来的挑战。

一、嵌入式系统与C语言嵌入式系统是机器人技术中广泛使用的一种系统架构。

它将计算机软件和硬件嵌入在一起,以实现特定的功能。

由于嵌入式系统对资源的限制,要求程序尽可能地高效而且占用空间小。

C语言正是因为其语言简洁、易于编写和优化的特性,成为了开发嵌入式系统的首选语言之一。

二、C语言在机器人感知与控制中的应用1. 传感器数据处理机器人在感知外界环境时需要使用各种传感器,如摄像头、声音传感器等。

C语言提供了丰富的库函数,可以方便地对传感器数据进行采集、处理和解析。

开发人员可以利用C语言来编写数据处理算法,实现对传感器数据的实时监测与分析。

2. 控制算法实现机器人的自主行动需要依赖各种控制算法。

C语言的高效性能和灵活的编程特性,使得开发人员可以轻松地实现各种控制算法,如路径规划、避障和机械臂动作控制等。

此外,C语言还可以与硬件相结合,实现对机器人的精确控制。

三、C语言在机器人编程框架中的应用1. ROS(机器人操作系统)ROS是一个通用的机器人编程框架,提供了一系列丰富的工具和库函数,方便开发人员进行机器人应用程序的开发和测试。

ROS使用C++作为主要编程语言,而C语言则负责编写底层和硬件驱动程序,为机器人的功能实现提供支持。

2. ArduinoArduino是一种开源的嵌入式平台,常用于小型机器人和物联网项目。

Arduino的编程语言与C语言相似,使用基于C语言的Arduino语言进行编程。

借助C语言的特性,开发人员可以直接访问硬件,并与传感器和执行机构进行交互,实现机器人的各种功能。

四、C语言在机器人技术中的挑战尽管C语言在机器人技术中的应用广泛,但它也面临一些挑战。

首先,C语言的底层编程需要开发人员具备较强的编程和算法能力。

嵌入式系统在机器人控制中的应用研究

嵌入式系统在机器人控制中的应用研究

嵌入式系统在机器人控制中的应用研究引言:随着科技的迅速发展和人工智能的逐渐成熟,机器人技术在各个领域中得到了广泛的应用。

而在机器人控制系统中,嵌入式系统的应用起到了至关重要的作用。

本文将介绍嵌入式系统在机器人控制中的应用,并探讨其在提升机器人性能和功能中的优势。

一、嵌入式系统概述嵌入式系统是一种集成电路、计算机技术和软件工程等多学科交叉的技术,其主要特点是小型化、低功耗和实时性强。

嵌入式系统将计算机硬件、软件和相关的固定功能模块融合在一起,使得设备具备处理和控制功能,并能根据外部环境实时作出响应。

二、嵌入式系统在机器人控制中的应用1. 实时控制嵌入式系统具有出色的实时性能,能够实时获取和处理传感器的数据,并迅速作出响应。

在机器人控制中,嵌入式系统可以实时监测和控制机器人的运动、感知和决策等。

例如,在机器人导航中,嵌入式系统可以根据传感器的数据进行实时路径规划和动态避障,确保机器人安全、高效地行走。

2. 硬件集成机器人通常包括多种传感器和执行器,嵌入式系统可以将这些硬件集成在一起,实现机器人的全面控制。

嵌入式系统通过接口和总线连接传感器和执行器,以实现对机器人各种功能的控制。

例如,通过嵌入式系统的集成,机器人可以准确地感知环境中的温度、湿度、光照等信息,并相应地作出调节和控制。

3. 多任务处理嵌入式系统具有较强的多任务处理能力,能够同时处理多个任务并保证各个任务的实时性和稳定性。

在机器人控制中,有许多任务需要同时进行,如传感器数据处理、运动控制、决策和通信等。

嵌入式系统可以通过任务调度和优先级管理,合理分配资源,确保机器人多任务运行的效率和稳定性。

4. 系统可扩展性嵌入式系统具有较高的可扩展性,可以根据机器人的需求进行定制和升级。

例如,如果机器人需要增加新的功能或传感器,可以通过增加相应的硬件和软件模块来实现。

嵌入式系统的可扩展性使得机器人具备了不断适应和发展的能力,提升了其在不同应用场景中的适应性和灵活性。

嵌入式开发中的机器人技术

嵌入式开发中的机器人技术

