球的体积及表面积公式.ppt
合集下载
人教版高中数学- 球的体积和表面积(共32张PPT)教育课件

: 其实兴趣真的那么重要吗?很多事情我 们提不 起兴趣 可能就 是运维 我们没 有做好 。想想 看,如 果一件 事情你 能做好 ,至少 做到比 大多数 人好, 你可能 没有办 法岁那 件事情 没有兴 趣。再 想想看 ,一个 刚来到 人世的 小孩, 白纸一 张,开 始什么 都不会 ,当然 对事情 开始的 时候也 没有 兴趣这 一说了 ,随着 年龄的 增长, 慢慢的 开始做 一些事 情,也 逐渐开 始对一 些事情 有兴趣 。通过 观察小 孩的兴 趣,我 们可以 发现一 个规律 ,往往 不是有 了兴趣 才能做 好,而 是做好 了才有 了兴趣 。人们 总是搞 错顺序 ,并对 错误豪 布知晓 。尽管 并不绝 对是这 样,但 大多数 事情都 需要熟 能生巧 。做得 多了, 自然就 擅长了 ;擅长 了,就 自然比 别人做 得好; 做得比 别人好 ,兴趣 就大起 来,而 后就更 喜欢做 ,更擅 长,更 。。更 良性循 环。教 育小孩 也是如 此,并 不是说 买来一 架钢琴 ,或者 买本书 给孩子 就可以 。事实 上,要 花更多 的时间 根据孩 子的情 况,选 出孩子 最可能 比别人 做得好 的事情 ,然后 挤破脑 袋想出 来怎样 能让孩 子学会 并做到 很好, 比一般 人更好 ,做到 比谁都 好,然 后兴趣 就自然 出现了 。
Si
则球的体积为:V V1 V2 V3 Vn
4 R3
3
O
(四)球的表面积公式的推导
讨论:(1)如何求出每一个“准锥体”的体积呢? 你会算吗可?以怎样处理呢?
展开讨论
“准锥体”的底面是球面的一部分, 底面是“曲”的。
O
Si
Si
hi
O
以平代曲 O
“准锥体”近似看为小棱锥,用小棱锥的体积作 为“准锥体”体积的近似值。
《球的体积和表面积》教学课件(12张PPT)

祖暅原理也就是“等积原理”,它是
由我国南北朝杰出的数学家、祖冲之的儿
子祖暅首先提出来的.祖暅原理的内容是: 夹在两个平行平面间的两个几何体,被平
行于这两个平行平面的平面所截,如果截
得两个截面的面积总相等,那么这两个几 何体的体积相等.
可以用诗句“两个胖子一般高,平行 地面刀刀切,刀刀切出等面积,两人必然 同样胖”形象表示其内涵.利用祖暅原理可 以推导几何体的体积公式,关键是要构造 一个参照体.
你能求出下面物体的体积和表面积吗?
地球可近似地看作球体,地球的半径为 6370km.怎样计算它的体积? 如果球的半径 为R,那么它的体积 4 V= πR3 3
地球可近似地看作球体,地球的半径为 6370km.怎样计算它的表面积 ? 球的半径为 R, 那么球的表面积 S=4πR2
如图,圆柱的底面直径与高都等于球的直径. 求证:(1)球的体积等于圆柱体积的 (2)球的表面积等于圆柱的侧面积
一个球的体积是100cm3,试计算它的表面积 (π取3.14,结果精确到1cm2) 解:设球的半径为R,那么根据题意有: 4 πR3= 100 3 4 ×3.14×R3= 100 3 R≈2.88
球的表面积S=4πR2=4×3.14×2.882 ≈104(cm2)
一个圆锥形的空杯子上面ቤተ መጻሕፍቲ ባይዱ着一个半球形的 冰淇淋,如果冰淇淋融化了,会溢满杯子吗? 解:由图可知,半球的半径为4 4 3 256 π 半球的体积为 π4 = 3 3 1 192 2 π 圆锥的体积为 πR ×12= 3 3 因此,如果冰淇淋融化了,会 溢满杯子.