嵌入式开发中的机器人技术机器人技术是嵌入式开发中的重要领域之一,它的出现和发展为人类带来了巨大的便利与机遇。

随着科技的日新月异,机器人技术在各个行业中得到了广泛应用,对于推动社会进步和提升人类生活质量起到了重要作用。

本文将从机器人技术的定义、嵌入式开发背景、机器人技术的应用以及发展前景等方面进行论述。

一、机器人技术的定义机器人技术是指通过人工智能、图像识别、运动控制、传感器等先进技术,使机器具备模仿、理解、判断、执行和交流等能力,从而能够代替人类完成各种工作任务的一门技术。

机器人技术可以分为工业机器人、服务机器人、医疗机器人、农业机器人等多个领域,并通过嵌入式开发将其应用到实际环境中。

二、嵌入式开发的背景嵌入式开发是指以嵌入式系统为基础,通过对硬件和软件的整合开发,实现特定功能的嵌入式应用开发过程。

嵌入式系统是一种特定功能和性能的计算机系统,根据不同的应用领域拥有自己独特的硬件架构和软件特点。

嵌入式开发主要以 C、C++、汇编语言等为基础,通过开发环境和工具链等进行系统软硬件的开发和调试,从而满足特定应用的需求。

三、机器人技术在嵌入式开发中的应用1. 工业机器人工业机器人是机器人技术应用最为广泛的领域之一。

通过嵌入式开发,工业机器人能够精确执行生产线上的各种工作任务,例如焊接、装配、搬运等。

通过嵌入式系统的精确控制,工业机器人能够实现高速、高精度和高效率的生产,提升工业制造业的生产能力和竞争力。

2. 服务机器人服务机器人是指用于提供人们日常生活服务的机器人,例如家庭清洁机器人、导航机器人、餐厅服务机器人等。

通过嵌入式开发,服务机器人能够实现智能化的导航、语音识别、人脸识别等功能,从而为人们提供更加便捷的生活服务体验。

3. 医疗机器人医疗机器人在手术、康复护理和病房服务等领域有着广泛的应用。

通过嵌入式开发,医疗机器人能够实现高精度的手术操作、康复治疗和患者的监测与护理。

嵌入式系统的实时性和可靠性使得医疗机器人能够在医疗环境中安全地工作,并提升了医疗技术的水平。

嵌入式系统在机器人控制中的应用

嵌入式系统在机器人控制中的应用随着科技的不断进步和人类对机器人的需求越来越多元化,机器人逐渐成为了现代生活和工业生产中不可或缺的一部分。

机器人的发展离不开各种各样的技术的支持,嵌入式系统就是其中之一,它可以帮助机器人更加高效、灵活地在人工智能和自动化领域中发挥作用。

嵌入式系统是指在计算机硬件中嵌入微处理器或单片机芯片等微型处理器的系统。

它能够实现较复杂的功能,如数据存储、信号处理、智能控制等。

在机器人控制中,嵌入式系统通过提供实时控制功能,使机器人能够更加高效地执行各种任务。

机器人控制系统是指使用计算机或控制器进行机器人动作控制的硬件和软件系统。

嵌入式系统是机器人控制系统中的一个关键部分,它通过提供实时控制应用程序,支持机器人实时响应环境变化,完成各种复杂操作任务。

1. 嵌入式系统在机器人感知中的应用机器人感知是指机器人通过感知和理解周围环境的空间、时间、物体等信息,实现自主工作和任务执行的能力。

嵌入式系统在机器人感知中通过支持各种传感器实现区域感知、检测、定位等操作,并指导机器人实现自主路径规划和运动控制。

嵌入式系统与传感器相互配合,共同完成机器人智能感知,实现人机协同,提高机器人的工作效率和准确性。

2. 嵌入式系统在机器人运动控制中的应用机器人运动控制是指机器人执行各种动作和运动的能力。

机器人需要通过电机、减速器等机械装置实现运动,而嵌入式系统则可以通过计算、控制器等硬件和软件组件实现机器人的运动控制。

嵌入式系统可以感知和响应机器人动作,根据机器人运动轨迹和目标位置进行运动控制,帮助机器人实现更加复杂的动作和工作。

3. 嵌入式系统在机器人任务规划中的应用机器人任务规划是指机器人根据任务需求和环境信息自主规划任务流程和动作。

嵌入式系统通过支持机器人实时计算和控制,帮助机器人实现自主规划、定位和路径规划等操作,在不同的任务场景下,为机器人提供更加全面、准确的任务规划能力,提高机器人工作效率和生产效益。