证明:(1)设球的半径为R,则 圆柱的地面半径也为R, 高为2R 4 因为V球= πR3, 3 V圆柱=πR2·2R=2πR3 2 所以V球= V圆柱 3
2第2课时 球的体积和表面积PPT课件(人教版)

栏目 导引
第八章 立体几何初步
球的表面积与体积
(1)已知球的体积是323π,则此球的表面积是( )
A.12π
B.16π
C八章 立体几何初步
(2)如图,某几何体的三视图是三个半径相等的圆及每个圆中两 条互相垂直的半径,若该几何体的体积是283π,则它的表面积是 ()
角度五 球的内接直棱柱问题
设三棱柱的侧棱垂直于底面,所有棱的长都为 a,顶点
都在一个球面上,则该球的表面积为( )
A.πa2
B.73πa2
C.131πa2
D.5πa2
栏目 导引
第八章 立体几何初步
【解析】 由题意知,该三棱柱为正三棱柱,且侧
棱与底面边长相等,均为 a.如图,P 为三棱柱上
底面的中心,O 为球心,易知 AP=23× 23a= 33a,
A.17π C.20π
B.18π D.28π
栏目 导引
第八章 立体几何初步
【解析】 (1)设球的半径为 R,则由已知得 V=43πR3=323π,解得 R=2. 所以球的表面积 S=4πR2=16π. (2)由三视图可得此几何体为一个球切割掉18后剩下的几何体, 设球的半径为 r, 故78×43πr3=238π, 所以 r=2,表面积 S=78×4πr2+34πr2=17π,选 A. 【答案】 (1)B (2)A
栏目 导引
第八章 立体几何初步
该圆锥的体积为 13×π× 23r2×32r=38πr3,球体积
为
4 3
πr3
,
所
以
该
圆
锥
的
体
积
和
此
球
体
积
的
比
值
为
3843ππrr33=392.
第八章 立体几何初步
球的表面积与体积
(1)已知球的体积是323π,则此球的表面积是( )
A.12π
B.16π
C八章 立体几何初步
(2)如图,某几何体的三视图是三个半径相等的圆及每个圆中两 条互相垂直的半径,若该几何体的体积是283π,则它的表面积是 ()
角度五 球的内接直棱柱问题
设三棱柱的侧棱垂直于底面,所有棱的长都为 a,顶点
都在一个球面上,则该球的表面积为( )
A.πa2
B.73πa2
C.131πa2
D.5πa2
栏目 导引
第八章 立体几何初步
【解析】 由题意知,该三棱柱为正三棱柱,且侧
棱与底面边长相等,均为 a.如图,P 为三棱柱上
底面的中心,O 为球心,易知 AP=23× 23a= 33a,
A.17π C.20π
B.18π D.28π
栏目 导引
第八章 立体几何初步
【解析】 (1)设球的半径为 R,则由已知得 V=43πR3=323π,解得 R=2. 所以球的表面积 S=4πR2=16π. (2)由三视图可得此几何体为一个球切割掉18后剩下的几何体, 设球的半径为 r, 故78×43πr3=238π, 所以 r=2,表面积 S=78×4πr2+34πr2=17π,选 A. 【答案】 (1)B (2)A
栏目 导引
第八章 立体几何初步
该圆锥的体积为 13×π× 23r2×32r=38πr3,球体积
为
4 3
πr3
,
所
以
该
圆
锥
的
体
积
和
此
球
体
积
的
比
值
为
3843ππrr33=392.
球的体积和表面积 课件

【解析】 ①当截面在球心的同侧时, 如图所示为球的轴截面,由球的截面性质 知,AO1∥BO2,且 O1、O2 分别为两截面圆的圆 心,则 OO1⊥AO1, OO2⊥BO2,设球的半径为 R. ∵π· O2B2=49π,∴O2B=7. ∵π·O1A2=400π,∴O1A=20. 设 OO1=x,则 OO2=x+9.
6 12 a.
【答案】
6 12 a
探究 4 (1)正多面体存在内切球且正多面体的中心为内切球 的球心.
(2)求多面体内切球半径,往往可用“等体积法”. V 多=S 表·R 内切·13.
(3)正四面体内切球半径是高的14,外接球半径是高的34. (4)并非所有多面体都有内切球(或外接球).