嵌入式系统技术在智能制造中的应用现状与前景

嵌入式系统技术在智能制造中的应用现状与前景随着智能制造技术的不断发展,嵌入式系统技术也日渐成为其中的重要组成部分。

嵌入式系统是一种专用计算机系统,它被嵌入到其他设备中,具有高效、稳定、安全、低功耗等特点。

根据市场研究机构IDC的数据,2020年全球嵌入式系统市场规模已达到1940亿美元,预计到2024年将达到2400亿美元。

嵌入式系统技术在智能制造中的应用也得到了越来越广泛的关注与应用。

嵌入式系统技术的应用现状智能制造中,嵌入式系统技术被广泛应用于各种工业设备和设施、物联网智能终端设备等多个领域。

以下是一些常见的嵌入式系统技术应用案例:1. 工业控制系统嵌入式系统技术在工业控制系统中应用非常广泛,其主要作用是监测和控制生产流程。

嵌入式系统可以对传感器数据进行采集、处理和分析,然后通过控制算法对设备进行控制。

比如,在自动化车间,灯光、风扇、传送带等设备可以通过嵌入式系统技术来集成控制,实现自动化生产。

2. 物联网智能化嵌入式系统技术也是实现物联网智能化的重要技术之一。

目前智能家居、智能车辆、智能城市等物联网应用中,嵌入式系统技术已被广泛应用。

通过嵌入式系统,各种智能设备可以实现互为连接、互相沟通,从而打造出更加智能化的生活方式。

3. 人工智能人工智能是智能制造技术的基础,而嵌入式系统技术也与之息息相关。

嵌入式系统可以协助计算机系统进行推理、学习和决策,同时可以将人工智能算法应用于现实生产流程中。

比如,在机器人生产流程中,嵌入式系统可以协调机器人的运动、采集环境数据等,从而实现高效、智能的生产。

嵌入式系统技术在智能制造中的未来前景随着嵌入式系统技术的不断发展,其在智能制造中的应用前景也愈加广阔。

未来,嵌入式系统技术将有以下发展趋势和应用前景:1. 面向物联网的嵌入式系统未来物联网将是智能制造的重要组成部分,相应的嵌入式系统技术也将面临更高的需求。

在面向物联网的应用场景下,嵌入式系统需要具备更高的能耗效率、更加稳定的工作性能和更强的安全性,以应对连接数量的增加和安全威胁的风险。

基于嵌入式系统的智能交互机器人设计与实现

基于嵌入式系统的智能交互机器人设计与实现简介随着人工智能技术的快速发展,嵌入式系统的智能交互机器人逐渐走入人们的生活。

智能交互机器人可以与人们进行语音交流、执行简单任务等,为我们的生活带来了很大的便利。

本文将讨论基于嵌入式系统的智能交互机器人的设计与实现,包括硬件选型、软件开发和交互设计等方面。

一、硬件选型嵌入式系统的智能交互机器人需要选择适合的硬件平台来实现。

在硬件选型方面,我们可以考虑以下因素:1. 中央处理器(CPU):选择性能强大、功耗低的CPU,以确保机器人的运行速度和电池寿命。

2. 存储器:机器人需要大容量的存储器来存储语音、图像等数据,可以选择内置存储和可扩展存储。

3. 摄像头:选择高分辨率、广角的摄像头,以获得清晰的图像和良好的视野。

4. 麦克风:选择高质量的麦克风,以准确地接收用户输入的语音指令。

5. 电池:选择高容量、长寿命的电池,以保证机器人的工作时间。

二、软件开发1. 操作系统选择:可以选择Linux、Android等适合嵌入式系统的操作系统作为机器人的基础。

2. 语音识别技术:使用语音识别技术将用户的语音指令转化为机器能够理解的指令。

可以选择成熟的语音识别引擎,如百度语音识别、讯飞语音识别等。

3. 自然语言处理技术:结合自然语言处理技术,使机器能够理解并回应用户的自然语言输入。

可以使用自然语言处理库,如NLTK、spaCy等。

4. 机器学习算法:机器人可以通过机器学习算法进行自主学习和优化,提高其智能交互的精度和准确性。

可以使用机器学习框架,如TensorFlow、PyTorch等。

5. 用户界面设计:设计友好的用户界面,使用户能够方便地与机器人进行交互。

可以使用图形界面开发工具,如Qt、Electron等。

三、交互设计1. 用户体验设计:考虑用户的需求和使用场景,设计机器人的交互流程和界面。

通过用户研究和用户反馈,不断改进交互设计,提供更好的用户体验。

2. 多模态交互:除了语音交互,可以考虑使用图像、触摸屏等多种方式进行交互,提供更丰富的交互体验。