思考题 4 半径为 R 的球的外切圆柱(球与圆柱的侧面、两
【答案】 27π
(2)求棱长为 1 的正四面体外接球的体积.
【解析】 设 SO1 是正四面体 S-ABC 的高,外接球的球心 O 在 SO1 上,设外接球半径为 R,AO1=r,
则在△ABC 中,用解直角三角形知识得 r= 33,
从而 SO1= SA2-AO12=
1-13=
2 3.
在 Rt△AOO1 中,由勾股定理,得
【答案】 C
题型四 几何体的内切球 例 4 正四面体的棱长为 a,则其内切球的半径为________.
【解析】 如图正四面体 A-BCD 的中心为 O,即内切球球
心,内切球半径 R 即为 O 到正四面体各面的距离.
∵AB=a,
∴正四面体的高
h=
6 3 a.
又 VA-BCD=4VO-BCD,
∴R=14h=
在 Rt△OO1A 中,R2=x2+202, 在 Rt△OO2B 中,R2=(x+9)2+72, ∴x2+202=72+(x+9)2, 解得 x=15,∴R2=x2+202=252. ∴R=25,∴V 球=43πR3=62 3500π(cm3). ② 当 截 面 在 球 心 异 侧 时 , OO1 + OO2 = 9 = R2-72 + R2-202,无解.
《球的表面积和体积》人教版高中数学必修二PPT课件(第1.3.2课时)

(3)若两球表面积之比为1:2,则其体积之比是 1: 2 2 .
(4)若两球体积之比是1:2,则其表面积之比是 1: 3 4 .
2、若一个圆锥的底面半径和一个半球的半径相等,体积也相等,则它们的高度之比为( A )
(A)2:1 (B) 2:3 (C) 2:
(D) 2:5
随堂练习
立体图形的内切和外接问题 例4:求球与它的外切圆柱、外切等边圆锥的体积之比。
初态温度T1=(273+27) K=300 K
由 p1V1 p2V2
T1
T2
V2 =
p1T2 p2T1
V1
6.25 m3
课堂训练
3.如图所示,粗细均匀一端封闭一端开口的U形玻
璃管,当t1=31 ℃,大气压强p0=76 cmHg时,
两管水银面相平,这时左管被封闭的气柱长L1=8
10.9150 1635(朵)
答:装饰这个花柱大约需要1635朵鲜花.
新知探究
例3、如图,圆柱的底面直径与高都等于球的直径,求证:
(1)球的体积等于圆柱体积的 2 ; 3
(2)球的表面积等于圆柱的侧面积.
RO
随堂练习
(1)若球的表面积变为原来的2倍,则半径变为原来的 2 倍.
(2)若球半径变为原来的2倍,则表面积变为原来的 4 倍.
3、从微观上说:分子间以及分子和器壁间,除碰撞外无其他作用力,分子本身没有体积,即它 所占据的空间认为都是可以被压缩的空间。
4、从能量上说:理想气体的微观本质是忽略了分子力,没有分子势能,理想气体的内能只有分 子动能。
一、理想气体
一定质量的理想气体的内能仅由温度决定 ,与气体的体积无关.
例1.(多选)关于理想气体的性质,下列说法中正确的是( ABC )
人教版数学高一必修二1.3.2 球的体积和表面积 (共29张PPT)

球半径的求法
——数学必修2
球的概念
•球的旋转定义
半圆以它的直径为旋转轴,旋 转所成的曲面叫做球面.球面所 围成的几何体叫做球体.
•球的集合定义
与定点的距离等于定长的点的集
合,叫做 球面 。
与定点的距离等于或小于定长的
点的集合,叫做球体。
球表面积公式: S 4 R2
球体积公式:
V 4 R3
A C
P
O B
变式:已知球O的面上四点A、B、C、D,DA 平面 ABC,AB BC, DA AB BC a,则球O的体积等于
类型二、直棱柱
例2:已知三棱锥P-ABC中,三角形ABC为等边三角形, 且PA=8,PB=PC= 73,AB=3,则其外接球的体积为
类型三、对棱相等
r 6a 12
6 r内 12 a
R棱=
2a 4
R外=
6 4
a
正四面体的外接球和内切球的球心一定重合
课后练习:利用直角三角形勾股定理求正四面体 的外接球、内切球半径。
P
R A
R O
M B
C D
练习一
课堂练习
1.球的直径伸长为原来的2倍,体积变为原来的_8 倍.