嵌入式人工智能定义及应用场景

嵌入式人工智能定义及应用场景嵌入式人工智能是指将人工智能技术融入到嵌入式系统中,使其具备智能决策、学习和适应环境的能力。

嵌入式系统通常是指那些嵌入到电子设备中的计算机系统,如手机、智能家居、无人机等。

通过将人工智能集成到这些设备中,可以使其具备更强大的智能化能力,更好地满足用户需求。

嵌入式人工智能的应用场景非常广泛。

以下是一些常见的应用场景:1. 智能家居:嵌入式人工智能可以使智能家居系统更加智能化和自动化。

例如,通过人脸识别技术,智能家居可以识别家庭成员并自动调节适合的温度、光线和音量。

通过语音识别和自然语言处理技术,智能家居可以根据用户的指令完成各种操作,如打开灯光、调整电视音量等。

2. 智能交通:嵌入式人工智能可以应用于智能交通系统中,实现车辆的智能驾驶和交通管理。

通过计算机视觉和传感器技术,智能交通系统可以实时监测车辆和行人,进行交通流量分析和拥堵预测。

智能交通系统还可以根据交通情况进行智能路线规划,优化交通流动性和减少交通事故。

3. 智能医疗:嵌入式人工智能可以在医疗领域中发挥重要作用。

例如,通过将智能算法集成到医疗设备中,可以实现自动化的疾病诊断和预测。

智能医疗设备可以根据患者的生理参数和病情数据,进行自动化分析和判断,提供准确的诊断结果和治疗建议。

此外,智能医疗设备还可以实时监测患者的健康状况,及时提醒患者和医护人员,预防疾病的发生和恶化。

4. 智能制造:嵌入式人工智能可以在制造业中实现智能化生产和管理。

通过将人工智能技术应用于机器人和自动化设备中,可以实现自动化生产流程和智能化的质量控制。

智能制造系统可以通过学习和优化算法,提高生产效率和产品质量,减少生产成本和能源消耗。

总而言之,嵌入式人工智能的应用场景非常广泛,不仅可以提升设备的智能化程度,还可以改善用户体验,提高生产效率,促进社会进步。

随着人工智能技术的不断发展和普及,嵌入式人工智能的应用前景将更加广阔。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

嵌入式系统及其在机器人控制中的应用2012-6-11(XXXX,XXXX,XXXX)摘要:介绍了嵌入式系统的相关概念及其特点,综述了嵌入式系统在机器人运动控制系统、远程控制、视频监控系统等方面的相关应用。

在了解了嵌入式系统在机器人控制中的应用现状的基础上,提出了基于嵌入式系统的机器人技术的发展趋势。

关键词:嵌入式机器人远程控制视频监控Embedded System and its Application in theSystem of Robot ControlXXXX(XXXX,XXXX,XXXX)Abstract:The related concepts and characteristics of the embedded system were introduced in this paper. The motion control system, remote control and video monitoring systems which used embedded system was also reviewed.By understanding the present situation of the application of embedded system used in robot control, the development tendency of robot technology based on embedded system was put forward.Keywords: embedded system, robot, remote control, video monitoring systems引言以嵌入式计算机为核心的嵌入式系统(Embedded System)是继IT网络技术之后,又一个新的技术发展方向,它以其强大而灵活的可应用性得到了计算机、通信和信息等产业的广泛认可,已被广泛应用在工业控制、交通管理、信息家电、家庭智能管理系统、网络及电子商务、环境监测和机器人控制等领域[1]。