2.一个正方体的顶点都在球面上,它的棱长是4cm, 这个球的体积为___cm3.
R= 2 a 4
正四面体的外接球和棱切球的球心重合。
3.求棱长为a的正四面体的内切球的半径r.
1
1
P
V 3 S底面积 h 3 S全面积 r
S底面积 h S全面积 r
O
S底面积 r 1 S全面积 h 4
A
C M
D
B
r1h 4
——数学必修2
球的概念
•球的旋转定义
半圆以它的直径为旋转轴,旋 转所成的曲面叫做球面.球面所 围成的几何体叫做球体.
•球的集合定义
与定点的距离等于定长的点的集
合,叫做 球面 。
与定点的距离等于或小于定长的
点的集合,叫做球体。
球表面积公式: S 4 R2
球体积公式:
V 4 R3
A C
P
O B
变式:已知球O的面上四点A、B、C、D,DA 平面 ABC,AB BC, DA AB BC a,则球O的体积等于
类型二、直棱柱
例2:已知三棱锥P-ABC中,三角形ABC为等边三角形, 且PA=8,PB=PC= 73,AB=3,则其外接球的体积为
类型三、对棱相等
r 6a 12
6 r内 12 a
R棱=
2a 4
R外=
6 4
a
正四面体的外接球和内切球的球心一定重合
课后练习:利用直角三角形勾股定理求正四面体 的外接球、内切球半径。
P
R A
R O
M B
C D
练习一
课堂练习
1.球的直径伸长为原来的2倍,体积变为原来的_8 倍.
2.一个正方体的顶点都在球面上,它的棱长是4cm, 这个球的体积为___cm3.
R= 2 a 4
正四面体的外接球和棱切球的球心重合。
3.求棱长为a的正四面体的内切球的半径r.
1
1
P
V 3 S底面积 h 3 S全面积 r
S底面积 h S全面积 r
O
S底面积 r 1 S全面积 h 4
A
C M
D
B
r1h 4
8.3.2球体的体积与表面积课件-高一下学期数学人教A版(2019)必修第二册

1
1
V
S 底面积 h
S全面积 r
3
3
S底面积 h S全面积 r
1
r h
4
h
R:r=3:1
6
a
3
S底面积
r
1
S全面积
h 4
6
r
a
12
6
R=
a
4
正四面体的外接球和内切球的球心一定重合
(2)正四面体与球
(正四面体的棱长为a)
1.正四面体的高h
6
a
3
6
2.正四面体的外接球半径R=
球的内切、外接问题
1、内切球球心到多面体各面的距离均相等,外接球球心到多
面体各顶点的距离均相等。
2、正多面体的内切球和外接球的球心重合。
3、正棱锥的内切球和外接球球心都在高线上,但不 重合。
4、基本方法:构造三角形利用相似比和勾股定理。
5、体积分割是求内切球半径的通用做法。
正四面体的棱长为a,则其内切球和外
接球的半径是多少?
解:如图1所示,设点o是内切球的球心,正四面体
棱长为a.由图形的对称性知,点o也是外接球的球
心.设内切球半径为r,外接球半径为R.
正四面体的表面积 S 4 3 a 3a
2
表
正四面体的体积 V A BCD
1
3 2
3 2
a AE
一、球体的体积与表面积
课程目标
1.掌握球的表面积和体积计算公式.
2.能运用球的表面积和体积公式进行计算和解决有关实际
问题.