嵌入式系统的出现与发展将真正实现计算机的“无处不在”。

机器人技术的发展从来就是与嵌入式系统的发展紧密联系在一起的,机器人技术的研究就是嵌入式技术的应用,而嵌入式技术的发展必定促进机器人智能化水平。

70年代中期以后,由于智能控制理论的发展和微处理器的出现,机器人逐渐成为研究的热点,并且获得了长足的发展。

目前,嵌入式系统在机器人控制系统被广泛采用。

1 嵌入式系统1.1 嵌入式系统的定义及其特点嵌入式系统从应用角度出发,它是20世纪70年代以后计算机发展的一个分支,以应用为中心,以计算机技术为基础,软、硬件可裁剪,适用于应用系统对功能、可靠性、成本、体积、功耗等方面有严格要求的专用计算机系统。

简单的说,嵌入式系统是嵌入到目标体系中的专用计算机系统[1]。

嵌入式系统一般由嵌入式微处理器、外围硬件设备、嵌入式软件操作系统以及用户的应用程序4大部分组成,用于实现对其他外部设备控制以及网络的数据交换等功能。

针对于某种特定的应用需求,嵌入式系统嵌入到对象软硬件体系中。

嵌入式系统与普通的PC系统相比主要具有以下特点:(1) 嵌入式系统功耗低,体积小,专用性强。

嵌入式CPU工作在为特定用户群设计的系统中,能够把PC中许多板卡完成的任务集成到芯片内部,有利于嵌入式系统设计的小型化。

(2) 嵌入式系统中的软件一般固化在存储芯片或单片机本身中,以提高实行速度与系统可靠性。

硬软件都必须高效设计,系统要精简,对软件代码质量要求很高。

操作系统一般和软件集成在一起。

(3) 嵌入式系统开发需要专门的开发工具和开发环境。

2 嵌入式系统在机器人中的应用嵌入式控制器越来越微型化、功能化。

微型机器人、特种机器人等也获得更大的发展机遇,无论从控制系统的结构还是机器人的智能程度方面都得到了很大的提高。

以索尼的机器狗为代表的智能机器宠物是最典型的嵌入式机器人控制系统,除了能够实现复杂的运动功能,它还具有图像识别、语音处理等高级人机交互功能,它可以模仿动物的表情和运动行为。

火星车也是一个典型例子,这个价值10亿美金的技术高度密集移动机器人,采用的是VxWorks操作系统,它可以在不与地球联系的情况下自主工作。

下面从运动控制系统[1-4]、远程控制[2-5]、视频监控系统[5-7]三个方面分析嵌入式系统在机器人中的应用情况。

2.1 运动控制系统机器人的运动控制部分一般采用ARM 7来完成,主要是由于整个系统对实时性要求较高,利用ARM 7来专门控制伺服能更好的满足要求。

图2.1 ARM 7实现电机控制框图图2.2 远程控制系统框架图图2.1是ARM 7实现电机控制的框图,ARM 7通过串口接收数据,并根据定义好的串口相关通信协议对接收到的数据进行解析,得到各个电机的转向以及运动圈数,从而控制电机的转动,串口数据的接收是通过中断的方式来实现的。

一旦有数据到达,就产生一次中断,在中断服务程序中,新发送过来的数据将被保存起来,并且设置标志位为真,用以通知主任务有新的数据到达,可以调用电机驱动程序来实现电机的运动。

2.2 远程控制图2.2是远程控制系统的框架图,任何能连接上互联网的地方的用户,在远程用户端,OPENGL仿真将预演用户所输入的机器人控制命令后机器人的运动轨迹,并且将机器人的运动轨迹做相应的反解,从而得到各个控制关节,即相应的电机的运动数据,这些数据通过互联网传送到近端控制中心ARM 9控制板上,通过它转发给实时控制板ARM7,ARM7就控制伺服驱动器让电机按预定的轨迹运动,从而实现机器人的远程控制。

远程用户端一个重要的功能是能实时地观看到机器人的运动姿态,所以一个视频客户端是必须的。

基于服务器/客户端的模型,在ARM 9控制板上运行着视频服务器,该视频服务器与带USB接口的摄像头相连,摄像头实时地采集并联机器人的运动状态,并将采集到的图像编码,ARM 9控制板将经过编码压缩后图像数据通过以太网传送到远程客户端,远程客户端在接收到图像数据后经过解码、显示从而形成视频图像,用户也就可以观测到机器人的运动状态。