3.掌握球的有关切、接问题
祖暅简介
祖暅(5世纪-6世纪),字景烁,
1
V
S 底面积 h
S全面积 r
3
3
S底面积 h S全面积 r
1
r h
4
h
R:r=3:1
6
a
3
S底面积
r
1
S全面积
h 4
6
r
a
12
6
R=
a
4
正四面体的外接球和内切球的球心一定重合
(2)正四面体与球
(正四面体的棱长为a)
1.正四面体的高h
6
a
3
6
2.正四面体的外接球半径R=
球的内切、外接问题
1、内切球球心到多面体各面的距离均相等,外接球球心到多
面体各顶点的距离均相等。
2、正多面体的内切球和外接球的球心重合。
3、正棱锥的内切球和外接球球心都在高线上,但不 重合。
4、基本方法:构造三角形利用相似比和勾股定理。
5、体积分割是求内切球半径的通用做法。
正四面体的棱长为a,则其内切球和外
接球的半径是多少?
解:如图1所示,设点o是内切球的球心,正四面体
棱长为a.由图形的对称性知,点o也是外接球的球
心.设内切球半径为r,外接球半径为R.
正四面体的表面积 S 4 3 a 3a
2
表
正四面体的体积 V A BCD
1
3 2
3 2
a AE
一、球体的体积与表面积
课程目标
1.掌握球的表面积和体积计算公式.
2.能运用球的表面积和体积公式进行计算和解决有关实际
问题.
3.掌握球的有关切、接问题
祖暅简介
祖暅(5世纪-6世纪),字景烁,
《球的表面积和体积》课件

球的体积公式
推导过程
利用积分计算,已知球的半径r,体积可表示为V = (4/3)πr³。
应用举例
通过体积公式,可以计算球体的容积,如水球、篮 球、地球等。
球的表面积公式
推导过程
通过对球体进行分割并求和的方法,球的表面积公 式为S = 4πr²。
应用举例
利用表面积公式,可以计算球体的表面积,如足球、 地球等。
比较表面积和体积
实例分析
比较具有相同体积的球体,但却具有不同表面积 的特点,例如小球和大球之间的关系。
球的变形对比
探索球体变形对表面积和体积的影响,比如椭球 和球体之间的对比。
延伸思考
三维几何问题
如何应用球的表面积和体积的知识解决其他三维 几何问题,例如球的切割、组合等。
实际应用场景
探索球的表面积和体积在实际生活中的应用,如 建筑、工程和科学研究中的应用。
《球的表面积和体积》 PPT课件
探索球体的奇妙之处,从定义和性质开始,一步一步深入了解球的表面积和 体积的计算公式,并探讨实际应用场景。
球的定义和性质
定义
球是由无数个离心并以相同半径旋转的点所构成 的,是一种几何体。它是完全确定的,没有面, 没有边。
性质
球体具有对称性,无论从哪个角度观察,都是完 全相同的。此外,球是能够容纳最大体积的几何 形状。
总结
1 知识点回顾
通过课程的学习,我们深入了解了球的定义、性质、体积公式、表面积公式,以及与其 他形状的比较。
2 学习感悟
通过探索球的表面积和体积的奥秘,我们对三维几何有了更深入的理解,也拓展了实际 应用的思维。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第
S1,S2,S3 ,, Sn
一
则球的表面积:
步: 分
O
S S1 S2 S3 Sn
割
设“小锥体”的体积为Vi
Si
O Vi
则球的体积为:
V V1 V2 V3 Vn
球的表面积
第 二 步: 求 近 似 和
Si
hi
O
O
Vi
Vi
1 3
S
i
hi
由第一步得:
V V1 V2 V3 Vn
1 3
RS
又球的体积为:V 4 R3
3
4 R 3 1 RS, 从而S 4R 2
3
3
例题讲解
例1:已知过球面上三点A、B、C的截面到球心O的距离 等于球半径的一半,且AB=BC=CA=2cm,求球的体积, 表面积.
解:如图,设球O半径为R, 截面⊙O′的半径为r,
O
OO R , ABC是正三角形,
略 解 :RtB1D1D中 :
(2R)2 a 2 ( 2a)2 , 得
R
3 a
2
S 4R2 3a 2
D A
D1 A1
D A
D1 A1
C B O
C1
B1
C B O
C1
B1
练习一
课堂练习
1.球的直径伸长为原来的2倍,体积变为原来的_8 倍.
2.一个正方体的顶点都在球面上,它的棱长是 4cm,这个球的体3积2 为3___cm3.
2
A
C
O
OA 2
3 AB 2 3 r
B
32
3
例题讲解
例2.已知过球面上三点A、B、C的截面到球心O的距离等
于球半径的一半,且AB=BC=CA=2cm,求球的体积,表面
积.
解:在RtOOA中,OA2 OO2 OA2 ,
R2 (R )2 (2 3 )2 ,
R
4 3
2
.
3
V
4πR3 3
6
]
R3[1
1 n2
(n
1)(2n 6
1)]
球的体积
1
1
(1 )(2 )
V半球 R 3 [1
n
n]
6
当n 时, 1 0.
n
V半 球
2 R 3
3
从 而V 4 R 3 .
3
定理:半径是R的球的体积为:V 4 R3
3
例题讲解
例1:一种空心钢球的质量是142g,外径是5cm,求它 的内径.(钢的密度是7.9g/cm2)
①V 4 R3
3
②S 4R2
课堂小结
了解球的体积、表面积推导的基本思路: 分割→求近似和→化为标准和的方法,是 一种重要的数学思想方法—极限思想,它 是今后要学习的微积分部分“定积分”内 容的一个应用; 熟练掌握球的体积、表面积公式:
①V 4 R3
3
②S 4R2
解:设空心钢球的内径为2xcm,则钢球的质量是
7.9 [ 4 ( 5 )3 4 x 3 ] 142
32 3
x 3 ( 5 )3 142 3 11.3
2
7.9 4
由计算器算得: x 2.24
2x 4.5
答:空心钢球的内径约为4.5cm.
二.球的表面积
o
Δ Si
o
球的表面积
球面被分割成n个网格,表面积分别为:
则两球的直径之差为_____4_.
7.将半径为1和2的两个铅球,熔成一个大铅球,那么 这个大铅球的表面积是___1_2__3. 3
课堂小结
了解球的体积、表面积推导的基本思路: 分割→求近似和→化为标准和的方法,是 一种重要的数学思想方法—极限思想,它 是今后要学习的微积分部分“定积分”内 容的一个应用; 熟练掌握球的体积、表面积公式:
4π(4 )3 33
256π; 81
A
S 4R2 4 16 64 .
99
O C
O
B
例题讲解
例2.如图,正方体ABCD-A1B1C1D1的棱长为a,它 的各个顶点都在球O的球面上,问球O的表面积。
分析:正方体内接于球,则由球和正方体都是中心 对称图形可知,它们中心重合,则正方体对角线与 球的直径相等。
V
1 3
S1h1
1 3
S2h2
1 3
S3h3
1 3
Snhn
球的表面积
第
如果网格分的越细,则:
三
Si “小锥体”就越接近小棱锥
步: 化 为
hi
Vi
hi的值就趋向于球的半径R
Vi
1 3
Si
R
准 确
Si
R
和
O Vi
V
1 3
Si R
1 3
S2R
1 3
S3 R
1 3
Sn R
1 3
R(Si
S2
S3
...
Sn )
球的体积
ri
R2 [ R (i 1)]2 , i 1,2,, n n
Vi
ri 2
R n
R3
n
[1 ( i
1)2 ], i n
1,2, n
V半球 V1 V2 Vn
R3
12 22 (n 1)2
[n n
n2
]
R3 1 (n 1) n (2n 1)
n [n n2
3.有三个球,一球切于正方体的各面,一球切于 正方体的各侧棱,一球过正方体的各顶点,求这 三个球的体积之比_1_:_2 _2_:_3 _3__.
练习二
课堂练习
5.长方体的共顶点的三个侧面积分别为 3, 5,, 15
则它的外接球的表面积为___9__.
6.若两球表面积之差为48π ,它们大圆周长之和为12π ,
问题:已知球的半径为R,用R表示球的体积?
分割 A
求近似和
化为准确和
极限的思想
A
O
C2
O
B2
r1 R2 R,
r2
R2 ( R)2 , n
r3
R2 (2R)2 , n
一.球的体积
A
ri
O
R (i 1)
n
R
O
第i层“小圆片”下底面的半径:
ri
R2
[
R( n
i
1
)
]2
,i 1,2,n.