ARM 9控制板是整个系统的核心,它扮演着系统的数据中心,控制中心的角色。

一方面它将摄像头采集到的视频数据经过编码后,通过以太网发送到远程用户端;另一方面它将它还需要负责将远程用户端传送过来的控制命令解析并转发给ARM 7控制板并接收反馈信息。

图2.3 远程机器指令流程图2.3显示了远程指令的数据流向以及机器人的运动状态反馈给远端用户的数据流向。

远端用户通过人机交互界面将所要求机器人运动姿态位置的指令输入到远端PC中,经过网络传输到达ARM 9控制中心,ARM 9控制中心这里扮演着近段调试模式中那个近端PC的角色,在接收到远端数据后经过数据处理后,控制其串口将串口数据包发送到ARM 7控制板上,ARM 7控制板接收到数据后解析数据并且驱动电机的伺服驱动器,从而实现对机器人地控制。

由于控制命令对准确性的要求以及现实的网路情况,目前多数采用TCP协议来传送控制命令。

2.3 视频监控系统图2.4显示了视频监控系统的总体框架,带USB接口的摄像头连接到ARM 9(uclinux 操作系统)的嵌入式开发板上,开发板的以太网控制器连接到路由器上,路由器接入Interact,监视平台是远端一台连入Internet的PC机。

图2.4 系统结构图图像数据由摄像头采集,ARM 9通过USB接口读取其缓存中的数据,并对图像数据进行压缩编码。

然后基于socket编程来传送这些数据,将ARM 9作为server端,一旦有client 端(监视平台)与之连接,它将把压缩后的数据发送过去。

监视平台接收到数据后解码,然后显示在终端上。

控制单位时间内图像帧显示次数就能形成流畅的动画效果。

3 嵌入式系统在机器人应用中的发展趋势随着网络技术的日益成熟,支持网络功能的嵌入式产品将得到越来越广泛的应用,这不仅将成为嵌入式系统发展的一个热点,也将是机器人技术的一个研究热点,基于嵌入式系统的机器人技术的未来的研究有以下几点趋势:(1) 高集成度、低功耗、小型化。

随着嵌入是系统的微型化、智能化,机器人将朝着高智能化、高集成度、小型化方向发展;(2) 提供方便、快捷的人机界面。

嵌入式系统被广泛使用,主要原因是它的多媒体人机界面的方便、快捷,这将使机器人的操作更加方便快捷、人性化;(3) 远程控制必成为趋势。

4总结嵌入式系统在机器人控制系统中起到了极为重要的作用,特别是在运动控制视频图像采集、传送和显示与监测方面起到了很重要的作用,是整个控制系统的实时性、正确性得到保证的关键。

在嵌入式技术的支持以及多媒体网络技术的支持下,对机器人进行远程控制与监测将会成为现实,并且随着嵌入式系统以及多媒体网络技术的进一步发展,机器人技术将会有着更广阔的发展空间。

参考文献[1]于忠得, 林敏, 申华. 嵌入式系统基础教程[M]. 北京: 国防工业出版社, 2009.[2]蔡坤. 3P-6SS并联机器人的远程控制与监视的研究[D]. 北京: 北京邮电大学, 2008.[3]田景文, 伍延禄, 高美娟. 基于嵌入式系统的移动机器人无线远程控制系统设计[J]. 机床与液压, 2012,4, 40(7): 74-77.[4]Thomas Rath, Marco Kawollek. Robotic harvesting of Gerbera Jameson ii based on detection andthree-dimensional modeling of cut flower pedicels [J]. Computers and Electronics in Agriculture, 2009, 66(1): 85~ 92.[5]孙玉山, 王建国, 万磊等. 基于VxWorks的水下机器人嵌入式导航系统的研究[J]. 应用基础与工程科学学报, 2009, 12, 17(6): 900-908.[6]李理, 殷国富, 刘柯岐.田间果蔬采摘机器人视觉传感器设计与试验[J].农业机械学报, 2010, 5, 41(5):152-157.[7]张学习, 杨宜民, 刘润丹等. 全自主足球机器人混合视觉系统的设计与实现[J].机器人, 2010, 5, 32(3):376-383.。

相关文档
最新文档